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Greatest Common Divisor 1

▶ We denote the greatest common divisor (or greatest
common factor) of m,n ∈ N by gcd(m,n) or simply (m,n).
If gcd(m,n) = 1, we say that m and n are coprime or
relatively prime.

▶ If we know the prime factorization of m = pa1
1 · · · par

r and
n = pb1

1 · · · pbr
r , then gcd(m,n) = pc1

1 · · · pcr
r where

ci = min(ai ,bi). Notice that some of the ai , bi and ci may
be 0.

▶ Unfortunately, factorization is computationally hard, so we
need a way to compute gcd without factoring.

▶ This is given by the Euclidean Algorithm (ca 300 BCE).
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▶ The basic idea is the following Lemma:

Lemma
gcd(m − kn,n) = gcd(m,n) for k ,m,n ∈ N.

▶ For example, we have

gcd(54,24) = (54 − 2 · 24,24) = (6,24)
= (6,24 − 4 · 6) = (6,0) = 6.

▶ Note that since n · 0 = 0, any number is a divisor of 0, so
gcd(n,0) = n.

▶ Since division is just repeated subtraction, we can at each
step replace gcd(a,b), with a > b, by gcd(mod(a,b),b),
where mod(a,b) denotes the remainder when dividing a by
b.

▶ The Euclidean Algorithm consists simply of repeated
application of this idea until one number becomes 0, at
which stage the other number is the gcd.
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▶ Let us consider a nontrivial example where
m = 41 · 51 = 2091 and n = 43 · 47 = 2021.

▶

gcd(2091,2021)
= (2091 − 2021,2021) = (70,2021)

= (70,2021 − 28 · 70) = (70,2021 − 1960) = (70,61)
= (70 − 61,61) = (9,61)
= (9,61 − 6 · 9) = (9,7)
= (9 − 7,7) = (2,7)

= (2,7 − 3 · 2) = (2,1)
= (2 − 2 · 1,1) = (0,1) = 1.

▶ Notice the way the two numbers decrease. The smallest
number becomes the largest number, and then gets
“divided away” to be replaced by a new smallest number.
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▶ Let us now prove our Lemma.
▶ Proof: If d is a common divisor of m and n, then m = dm1

and n = dn1 so m − kn = d(m1 − kn1) and d is also a
common divisor of m − kn and n.

▶ If d is a common divisor of m − kn and n, then m − kn = dl
and n = dn1 so m = m − kn + kn = d(l + kn1) so d is a
common divisor of m and n.

▶ Since the two pairs have the same common divisors, they
also have the same greatest common divisor.
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▶ We can also run the steps in the algorithm backwards. At
each step we divide a by b and get a remainder r ,
satisfying a = k · b + r . This can be written as r = a − k · b,
so at each step the new number can be written as a
combination of the two previous numbers. This enables us
to recursively express the gcd as a linear combination of
the two numbers.
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▶ We have

gcd(7,5) = (2,5) = (2,1) = (0,1) = 1

since

7 = 1 · 5 + 2, 5 = 2 · 2 + 1, 2 = 2 · 1 + 0.

We start with the last equation before we get 0, namely
5 = 2 · 2 + 1. We can write it as 1 = 5 − 2 · 2, which
expresses the gcd, 1, as a combination of the two previous
numbers, 2 and 5. But the previous equation, 7 = 1 · 5 + 2,
shows that 2 can be expressed in terms of 7 and 5.

▶ Hence

gcd(7,5) = 1 = 5 − 2 · 2 = 5 − 2(7 − 5) = 3 · 5 − 2 · 7.
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▶ We have

gcd(21,15) = (6,15) = (6,3) = (0,3) = 3,

and hence

gcd(21,15) = 3 = 15−2·6 = 15−2(21−15) = 3·15−2·21.

▶ The Euclidean Algorithm will both give us the gcd and
express the gcd as a linear combination of the two
numbers.
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▶ We will define, I(m,n), the ideal generated by m and n, to
be the set of integral linear combinations of m and n,
{xm + yn | x , y ∈ Z}.

