

$\mathrm{UiO}:$ University of Oslo

Number Theory

Helmer Aslaksen
Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

UiO : University of Oslo
 Greatest Common Divisor 1

- We denote the greatest common divisor (or greatest common factor) of $m, n \in \mathbb{N}$ by $\operatorname{gcd}(m, n)$ or simply (m, n). If $\operatorname{gcd}(m, n)=1$, we say that m and n are coprime or relatively prime.
- If we know the prime factorization of $m=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}$ and $n=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$, then $\operatorname{gcd}(m, n)=p_{1}^{c_{1}} \cdots p_{r}^{c_{r}}$ where $c_{i}=\min \left(a_{i}, b_{i}\right)$. Notice that some of the a_{i}, b_{i} and c_{i} may be 0 .
- Unfortunately, factorization is computationally hard, so we need a way to compute gcd without factoring.
- This is given by the Euclidean Algorithm (ca 300 BCE).

UiO : University of Oslo
 Greatest Common Divisor 2

- The basic idea is the following Lemma:

Lemma

$$
\operatorname{gcd}(m-k n, n)=\operatorname{gcd}(m, n) \text { for } k, m, n \in \mathbb{N}
$$

- For example, we have

$$
\begin{gathered}
\operatorname{gcd}(54,24)=(54-2 \cdot 24,24)=(6,24) \\
=(6,24-4 \cdot 6)=(6,0)=6
\end{gathered}
$$

- Note that since $n \cdot 0=0$, any number is a divisor of 0 , so $\operatorname{gcd}(n, 0)=n$.
- Since division is just repeated subtraction, we can at each step replace $\operatorname{gcd}(a, b)$, with $a>b$, by $\operatorname{gcd}(\bmod (a, b), b)$, where $\bmod (a, b)$ denotes the remainder when dividing a by b.
- The Euclidean Algorithm consists simply of repeated application of this idea until one number becomes 0 , at which stage the other number is the gcd.

UiO : University of Oslo
 Greatest Common Divisor 3

- Let us consider a nontrivial example where

$$
m=41 \cdot 51=2091 \text { and } n=43 \cdot 47=2021 .
$$

$$
\begin{gathered}
\operatorname{gcd}(2091,2021) \\
=(70,2021-2021,2021)=(70,2021) \\
=(70-61,61)=(9,61) \\
=(9,61-6 \cdot 9)=(9,7) \\
=(9-7,7)=(2,7) \\
=(2,7-3 \cdot 2)=(2,1) \\
=(2-2 \cdot 1,1)=(0,1)=1 .
\end{gathered}
$$

- Notice the way the two numbers decrease. The smallest number becomes the largest number, and then gets "divided away" to be replaced by a new smallest number.

UiO : University of Oslo
 Greatest Common Divisor 4

- Let us now prove our Lemma.
- Proof: If d is a common divisor of m and n, then $m=d m_{1}$ and $n=d n_{1}$ so $m-k n=d\left(m_{1}-k n_{1}\right)$ and d is also a common divisor of $m-k n$ and n.
- If d is a common divisor of $m-k n$ and n, then $m-k n=d l$ and $n=d n_{1}$ so $m=m-k n+k n=d\left(I+k n_{1}\right)$ so d is a common divisor of m and n.
- Since the two pairs have the same common divisors, they also have the same greatest common divisor.

UiO : University of Oslo
 Greatest Common Divisor 5

- We can also run the steps in the algorithm backwards. At each step we divide a by b and get a remainder r, satisfying $a=k \cdot b+r$. This can be written as $r=a-k \cdot b$, so at each step the new number can be written as a combination of the two previous numbers. This enables us to recursively express the gcd as a linear combination of the two numbers.

UiO : University of Oslo

Greatest Common Divisor 6

- We have

$$
\operatorname{gcd}(7,5)=(2,5)=(2,1)=(0,1)=1
$$

since

$$
7=1 \cdot 5+2, \quad 5=2 \cdot 2+1, \quad 2=2 \cdot 1+0
$$

We start with the last equation before we get 0 , namely $5=2 \cdot 2+1$. We can write it as $1=5-2 \cdot 2$, which expresses the gcd, 1 , as a combination of the two previous numbers, 2 and 5 . But the previous equation, $7=1 \cdot 5+2$, shows that 2 can be expressed in terms of 7 and 5 .

