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Greatest Common Divisor 1

▶ We denote the greatest common divisor (or greatest
common factor) of m,n ∈ N by gcd(m,n) or simply (m,n).
If gcd(m,n) = 1, we say that m and n are coprime or
relatively prime.

▶ If we know the prime factorization of m = pa1
1 · · · par

r and
n = pb1

1 · · · pbr
r , then gcd(m,n) = pc1

1 · · · pcr
r where

ci = min(ai ,bi). Notice that some of the ai , bi and ci may
be 0.

▶ Unfortunately, factorization is computationally hard, so we
need a way to compute gcd without factoring.

▶ This is given by the Euclidean Algorithm (ca 300 BCE).
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▶ The basic idea is the following Lemma:

Lemma
gcd(m − kn,n) = gcd(m,n) for k ,m,n ∈ N.

▶ For example, we have

gcd(54,24) = (54 − 2 · 24,24) = (6,24)
= (6,24 − 4 · 6) = (6,0) = 6.

▶ Note that since n · 0 = 0, any number is a divisor of 0, so
gcd(n,0) = n.

▶ Since division is just repeated subtraction, we can at each
step replace gcd(a,b), with a > b, by gcd(mod(a,b),b),
where mod(a,b) denotes the remainder when dividing a by
b.

▶ The Euclidean Algorithm consists simply of repeated
application of this idea until one number becomes 0, at
which stage the other number is the gcd.
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▶ Let us consider a nontrivial example where
m = 41 · 51 = 2091 and n = 43 · 47 = 2021.

▶

gcd(2091,2021)
= (2091 − 2021,2021) = (70,2021)

= (70,2021 − 28 · 70) = (70,2021 − 1960) = (70,61)
= (70 − 61,61) = (9,61)
= (9,61 − 6 · 9) = (9,7)
= (9 − 7,7) = (2,7)

= (2,7 − 3 · 2) = (2,1)
= (2 − 2 · 1,1) = (0,1) = 1.

▶ Notice the way the two numbers decrease. The smallest
number becomes the largest number, and then gets
“divided away” to be replaced by a new smallest number.
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▶ Let us now prove our Lemma.
▶ Proof: If d is a common divisor of m and n, then m = dm1

and n = dn1 so m − kn = d(m1 − kn1) and d is also a
common divisor of m − kn and n.

▶ If d is a common divisor of m − kn and n, then m − kn = dl
and n = dn1 so m = m − kn + kn = d(l + kn1) so d is a
common divisor of m and n.

▶ Since the two pairs have the same common divisors, they
also have the same greatest common divisor.
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▶ We can also run the steps in the algorithm backwards. At
each step we divide a by b and get a remainder r ,
satisfying a = k · b + r . This can be written as r = a − k · b,
so at each step the new number can be written as a
combination of the two previous numbers. This enables us
to recursively express the gcd as a linear combination of
the two numbers.
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▶ We have

gcd(7,5) = (2,5) = (2,1) = (0,1) = 1

since

7 = 1 · 5 + 2, 5 = 2 · 2 + 1, 2 = 2 · 1 + 0.

We start with the last equation before we get 0, namely
5 = 2 · 2 + 1. We can write it as 1 = 5 − 2 · 2, which
expresses the gcd, 1, as a combination of the two previous
numbers, 2 and 5. But the previous equation, 7 = 1 · 5 + 2,
shows that 2 can be expressed in terms of 7 and 5.

▶ Hence

gcd(7,5) = 1 = 5 − 2 · 2 = 5 − 2(7 − 5) = 3 · 5 − 2 · 7.
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▶ We have

gcd(21,15) = (6,15) = (6,3) = (0,3) = 3,

and hence

gcd(21,15) = 3 = 15−2·6 = 15−2(21−15) = 3·15−2·21.

▶ The Euclidean Algorithm will both give us the gcd and
express the gcd as a linear combination of the two
numbers.
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▶ We will define, I(m,n), the ideal generated by m and n, to
be the set of integral linear combinations of m and n,
{xm + yn | x , y ∈ Z}.

