

$\mathrm{UiO}:$ University of Oslo

Miscellaneous Topics

Helmer Aslaksen

Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
https://folk.universitetetioslo.no/helmeras/

Converting Air Temperatures 1

- In Fahrenheit, water freezes at $32^{\circ} \mathrm{F}$ and boils at $212^{\circ} \mathrm{F}$. It follows that the exact conversion formula is

$$
C=\frac{5}{9}(F-32)
$$

- However, we would like to have a simpler approximation formula that we can convert easily in our head. Such a formula will only work well for a certain interval, and we will first consider air temperatures.
- We will explore the simpler formula

$$
c=\frac{1}{2}(f-30) .
$$

UiO : University of Oslo
 Converting Air Temperatures 2

- When is this formula exact? We have

$$
\begin{gathered}
\frac{1}{2}(F-30)=\frac{5}{9}(F-32) \\
9(F-30)=10(F-32) \\
320-270=F \\
F=50,
\end{gathered}
$$

so $50^{\circ} \mathrm{F}$ gives $10^{\circ} \mathrm{C}$ with both formulas.

UiO : University of Oslo
 Converting Air Temperatures 3

- If F increases by $18^{\circ} \mathrm{F}$, then the exact formula increases by $10^{\circ} \mathrm{C}$, while the approximation formula increases by $9^{\circ} \mathrm{C}$.
- So if you are converting temperatures between $30^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}+2 \cdot 10^{\circ} \mathrm{C}$ and $-10^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}-2 \cdot 10^{\circ} \mathrm{C}$, then the approximation formula will never be more than $2^{\circ} \mathrm{C}$ off.

UiO : University of Oslo

Converting Oven Temperatures 1

- However, if you are converting oven temperatures for baking, this is not a useful interval. We instead try the formula

$$
\mathrm{c}=\frac{1}{2} \mathrm{f} .
$$

- Now the fixed point is

$$
\frac{1}{2} f=\frac{5}{9}(f-32)
$$

$$
9 f=1098(f-32)
$$

$$
320=f,
$$

so $320^{\circ} \mathrm{F}$ gives $160^{\circ} \mathrm{C}$ with both formulas.

- The same argument as above, shows that if you are converting temperatures between $60^{\circ} \mathrm{C}=160^{\circ} \mathrm{C}-10 \cdot 10^{\circ} \mathrm{C}$ and $260^{\circ} \mathrm{C}=160^{\circ} \mathrm{C}+10 \cdot 10^{\circ} \mathrm{C}$, the approximation formula will never be more than $10^{\circ} \mathrm{C}$ off.