- Hence

$$
\operatorname{gcd}(7,5)=1=5-2 \cdot 2=5-2(7-5)=3 \cdot 5-2 \cdot 7
$$

UiO : University of Oslo

Greatest Common Divisor 7

- We have

$$
\operatorname{gcd}(21,15)=(6,15)=(6,3)=(0,3)=3
$$

and hence
$\operatorname{gcd}(21,15)=3=15-2 \cdot 6=15-2(21-15)=3 \cdot 15-2 \cdot 21$.

- The Euclidean Algorithm will both give us the gcd and express the gcd as a linear combination of the two numbers.

UiO : University of Oslo
 Greatest Common Divisor 8

- We will define, $I(m, n)$, the ideal generated by m and n, to be the set of integral linear combinations of m and n, $\{x m+y n \mid x, y \in \mathbb{Z}\}$.
- If $d=(m, n)$, and we denote the set of integral multiples of d by $I(d)$, then we have $I(m, n) \subseteq I(d)$, since a linear combination of m and n is also a multiple of d.
- However, if we run the Euclidean Algorithm backwards, we see that we can express d as a linear combination of m and n, and that shows that $I(d) \subseteq I(m, n)$, so these two sets are in fact equal, and we have proved the following theorem.

Theorem

For $m, n \in \mathbb{Z}$ we have

$$
\{x m+y n \mid x, y \in \mathbb{Z}\}=\{z \operatorname{gcd}(m, n) \mid z \in \mathbb{Z}\}
$$

- This fact can be restated in a useful form known as Bézout's Lemma, named after Étienne Bézout (1730-1783).

Lemma (Bézout's Lemma)

Let c be the smallest positive number that can be written in the form $x m+y n$. Then $c=\operatorname{gcd}(m, n)$.

- This lemma gives an alternative characterization of the gcd. It is a consequence of the previous Theorem, since c is the smallest positive number on the left, and d is the smallest positive number on the right.
- Notice that if $\operatorname{gcd}(m, n)=1$, then any integer can be written as a linear combination of m and n.

Uio : University of Oslo
 Proof of Bézout's Lemma

- We will also give a direct proof.
- Proof: If we divide m by c, we subtract multiples of c from m, but since c is a linear combination of m and n, the remainder will also be a linear combination of m and n.
- But since the remainder is less that c, and c is the smallest positive number of this form, the remainder must be zero, so c divides m.
- The same argument applies to n, so c is a common divisor of m and n.
- Let k any common divisor of m and n. Then $m=k m_{1}$ and $n=k n_{1}$, so $c=x m+y n=k\left(x m_{1}+y n_{1}\right)$, so k must also be a divisor of c. Hence c is the greatest common divisor.
- Let S be a set of numbers. We will say that $a \in S$ is invertible in S if it has a multiplicative inverse in S, i.e., there exists a $b \in S$ such that $a b=1$. Notice that 2 is invertible in \mathbb{Q}, since $1 / 2 \in \mathbb{Q}$, but 2 is not invertible in \mathbb{Z}, since $1 / 2 \notin \mathbb{Z}$.
- The invertible elements in \mathbb{Z} are 1 and -1 , while 1 is the only invertible element in \mathbb{N}.
- $p \in \mathbb{N}$ is prime if it is not invertible, and cannot be written as a product of two non-invertible elements. This is the same as saying that $p>1$ and the only divisors are 1 and p.
- Notice that 1 is not a prime number, since it is invertible. The point of this "complicated" definition of a prime is to motivate why 1 is not a prime.
- Notice that 2 is the only even prime.
- Euclid proved that there are infinitely many prime numbers.
- Let p_{1}, \ldots, p_{n} be prime numbers and set $N=p_{1} \cdots \cdots p_{n}+1$. Then N is not divisible by any of the p_{i}. Therefore either N is itself prime, or N is divisible by some other prime number.
- In either case, there must be another prime number in addition to the p_{i}, so there cannot be a finite list of primes.
- Notice that N does not have to be prime. For example $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13+1=30031=509 \cdot 59$.

Theorem (The Fundamental Theorem of Arithmetic)

For $n>1$ there is a unique expression

$$
n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are prime numbers and each $k_{i} \geq 1$.

- One reason why we do not consider 1 to be a prime number, is to ensure uniqueness in this decomposition.
- Proof of existence: If n is prime, the theorem is true. If not, we can write $n=a b$, and consider a and b separately. In this way we get a product of smaller and smaller factors, but this process must stop, which it does when the factors are primes. This was proved by Euclid around 300 BCE.
- In order to prove uniqueness, we first need a property of prime numbers.

UiO : University of Oslo

The Fundamental Theorem of Arithmetic 3

- We write $m \mid n$ if m divides n.