▶ If d = (m,n), and we denote the set of integral multiples of
d by I(d), then we have I(m,n) ⊆ I(d), since a linear
combination of m and n is also a multiple of d .

▶ However, if we run the Euclidean Algorithm backwards, we
see that we can express d as a linear combination of m
and n, and that shows that I(d) ⊆ I(m,n), so these two
sets are in fact equal, and we have proved the following
theorem.

Theorem
For m,n ∈ Z we have

{xm + yn | x , y ∈ Z} = {z gcd(m,n) | z ∈ Z}.
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Bézout’s Lemma

▶ This fact can be restated in a useful form known as
Bézout’s Lemma, named after Étienne Bézout
(1730–1783).

Lemma (Bézout’s Lemma)

Let c be the smallest positive number that can be written in the
form xm + yn. Then c = gcd(m,n).

▶ This lemma gives an alternative characterization of the
gcd. It is a consequence of the previous Theorem, since c
is the smallest positive number on the left, and d is the
smallest positive number on the right.

▶ Notice that if gcd(m,n) = 1, then any integer can be written
as a linear combination of m and n.
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Proof of Bézout’s Lemma

▶ We will also give a direct proof.
▶ Proof: If we divide m by c, we subtract multiples of c from

m, but since c is a linear combination of m and n, the
remainder will also be a linear combination of m and n.

▶ But since the remainder is less that c, and c is the smallest
positive number of this form, the remainder must be zero,
so c divides m.

▶ The same argument applies to n, so c is a common divisor
of m and n.

▶ Let k any common divisor of m and n. Then m = km1 and
n = kn1, so c = xm+ yn = k(xm1 + yn1), so k must also be
a divisor of c. Hence c is the greatest common divisor.
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Prime Numbers 1

▶ Let S be a set of numbers. We will say that a ∈ S is
invertible in S if it has a multiplicative inverse in S, i.e.,
there exists a b ∈ S such that ab = 1. Notice that 2 is
invertible in Q, since 1/2 ∈ Q, but 2 is not invertible in Z,
since 1/2 ̸∈ Z.

▶ The invertible elements in Z are 1 and −1, while 1 is the
only invertible element in N.

▶ p ∈ N is prime if it is not invertible, and cannot be written as
a product of two non-invertible elements. This is the same
as saying that p > 1 and the only divisors are 1 and p.

▶ Notice that 1 is not a prime number, since it is invertible.
The point of this “complicated” definition of a prime is to
motivate why 1 is not a prime.

▶ Notice that 2 is the only even prime.
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Prime Numbers 7

▶ Euclid proved that there are infinitely many prime numbers.
▶ Let p1, . . . ,pn be prime numbers and set

N = p1 · · · · · pn + 1. Then N is not divisible by any of the pi .
Therefore either N is itself prime, or N is divisible by some
other prime number.

▶ In either case, there must be another prime number in
addition to the pi , so there cannot be a finite list of primes.

▶ Notice that N does not have to be prime. For example
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 509 · 59.
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The Fundamental Theorem of Arithmetic 1

Theorem (The Fundamental Theorem of Arithmetic)

For n > 1 there is a unique expression

n = pk1
1 · · · pkr

r ,

where p1 < p2 < · · · < pr are prime numbers and each ki ≥ 1.

▶ One reason why we do not consider 1 to be a prime
number, is to ensure uniqueness in this decomposition.
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The Fundamental Theorem of Arithmetic 4

▶ Proof of existence: If n is prime, the theorem is true. If not,
we can write n = ab, and consider a and b separately. In
this way we get a product of smaller and smaller factors,
but this process must stop, which it does when the factors
are primes. This was proved by Euclid around 300 BCE.

▶ In order to prove uniqueness, we first need a property of
prime numbers.
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The Fundamental Theorem of Arithmetic 7

▶ We write m|n if m divides n.

Lemma
Let p be a prime number, and m,n ∈ N. If p|mn, then p|m or
p|n.

▶ Proof: Assume that p̸ |m. Then gcd(p,m) = 1, and we can
find x and y such that xp + ym = 1.