Lemma

Let p be a prime number, and $m, n \in \mathbb{N}$. If $p \mid m n$, then $p \mid m$ or $p \mid n$.

- Proof: Assume that $p \nmid m$. Then $\operatorname{gcd}(p, m)=1$, and we can find x and y such that $x p+y m=1$.
- Then $x p n+y m n=n$, and since $p \mid m n$, it follows that $p \mid n$.
- This fails if p is not prime, since $6 \mid(3 \cdot 4)$ without 6 dividing either 3 or 4 .
- Proof of uniqueness: Suppose the decomposition is not unique. After canceling common factors, we can then assume that

$$
p_{1} \cdots p_{k}=q_{1} \cdots q_{l}
$$

where $p_{i} \neq q_{j}$ for all i and j.

- It then follows from our lemma that p_{1} either divides q_{1}, which is impossible since we assumed that p_{1} is not equal to q_{1}, or p_{1} divides $q_{2} \cdots q_{l}$. Applying the lemma again, we eventually get a contradiction.

UiO : University of Oslo

Least Common Multiple

- We denote the least common multiple of m and n by $\operatorname{lcm}(m, n)$.
- If $m=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$, then

$$
\operatorname{gcd}(m, n)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\min \left(a_{k}, b_{k}\right)}
$$

and

$$
\operatorname{Icm}(m, n)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\max \left(a_{k}, b_{k}\right)}
$$

and since $\max (a, b)+\min (a, b)=a+b$, we have

$$
\begin{gathered}
\operatorname{gcd}(m, n) \cdot \operatorname{lcm}(m, n)=m n \\
\operatorname{lcm}(m, n)=\frac{m n}{\operatorname{gcd}(m, n)} .
\end{gathered}
$$

- This shows that $\operatorname{lcm}(m, n)=m n$ precisely when $\operatorname{gcd}(m, n)=1$.
- We will say that $a \equiv b(\bmod n)$ if n divides $a-b$, which means that a and b have the same remainder when we divide by n.
- We write $\overline{\mathrm{a}}=\{x \in \mathbb{Z} \mid x \equiv a(\bmod n)\}$ to denote the set of integers that are equivalent to a and call this the congruence class of a.
- Since every number is congruent mod n to a number between 0 and $n-1$, we can write $\mathbb{Z}_{n}=\{\overline{0}, \ldots, \overline{n-1}\}$ to denote the set of congruence classes mod n.
- We now define addition and multiplication of congruence classes by setting

$$
\begin{aligned}
\bar{a}+\bar{b} & =\overline{a+b} \\
\bar{a} \cdot \bar{b} & =\overline{a \cdot b}
\end{aligned}
$$

- The important part about this definition is that it is "well-defined" in the sense that it does not matter which representative we choose of each class.
- For instance, if $a_{1} \equiv a_{2}(\bmod n)$ and $b_{1} \equiv b_{2}(\bmod n)$, then $a_{1}+b_{1} \equiv a_{2}+b_{2}(\bmod n)$ so $a_{1}+b_{1}=a_{2}+b_{2}$.

UiO : University of Oslo
 Modular Arithmetic 3

- Let us compute the multiplication table for \mathbb{Z}_{2}.

	0	1
0	0	0
1	0	1

- Can you express in words what this table says about multiplication of odd and even numbers?
- Let us compute the multiplication table for \mathbb{Z}_{3}.

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

UiO : University of Oslo

Modular Arithmetic 4

- Let us compute the multiplication table for \mathbb{Z}_{5}.

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- Notice that

$$
\begin{array}{lll}
\overline{2}^{2}=\overline{4}, & \overline{2}^{3}=\overline{3}, & \overline{2}^{4}=\overline{1}, \\
\overline{3}^{2}=\overline{4}, & \overline{3}^{3}=\overline{2}, & \overline{3}^{4}=\overline{1}, \\
\overline{4}^{2}=\overline{1}, & \overline{4}^{3}=\overline{4}, & \overline{4}^{4}=\overline{1} .
\end{array}
$$

UiO : University of Oslo
 Modular Arithmetic 5

- We will say that $\bar{a} \in \mathbb{Z}_{n}$ is invertible if it has a multiplicative inverse, i.e., there is $\bar{b} \in \mathbb{Z}_{n}$ such that $\bar{a} \bar{b}=\overline{1}$.

Lemma

$\overline{\mathrm{a}}$ is invertible in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$.

$$
\begin{gathered}
(a, n)=1 \Longleftrightarrow \exists b, c \text { such that } b a+c n=1 \\
\Longleftrightarrow b a-1=-c n \Longleftrightarrow \bar{a} \bar{b}=\overline{1} .
\end{gathered}
$$

- It follows that if p is prime, then for any $\bar{a} \in \mathbb{Z}_{p}$ with $1 \leq a \leq p-1$ we have $\operatorname{gcd}(a, p)=1$, and it follows that all $\bar{a} \neq \overline{0}$ are invertible in \mathbb{Z}_{p}.
- Notice that if p is prime, then in \mathbb{Z}_{p} we can add, multiply and subtract, and that all non-zero elements have a multiplicative inverse. This is not true for \mathbb{Z}, since $1 / 2 \notin \mathbb{Z}$, and is one of the main reasons why we are interested in \mathbb{Z}_{p}.
- If a is invertible, then the equation $\bar{a} \bar{x}=\bar{b}$ has the solution $\bar{x}=\bar{a}^{-1} \bar{b}$.

UiO: University of Oslo
 Modular Arithmetic 7

- Let us compute the multiplication table for \mathbb{Z}_{6}.

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- Notice that $\overline{5}$ is the only invertible element, and that its row is a permutation of the classes.
- Notice that $\{\overline{0}, \overline{3}\}$ and $\{\overline{0}, \overline{2}, \overline{4}\}$ are closed under addition and multiplication.
- Since $\operatorname{gcd}(n-1, n)=1$ and $(n-1) i \equiv-i \equiv n-i(\bmod n)$, we see that the last row in the multiplication table of \mathbb{Z}_{n} will always be the classes in decreasing order.

UiO : University of Oslo Divisibility tests

- We will now show how we can use modular arithmetic to derive divisibility tests.

UiO : University of Oslo
 Divisibibility by 3 or 9

Theorem

A number is divisible by 3 (or 9) if and only if its digit sum is divisible by 3 (or 9).

$$
\begin{aligned}
& 3\left|\sum_{i=0}^{n} a_{i} 10^{i} \Leftrightarrow 3\right| \sum_{i=0}^{n} a_{i}, \\
& 9\left|\sum_{i=0}^{n} a_{i} 10^{i} \Leftrightarrow 9\right| \sum_{i=0}^{n} a_{i} .
\end{aligned}
$$

- Proof: Since $10 \equiv 1(\bmod 3)$ and $(\bmod 9)$, we have

$$
\sum a_{i} 10^{i} \equiv \sum a_{i} 1^{i} \equiv \sum a_{i} \quad(\bmod 3) \quad \text { and } \quad(\bmod 9)
$$

$$
111,111,093 \equiv 18 \equiv 9 \equiv 0 \quad(\bmod 9)
$$

so 9 divides 111,111,093.

UiO : University of Oslo
 Divisibility by 4

Theorem

A number, $100 c+d$, where d is the last two digits, is divisible by 4 if and only if the last two digits are divisible by 4.

- Proof: We have

$$
100 c+d \equiv d \quad(\bmod 4)
$$

$$
111,111,092 \equiv 92 \quad(\bmod 4)
$$

so 4 divides 111,111,092.

Theorem

A number, $10 a+b=100 c+d=\sum_{i=0}^{n} a_{i}(1,000)^{i}$, where b is the last digit, d is the last two digits, and the a_{j} 's are blocks of digits of length three starting from the right, is divisible by 7 if and only if 7 divides $a+5 b, 2 c+d$ or $\sum_{i=0}^{n}(-1)^{i} a_{i}$.

$$
\begin{aligned}
7 \mid 10 a+b & \Leftrightarrow 7 \mid a+5 b, \\
7 \mid 100 c+d & \Leftrightarrow 7 \mid 2 c+d, \\
7 \mid \sum_{i=0}^{n} a_{i}(1,000)^{i} & \Leftrightarrow 7 \mid \sum_{i=0}^{n}(-1)^{i} a_{i} .
\end{aligned}
$$

UiO : University of Oslo
 Divisibibility by 72

- Proof: We have

$$
5(10 a+b) \equiv 49 a+a+5 b \equiv a+5 b \quad(\bmod 7)
$$

which is 0 if and only if $10 a+b \equiv 0(\bmod 7)$, since 5 is invertible in \mathbb{Z}_{7}.