▶ Then xpn + ymn = n, and since p|mn, it follows that p|n.

▶ This fails if p is not prime, since 6|(3 · 4) without 6 dividing
either 3 or 4.
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The Fundamental Theorem of Arithmetic 13

▶ Proof of uniqueness: Suppose the decomposition is not
unique. After canceling common factors, we can then
assume that

p1 · · · pk = q1 · · · ql ,

where pi ̸= qj for all i and j .
▶ It then follows from our lemma that p1 either divides q1,

which is impossible since we assumed that p1 is not equal
to q1, or p1 divides q2 · · · ql . Applying the lemma again, we
eventually get a contradiction.
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Least Common Multiple

▶ We denote the least common multiple of m and n by
lcm(m,n).

▶ If m = pa1
1 · · · pak

k and n = pb1
1 · · · pbk

k , then

gcd(m,n) = pmin(a1,b1)
1 · · · pmin(ak ,bk )

k

and
lcm(m,n) = pmax(a1,b1)

1 · · · pmax(ak ,bk )
k ,

and since max(a,b) + min(a,b) = a + b, we have

gcd(m,n) · lcm(m,n) = mn,

lcm(m,n) =
mn

gcd(m,n)
.

▶ This shows that lcm(m,n) = mn precisely when
gcd(m,n) = 1.
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Modular Arithmetic 1

▶ We will say that a ≡ b (mod n) if n divides a − b, which
means that a and b have the same remainder when we
divide by n.

▶ We write a = {x ∈ Z | x ≡ a (mod n)} to denote the set of
integers that are equivalent to a and call this the
congruence class of a.

▶ Since every number is congruent mod n to a number
between 0 and n − 1, we can write Zn = {0, . . . ,n − 1} to
denote the set of congruence classes mod n.
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Modular Arithmetic 5

▶ We now define addition and multiplication of congruence
classes by setting

a + b = a + b,

a · b = a · b.

▶ The important part about this definition is that it is
“well-defined” in the sense that it does not matter which
representative we choose of each class.

▶ For instance, if a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n),
then a1 + b1 ≡ a2 + b2 (mod n) so a1 + b1 = a2 + b2.
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Modular Arithmetic 9

▶ Let us compute the multiplication table for Z2.

0 1
0 0 0
1 0 1

▶ Can you express in words what this table says about
multiplication of odd and even numbers?

▶ Let us compute the multiplication table for Z3.
0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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▶ Let us compute the multiplication table for Z5.

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

▶ Notice that

2
2
= 4, 2

3
= 3, 2

4
= 1,

3
2
= 4, 3

3
= 2, 3

4
= 1,

4
2
= 1, 4

3
= 4, 4

4
= 1.
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▶ We will say that a ∈ Zn is invertible if it has a multiplicative
inverse, i.e., there is b ∈ Zn such that a b = 1.

Lemma
a is invertible in Zn if and only if gcd(a,n) = 1.

▶

(a,n) = 1 ⇐⇒ ∃b, c such that ba + cn = 1

⇐⇒ ba − 1 = −cn ⇐⇒ a b = 1.

▶ It follows that if p is prime, then for any a ∈ Zp with
1 ≤ a ≤ p − 1 we have gcd(a,p) = 1, and it follows that all
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▶ Notice that if p is prime, then in Zp we can add, multiply
and subtract, and that all non-zero elements have a
multiplicative inverse. This is not true for Z, since 1/2 ̸∈ Z,
and is one of the main reasons why we are interested in
Zp.

▶ If a is invertible, then the equation a x = b has the solution
x = a−1b.
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▶ Let us compute the multiplication table for Z6.

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

▶ Notice that 5 is the only invertible element, and that its row
is a permutation of the classes.

▶ Notice that {0,3} and {0,2,4} are closed under addition
and multiplication.