- The second part follows from

$$
100 c+d \equiv(98+2) c+d \equiv 2 c+d \quad(\bmod 7)
$$

- The last part follows from $10^{3} \equiv 3^{3} \equiv 27 \equiv-1(\bmod 7)$, which gives

$$
\sum_{i=0}^{n} a_{i}(1,000)^{i} \equiv \sum_{i=0}^{n}(-1)^{i} a_{i} \quad(\bmod 7)
$$

UiO : University of Oslo
 Divisibility by 73

$$
\begin{gathered}
86,419,746=10 \cdot 86,419,74+6=100 \cdot 864,197+46= \\
86 \cdot 10^{6}+419 \cdot 10^{3}+746 \cdot 10^{0}
\end{gathered}
$$

$$
\begin{aligned}
86,419,74+5 \cdot 6 & =8,642,004 \\
8,642,00+5 \cdot 4 & =864,220 \\
86,422+5 \cdot 0 & =86,422 \\
8,642+5 \cdot 2 & =8,652 \\
865+5 \cdot 2 & =875 \\
87+5 \cdot 5 & =112 \\
11+5 \cdot 2 & =21 \\
2+5 \cdot 1 & =7
\end{aligned}
$$

so 7 divides 86,419,746.

$$
86,419,746 \equiv 86-419+746 \equiv 413 \quad(\bmod 7)
$$

and 7 divides 413 so so 7 divides $86,419,746$.

- The first method is simple, but requires a lot of computations. The second method requires only half as much computation, but the $2 c$ term requires more computation.
- The most efficient is probably a combination. In our example, we could for example use the first method to conclude that 7 divides 413 since 7 divides $41+5 \cdot 3=56$.

UiO : University of Oslo
 Divisibility by 8

Theorem

A number, $1000 e+f$, where f is the last three digits, is divisible by 8 if and only if the last three digits are divisible by 8.

- Proof: We have

$$
1000 e+f \equiv f \quad(\bmod 8)
$$

Theorem

A number, $10 a+b=\sum_{i=0}^{n} a_{i}(1,000)^{i}$, where b is the last digit and the a_{i} 's are blocks of digits of length three starting from the right, is divisible by 11 if and only if 11 divides $a-b$ or $\sum_{i=0}^{n}(-1)^{i} a_{i}$.

$$
\begin{align*}
11 \mid 10 a+b & \Leftrightarrow 11 \mid a-b, \tag{1}\\
11 \mid \sum_{i=0}^{n} a_{i}(1,000)^{i} & \Leftrightarrow 11 \mid \sum_{i=0}^{n}(-1)^{i} a_{i} . \tag{2}
\end{align*}
$$

UiO : University of Oslo
 Divisibility by 112

- Proof: We have $10 \equiv-1(\bmod 11)$, so

$$
10 a+b \equiv-a+b \equiv(-1)(a-b) \quad(\bmod 11)
$$

which is 0 if and only if $a-b \equiv 0(\bmod 11)$

- The second part follows from $10^{3} \equiv(-1)^{3} \equiv-1(\bmod 11)$, which gives

$$
\sum_{i=0}^{n} a_{i}(1,000)^{i} \equiv \sum_{i=0}^{n} a_{i}(-1)^{i} \quad(\bmod 11)
$$

UiO : University of Oslo
 Divisibility by 113

$$
\begin{gathered}
13,580,237=10 \cdot 1,358,023+7= \\
13 \cdot 10^{6}+580 \cdot 10^{3}+237 \cdot 10^{0} .
\end{gathered}
$$

$$
\begin{aligned}
1,358,023-7 & =1,358,016 \\
135,801-6 & =135,795 \\
13,579-5 & =13,574 \\
1357-4 & =1353 \\
135-3 & =132 \\
13-2 & =11
\end{aligned}
$$

so 11 divides $13,580,237$.
$13,580,237 \equiv 13-580+237 \equiv-330 \quad(\bmod 11)$, and 11 divides -330 so so 11 divides 13,580,237.

Theorem

A number, $10 a+b=100 c+d=\sum_{i=0}^{n} a_{i} 10^{3 i}$, where b is the last digit, d is the last two digits, and the a_{i} 's are blocks of digits of length three starting from the right, is divisible by 13 if and only if 13 divides $a+4 b, 4 c-d$ or $\sum_{i=0}^{n}(-1)^{i} a_{i}$.

$$
\begin{align*}
13 \mid 10 a+b & \Leftrightarrow 13 \mid a+4 b, \tag{3}\\
13 \mid 100 c+d & \Leftrightarrow 13 \mid 4 c-d, \tag{4}\\
13 \mid \sum_{i=0}^{n} a_{i}(1,000)^{i} & \Leftrightarrow 13 \mid \sum_{i=0}^{n}(-1)^{i} a_{i} . \tag{5}
\end{align*}
$$

UiO : University of Oslo
 Divisibility by 132

- Proof: We have

$$
10 a+b \equiv 10 a+40 b \equiv 10(a+4 b) \quad(\bmod 13)
$$

which is 0 if and only if $a+4 b \equiv 0(\bmod 13)$, since 10 is invertible in \mathbb{Z}_{13}.

- The second part follows from

$$
100 c+d \equiv(104-4) c+d \equiv d-4 c \quad(\bmod 13)
$$

- The last part follows from $10^{3} \equiv(-3)^{3} \equiv-27 \equiv-1$ (mod 13), which gives

$$
\sum_{i=0}^{n} a_{i}(1,000)^{i} \equiv \sum_{i=0}^{n}(-1)^{i} a_{i} \quad(\bmod 13)
$$

－As an another application of modular arithmetic，we will show how we can solve one of the mathematical problems in the Chinese novel Legends of the Condor Heroes（射鵰英雄傳，Shèdiāo yīngxióng zhuàn）by JĪN Yōng 金庸．
－The heroine HUÁNG Róng（黃蓉）is angry at The Divine Mathematician Yīnggū（神算子瑛姑），so she gives her three problems that she thinks Yīnggū will not be able to solve．
－One of the problems is an example from The Mathematical Classic of Master Sun（孫子算經，Sūnzǐ suànjīng），which was written during the 3rd to 5th centuries CE．It is also known as the Ghost Valley Mathematics Problem（鬼谷算题 Guǐgǔ suàntí）．
－＂There is an unknown number；three and three has two as the remainder，five and five has three as the remainder， seven and seven has two as the remainder，what mathematical operand is that？Author＇s note：this problem belongs to the theory of numbers of higher mathematics； our Song Dynasty scholars have been quite profound in this kind of study．＂

UiO : University of Oslo

The Legends of the Condor Heroes 3

- We need to solve the equations

$$
\begin{array}{ll}
n \equiv 2 & (\bmod 3) \\
n \equiv 3 & (\bmod 5) \\
n \equiv 2 & (\bmod 7)
\end{array}
$$

- There is a method called the Chinese Remainder Theorem that gives an algorithm for solving this kind of problems. We will first find numbers n_{1}, n_{2} and n_{3} such that

$$
\begin{array}{ll}
n_{1} \equiv 1 & (\bmod 3) \\
n_{1} \equiv 0 & (\bmod 35) \\
n_{2} \equiv 1 & (\bmod 5) \\
n_{2} \equiv 0 & (\bmod 21) \\
n_{3} \equiv 1 & (\bmod 7) \\
n_{3} \equiv 0 & (\bmod 15)
\end{array}
$$

Uio: University of Osio

The Legends of the Condor Heroes 4

- We can then find a solution by setting

$$
n=2 n_{2}+3 n_{2}+2 n_{3}
$$

- The reason why we can find the n_{i} is that 3,5 and 7 do not have any common factors. Therefore $\operatorname{gcd}(3,5 \cdot 7)=1$, and we can find a and b such that $3 a+35 b=1$. We can then set $n_{1}=35 b$.
- To find a and b we use the Euclidean algorithm.

$$
\begin{aligned}
\operatorname{gcd}(35,3) & =(35-11 \cdot 3,3)=(2,3)=(2,3-2 \cdot 1) \\
& =(2,1)=(2-2 \cdot 1,1)=(0,1)
\end{aligned}
$$

and then run it backwards to get

$$
1=3-2=3-(35-11 \cdot 3)=12 \cdot 3-35
$$

- It follows that we can set $n_{1}=-35$. However, since our solution n is only determined up to multiples of $3 \cdot 5 \cdot 7=105$, we can instead set $n_{1}=105-35=70$.

UiO : University of Oslo
 The Legends of the Condor Heroes 5

- In the same way we can find $n_{2}=21$ and $n_{3}=15$, which gives us $n=2 \cdot 70+3 \cdot 21+2 \cdot 15=233$ as a solution, but if we want to get a number between 0 and 104, we can use $23 \equiv 233-2 \cdot 105$.

UiO : University of Oslo
 Fermat's Little Theorem 1

Theorem (Fermat's Little Theorem)

Let p be a prime number. If $\operatorname{gcd}(p, a)=1$, then $a^{p-1} \equiv 1$ $(\bmod p)$.

- Proof: Consider the set of nonzero congruence classes $\{\overline{1}, \ldots, \overline{p-1}\}$ and the set $\{\bar{a} \overline{1}, \ldots, \bar{a}(\overline{p-1})\}$.
- We have

$$
\begin{aligned}
a \cdot i & \equiv a \cdot j \quad(\bmod p) \\
a(i-j) & \equiv 0 \quad(\bmod p)
\end{aligned}
$$

and since $p \nmid a$, this can only happen if $\bar{i}=\bar{j}$, so the two sets of classes are the same.