▶ Since gcd(n − 1,n) = 1 and (n − 1)i ≡ −i ≡ n − i (mod n),
we see that the last row in the multiplication table of Zn will
always be the classes in decreasing order.
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Divisibility by 3 or 9

Theorem
A number is divisible by 3 (or 9) if and only if its digit sum is
divisible by 3 (or 9).
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▶ Proof: Since 10 ≡ 1 (mod 3) and (mod 9), we have∑
ai10i ≡

∑
ai1i ≡

∑
ai (mod 3) and (mod 9).
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▶

111,111,093 ≡ 18 ≡ 9 ≡ 0 (mod 9),

so 9 divides 111,111,093.
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▶ Proof: We have
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which is 0 if and only if 10a + b ≡ 0 (mod 7), since 5 is
invertible in Z7.
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▶

86,419,746 = 10 · 86,419,74 + 6 = 100 · 864,197 + 46 =

86 · 106 + 419 · 103 + 746 · 100.

▶

86,419,74 + 5 · 6 = 8,642,004,
8,642,00 + 5 · 4 = 864,220,

86,422 + 5 · 0 = 86,422,
8,642 + 5 · 2 = 8,652,

865 + 5 · 2 = 875,
87 + 5 · 5 = 112,
11 + 5 · 2 = 21,
2 + 5 · 1 = 7.

so 7 divides 86,419,746.
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▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 11

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.

▶ The first method is simple, but requires a lot of
computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 12

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 13

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 8

Theorem
A number, 1000e + f , where f is the last three digits, is divisible
by 8 if and only if the last three digits are divisible by 8.

▶ Proof: We have
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▶ The second part follows from 103 ≡ (−1)3 ≡ −1 (mod 11),
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▶

13,580,237 = 10 · 1,358,023 + 7 =

13 · 106 + 580 · 103 + 237 · 100.

▶

1,358,023 − 7 = 1,358,016,
135,801 − 6 = 135,795,
13,579 − 5 = 13,574,

1357 − 4 = 1353,
135 − 3 = 132,

13 − 2 = 11,

so 11 divides 13,580,237.
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last digit, d is the last two digits, and the ai ’s are blocks of digits
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▶ As an another application of modular arithmetic, we will
show how we can solve one of the mathematical problems
in the Chinese novel Legends of the Condor Heroes (�p
ñÄ³, Shèdiāo yı̄ngxióng zhuàn) by JĪN Yōng Ñ¸.

▶ The heroine HUÁNG Róng (ÃÉ) is angry at The Divine
Mathematician Yı̄nggū (^�P[Ñ), so she gives her
three problems that she thinks Yı̄nggū will not be able to
solve.
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▶ “There is an unknown number; three and three has two as
the remainder, five and five has three as the remainder,
seven and seven has two as the remainder, what
mathematical operand is that? Author’s note: this problem
belongs to the theory of numbers of higher mathematics;
our Song Dynasty scholars have been quite profound in
this kind of study.”
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▶ We need to solve the equations

n ≡ 2 (mod 3)
n ≡ 3 (mod 5)
n ≡ 2 (mod 7)

▶ There is a method called the Chinese Remainder Theorem
that gives an algorithm for solving this kind of problems.
We will first find numbers n1, n2 and n3 such that

n1 ≡ 1 (mod 3)
n1 ≡ 0 (mod 35)
n2 ≡ 1 (mod 5)
n2 ≡ 0 (mod 21)
n3 ≡ 1 (mod 7)
n3 ≡ 0 (mod 15)
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▶ We can then find a solution by setting

n = 2n2 + 3n2 + 2n3

▶ The reason why we can find the ni is that 3, 5 and 7 do not
have any common factors. Therefore gcd(3,5 · 7) = 1, and
we can find a and b such that 3a + 35b = 1. We can then
set n1 = 35b.

▶ To find a and b we use the Euclidean algorithm.

gcd(35,3) = (35 − 11 · 3,3) = (2,3) = (2,3 − 2 · 1)
= (2,1) = (2 − 2 · 1,1) = (0,1),

and then run it backwards to get

1 = 3 − 2 = 3 − (35 − 11 · 3) = 12 · 3 − 35.