- We multiply the elements of the two sets together and get

$$
\begin{aligned}
(a \cdot 1) \cdots(a \cdot(p-1)) & \equiv 1 \cdots(p-1) \quad(\bmod p) \\
a^{p-1}(p-1)! & \equiv(p-1)!\quad(\bmod p) \\
a^{p-1} & \equiv 1 \quad(\bmod p),
\end{aligned}
$$

since $(p-1)!\not \equiv 0(\bmod p)$.

UiO : University of Oslo
 Fermat's Little Theorem 3

- We can also write this as $a^{p} \equiv a(\bmod p)$. In this form, the statement is also true for $a=k p$.
- For small values we can see this directly.
- $a^{2}-a=a(a-1)$ is always divisible by 2 , since in the product of two consecutive integers, one the the factors must be even.
- Similarly, $a^{3}-a=a\left(a^{2}-1\right)=(a+1) a(a-1)$ is always divisible by 3 , since in the product of three consecutive integers, one the the factors must be divisible by 3 .
- In 1763, Leonhard Euler (1707-1783) defined $\phi(n)$ to be the number of integers k with $1 \leq k \leq n$ that are coprime with n.
- If p is prime and $1 \leq k \leq p$, then $\operatorname{gcd}(k, p)=1$ unless $k=p$, since $\operatorname{gcd}(p, p)=p$.
- It follows that

$$
\phi(p)=p-1=p\left(1-\frac{1}{p}\right)
$$

for any prime number p.

- Notice, however, that $\phi(1)=1$, since 1 is the only number that is coprime with itself.
- For powers of a prime, we see that the only numbers less than or equal to p^{k} that have a common factor greater than 1 with p^{k} are the multiples of p, i.e., $x p$ for $1 \leq x \leq p^{k-1}$. This gives us

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)
$$

- $\phi(4)=\phi\left(2^{2}\right)=4-2=2$.
$-\phi(8)=\phi\left(2^{3}\right)=8-4=4$.

UiO : University of Oslo
 Euler's ϕ function 3

- To compute $\phi(p q)$ for the product of two distinct primes, p and q, we will first give an example and consider $p=5$ and $q=7$. The only numbers less than or equal to 35 that are not coprime with 35 are the multiples of 5 and 7 . There are 7 multiples of 5 and 5 multiples of 7 less than or equal to 35 , i.e. $5,10,15,20,25,30,35$ and $7,14,21,28,35$. Notice that the only number in this list that is a multiple of both 5 and 7 is 35 , since $\operatorname{lcm}(5,7)=5 \cdot 7 / \operatorname{gcd}(5,7)=35 / 1=35$.
- We have therefore only counted one number twice, namely 35.
- It follows that
$\phi(35)=35-7-5+1=24=4 \cdot 6=\phi(5) \phi(7)$

UiO : University of Oslo

Euler's ϕ function 4

- For the general case we start with the $p q$ numbers from 1 to $p q$ and subtract the q multiples of p and the p multiples of q. Since $\operatorname{lcm}(p, q)=p q / \operatorname{gcd}(p, q)=p q$, the only number that is subtracted twice is $p q$. It follows that

$$
\phi(p q)=p q-q-p+1=(p-1)(q-1)=\phi(p) \phi(q)
$$

- Notice that this can also be written as

$$
\phi(p q)=(p-1)(q-1)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)
$$

- To compute $\phi\left(p^{a} q^{b}\right)$ for the product of powers of two distinct primes, p and q, we again start with the $p^{a} q^{b}$ numbers from 1 to $p^{a} q^{b}$ and subtract the $p^{a-1} q$ multiples of p and the $p q^{b-1}$ multiples of q. However, this time multiples of $p q$ are counted twice so we must add the $p^{a-1} q^{b-1}$ multiples of $p q$ to get

$$
\begin{gathered}
\phi\left(p^{a} q^{b}\right)=p^{a} q^{b}-p^{a-1} q^{b}-p^{a} q^{b-1}+p^{a-1} q^{b-1} \\
=p^{a} q^{b}-p^{a} q^{b} / p-p^{a} q^{b} / q+p^{a} q^{b} /(p q) \\
=p^{a} q^{b}(1-1 / p-1 / q+1 /(p q)) \\
=p^{a} q^{b}(1-1 / p)(1-1 / q)=\phi(p) \phi(q) .
\end{gathered}
$$

UiO : University of Oslo
 Euler's ϕ function 6

- To compute $\phi\left(p^{a} q^{b} r^{c}\right)$ for the product of powers of three distinct primes, p, q and r, we start in the same way, but now multiples of $p q, p r$ and $q r$ that are not multiples of $p q r$ are all counted twice so we must add these multiples.
- However, multiples of pqr are first subtracted three times (multiples of p, q and r) and then added three times (multiples of $p q, p r$ and $q r$), so we must subtract them. This gives us

$$
\begin{gathered}
\quad \phi\left(p^{a} q^{b} r^{c}\right)=p^{a} q^{b} r^{c}-p^{a} q^{b} r^{c} / p-p^{a} q^{b} r^{c} / q-p^{a} q^{b} r^{c} / r \\
+p^{a} q^{b} r^{c} /(p q)+p^{a} q^{b} r^{c} /(p r)+p^{a} q^{b} r^{c} /(q r)-p^{a} q^{b} r^{c} /(p q r) \\
=p^{a} q^{b} r^{c}(1-1 / p-1 / q-1 / r+1 /(p q)+1 /(p r)+1 /(q r) \\
-1 /(p q r)=p^{a} q^{b} r^{c}(1-1 / p)(1-1 / q)(1-1 / r) .
\end{gathered}
$$

UiO : University of Oslo

Euler's ϕ function 7

- Using similar arguments, we can show that

$$
\phi\left(\prod_{i=1}^{r} p_{i}^{a_{i}}\right)=\prod_{i=1}^{r} p_{i}^{a_{i}}\left(1-\frac{1}{p_{i}}\right) .
$$

- This can also be written as

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

where the product is over all the prime factors in n.

- Notice also that this formula shows that ϕ is multiplicative in the sense that

$$
\operatorname{gcd}(m, n)=1 \Longrightarrow \phi(m n)=\phi(m) \phi(n)
$$

- So $\phi(12)=\phi(4) \phi(3)=(4-2) 2=4$, while $\phi(2) \phi(6)=1 \cdot(3-1)(2-1)=2$.
- We can generalize Fermat's Little Theorem as follows.

Theorem (Euler's Theorem)

If $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)} \equiv 1(\bmod n)$.

- Proof: Similar to the proof of Fermat's Little Theorem, of which it is a generalization, since $\phi(p)=p-1$.
- Instead of considering the set of nonzero congruence classes, we consider the set $\left\{\overline{c_{1}}, \ldots, \overline{c_{\phi(n)}}\right\}$ of congruence classes corresponding to c with $\operatorname{gcd}(c, n)=1$.

Euler's Theorem 2

- For $n=5$, we get that $\phi(5)=4$ and $\overline{2}^{4}=\overline{3}^{4}=\overline{4}^{4}=\overline{1}$, but notice that $\overline{4}^{2}=\overline{1}$, too.
- For $n=6$, we get that $\phi(6)=2$ and $\overline{5}^{2}=\overline{1}$.
- For $n=8$, we get that $\phi(8)=4$ and $\overline{3}^{4}=\overline{5}^{4}=\overline{7}^{4}=\overline{1}$, but notice that $\overline{3}^{2}=\overline{5}^{2}=\overline{7}^{2}=\overline{1}$, too.

UiO : University of Oslo

Order of an element

- If $\bar{a} \in \mathbb{Z}_{n}$ is invertible, we will say that the order of a is the smallest positive number k such that $a^{k} \equiv 1(\bmod n)$.

Lemma

If $\operatorname{gcd}(a, n)=1$ and k is the order of a, then $k \mid \phi(n)$.

- Proof: We know that $a^{\phi(n)} \equiv 1(\bmod n)$. If we divide $\phi(n)$ by k, we get $\phi(n)=l k+r$, where $0 \leq r<k$, and then

$$
1 \equiv a^{\phi(n)} \equiv a^{l k+r} \equiv\left(a^{k}\right)^{\prime} a^{r} \equiv a^{r} \quad(\bmod n)
$$

Since k is smallest positive number with $a^{k} \equiv 1(\bmod n)$, we must have $r=0$, so $k \mid \phi(n)$.

- In \mathbb{Z}_{5}, the orders of $\overline{2}$ and $\overline{3}$ are $\phi(5)=4$, but the order of $\overline{4}$ is 2 .
- $\ln \mathbb{Z}_{6}$, the order of $\overline{5}$ is $\phi(6)=2$.
- $\ln \mathbb{Z}_{8}$, the orders of $\overline{3}, \overline{5}$ and $\overline{7}$ are $2=\phi(8) / 2$.