▶ It follows that we can set n1 = −35. However, since our
solution n is only determined up to multiples of
3 · 5 · 7 = 105, we can instead set n1 = 105 − 35 = 70.
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▶ In the same way we can find n2 = 21 and n3 = 15, which
gives us n = 2 · 70 + 3 · 21 + 2 · 15 = 233 as a solution, but
if we want to get a number between 0 and 104, we can use
23 ≡ 233 − 2 · 105.
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Fermat’s Little Theorem 1

Theorem (Fermat’s Little Theorem)

Let p be a prime number. If gcd(p,a) = 1, then ap−1 ≡ 1
(mod p).

▶ Proof: Consider the set of nonzero congruence classes
{1, . . . ,p − 1} and the set {a1, . . . ,a(p − 1)}.

▶ We have

a · i ≡ a · j (mod p),
a(i − j) ≡ 0 (mod p)

and since p̸ |a, this can only happen if i = j , so the two sets
of classes are the same.
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▶ We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! ̸≡ 0 (mod p).



Fermat’s Little Theorem 5

▶ We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! ̸≡ 0 (mod p).



Fermat’s Little Theorem 6

▶ We can also write this as ap ≡ a (mod p). In this form, the
statement is also true for a = kp.

▶ For small values we can see this directly.
▶ a2 − a = a(a − 1) is always divisible by 2, since in the

product of two consecutive integers, one the the factors
must be even.

▶ Similarly, a3 − a = a(a2 − 1) = (a + 1)a(a − 1) is always
divisible by 3, since in the product of three consecutive
integers, one the the factors must be divisible by 3.
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Euler’s ϕ function 1

▶ In 1763, Leonhard Euler (1707–1783) defined ϕ(n) to be
the number of integers k with 1 ≤ k ≤ n that are coprime
with n.

▶ If p is prime and 1 ≤ k ≤ p, then gcd(k ,p) = 1 unless
k = p, since gcd(p,p) = p .

▶ It follows that

ϕ(p) = p − 1 = p
(

1 − 1
p

)
for any prime number p.

▶ Notice, however, that ϕ(1) = 1, since 1 is the only number
that is coprime with itself.
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▶ For powers of a prime, we see that the only numbers less
than or equal to pk that have a common factor greater than
1 with pk are the multiples of p, i.e., xp for 1 ≤ x ≤ pk−1.
This gives us

ϕ(pk ) = pk − pk−1 = pk
(

1 − 1
p

)
,

▶ ϕ(4) = ϕ(22) = 4 − 2 = 2.
▶ ϕ(8) = ϕ(23) = 8 − 4 = 4.
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▶ To compute ϕ(pq) for the product of two distinct primes, p
and q, we will first give an example and consider p = 5 and
q = 7. The only numbers less than or equal to 35 that are
not coprime with 35 are the multiples of 5 and 7. There are
7 multiples of 5 and 5 multiples of 7 less than or equal to
35, i.e. 5, 10, 15, 20, 25, 30, 35 and 7, 14, 21, 28, 35.
Notice that the only number in this list that is a multiple of
both 5 and 7 is 35, since
lcm(5,7) = 5 · 7/ gcd(5,7) = 35/1 = 35.

▶ We have therefore only counted one number twice, namely
35.

▶ It follows that
ϕ(35) = 35 − 7 − 5 + 1 = 24 = 4 · 6 = ϕ(5)ϕ(7)
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▶ For the general case we start with the pq numbers from 1
to pq and subtract the q multiples of p and the p multiples
of q. Since lcm(p,q) = pq/ gcd(p,q) = pq, the only
number that is subtracted twice is pq. It follows that

ϕ(pq) = pq − q − p + 1 = (p − 1)(q − 1) = ϕ(p)ϕ(q).

▶ Notice that this can also be written as

ϕ(pq) = (p − 1)(q − 1) = pq
(

1 − 1
p

)(
1 − 1

q

)
.
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▶ To compute ϕ(paqb) for the product of powers of two
distinct primes, p and q, we again start with the paqb

numbers from 1 to paqb and subtract the pa−1q multiples
of p and the pqb−1 multiples of q. However, this time
multiples of pq are counted twice so we must add the
pa−1qb−1 multiples of pq to get

ϕ(paqb) = paqb − pa−1qb − paqb−1 + pa−1qb−1

= paqb − paqb/p − paqb/q + paqb/(pq)

= paqb(1 − 1/p − 1/q + 1/(pq))

= paqb(1 − 1/p)(1 − 1/q) = ϕ(p)ϕ(q).
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▶ To compute ϕ(paqbr c) for the product of powers of three
distinct primes, p, q and r , we start in the same way, but
now multiples of pq, pr and qr that are not multiples of pqr
are all counted twice so we must add these multiples.

▶ However, multiples of pqr are first subtracted three times
(multiples of p, q and r ) and then added three times
(multiples of pq, pr and qr ), so we must subtract them.
This gives us

ϕ(paqbr c) = paqbr c − paqbr c/p − paqbr c/q − paqbr c/r

+paqbr c/(pq) + paqbr c/(pr) + paqbr c/(qr)− paqbr c/(pqr)

= paqbr c(1 − 1/p − 1/q − 1/r + 1/(pq) + 1/(pr) + 1/(qr)

−1/(pqr) = paqbr c(1 − 1/p)(1 − 1/q)(1 − 1/r).
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This gives us

ϕ(paqbr c) = paqbr c − paqbr c/p − paqbr c/q − paqbr c/r

+paqbr c/(pq) + paqbr c/(pr) + paqbr c/(qr)− paqbr c/(pqr)

= paqbr c(1 − 1/p − 1/q − 1/r + 1/(pq) + 1/(pr) + 1/(qr)

−1/(pqr) = paqbr c(1 − 1/p)(1 − 1/q)(1 − 1/r).
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▶ Using similar arguments, we can show that

ϕ

(
r∏

i=1

pai
i

)
=

r∏
i=1

pai
i

(
1 − 1

pi

)
.

▶ This can also be written as

ϕ(n) = n
∏
p|n

(
1 − 1

p

)
,

where the product is over all the prime factors in n.
▶ Notice also that this formula shows that ϕ is multiplicative

in the sense that

gcd(m,n) = 1 =⇒ ϕ(mn) = ϕ(m)ϕ(n).

▶ So ϕ(12) = ϕ(4)ϕ(3) = (4 − 2)2 = 4, while
ϕ(2)ϕ(6) = 1 · (3 − 1)(2 − 1) = 2.
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Euler’s Theorem

▶ We can generalize Fermat’s Little Theorem as follows.

Theorem (Euler’s Theorem)

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

▶ Proof: Similar to the proof of Fermat’s Little Theorem, of
which it is a generalization, since ϕ(p) = p − 1.

▶ Instead of considering the set of nonzero congruence
classes, we consider the set {c1, . . . , cϕ(n)} of congruence
classes corresponding to c with gcd(c,n) = 1.
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Euler’s Theorem 2

▶ For n = 5, we get that ϕ(5) = 4 and 2
4
= 3

4
= 4

4
= 1, but

notice that 4
2
= 1, too.

▶ For n = 6, we get that ϕ(6) = 2 and 52
= 1.

▶ For n = 8, we get that ϕ(8) = 4 and 3
4
= 54

= 74
= 1, but

notice that 3
2
= 52

= 72
= 1, too.
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Order of an element

▶ If a ∈ Zn is invertible, we will say that the order of a is the
smallest positive number k such that ak ≡ 1 (mod n).

Lemma
If gcd(a,n) = 1 and k is the order of a, then k |ϕ(n).

▶ Proof: We know that aϕ(n) ≡ 1 (mod n). If we divide ϕ(n)
by k , we get ϕ(n) = lk + r , where 0 ≤ r < k , and then

1 ≡ aϕ(n) ≡ alk+r ≡ (ak )
l
ar ≡ ar (mod n).

Since k is smallest positive number with ak ≡ 1 (mod n),
we must have r = 0, so k |ϕ(n).

▶ In Z5, the orders of 2 and 3 are ϕ(5) = 4, but the order of 4
is 2.

▶ In Z6, the order of 5 is ϕ(6) = 2.
▶ In Z8, the orders of 3, 5 and 7 are 2 = ϕ(8)/2.
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