▶ If d = (m,n), and we denote the set of integral multiples of
d by I(d), then we have I(m,n) ⊆ I(d), since a linear
combination of m and n is also a multiple of d .

▶ However, if we run the Euclidean Algorithm backwards, we
see that we can express d as a linear combination of m
and n, and that shows that I(d) ⊆ I(m,n), so these two
sets are in fact equal, and we have proved the following
theorem.

Theorem
For m,n ∈ Z we have

{xm + yn | x , y ∈ Z} = {z gcd(m,n) | z ∈ Z}.
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Bézout’s Lemma

▶ This fact can be restated in a useful form known as
Bézout’s Lemma, named after Étienne Bézout
(1730–1783).

Lemma (Bézout’s Lemma)

Let c be the smallest positive number that can be written in the
form xm + yn. Then c = gcd(m,n).

▶ This lemma gives an alternative characterization of the
gcd. It is a consequence of the previous Theorem, since c
is the smallest positive number on the left, and d is the
smallest positive number on the right.

▶ Notice that if gcd(m,n) = 1, then any integer can be written
as a linear combination of m and n.
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Proof of Bézout’s Lemma

▶ We will also give a direct proof.
▶ Proof: If we divide m by c, we subtract multiples of c from

m, but since c is a linear combination of m and n, the
remainder will also be a linear combination of m and n.

▶ But since the remainder is less that c, and c is the smallest
positive number of this form, the remainder must be zero,
so c divides m.

▶ The same argument applies to n, so c is a common divisor
of m and n.

▶ Let k any common divisor of m and n. Then m = km1 and
n = kn1, so c = xm+ yn = k(xm1 + yn1), so k must also be
a divisor of c. Hence c is the greatest common divisor.
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Prime Numbers 1

▶ Let S be a set of numbers. We will say that a ∈ S is
invertible in S if it has a multiplicative inverse in S, i.e.,
there exists a b ∈ S such that ab = 1. Notice that 2 is
invertible in Q, since 1/2 ∈ Q, but 2 is not invertible in Z,
since 1/2 ̸∈ Z.

▶ The invertible elements in Z are 1 and −1, while 1 is the
only invertible element in N.

▶ p ∈ N is prime if it is not invertible, and cannot be written as
a product of two non-invertible elements. This is the same
as saying that p > 1 and the only divisors are 1 and p.

▶ Notice that 1 is not a prime number, since it is invertible.
The point of this “complicated” definition of a prime is to
motivate why 1 is not a prime.

▶ Notice that 2 is the only even prime.
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Prime Numbers 7

▶ Euclid proved that there are infinitely many prime numbers.
▶ Let p1, . . . ,pn be prime numbers and set

N = p1 · · · · · pn + 1. Then N is not divisible by any of the pi .
Therefore either N is itself prime, or N is divisible by some
other prime number.

▶ In either case, there must be another prime number in
addition to the pi , so there cannot be a finite list of primes.

▶ Notice that N does not have to be prime. For example
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 509 · 59.
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The Fundamental Theorem of Arithmetic 1

Theorem (The Fundamental Theorem of Arithmetic)

For n > 1 there is a unique expression

n = pk1
1 · · · pkr

r ,

where p1 < p2 < · · · < pr are prime numbers and each ki ≥ 1.

▶ One reason why we do not consider 1 to be a prime
number, is to ensure uniqueness in this decomposition.
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The Fundamental Theorem of Arithmetic 4

▶ Proof of existence: If n is prime, the theorem is true. If not,
we can write n = ab, and consider a and b separately. In
this way we get a product of smaller and smaller factors,
but this process must stop, which it does when the factors
are primes. This was proved by Euclid around 300 BCE.

▶ In order to prove uniqueness, we first need a property of
prime numbers.
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The Fundamental Theorem of Arithmetic 7

▶ We write m|n if m divides n.

Lemma
Let p be a prime number, and m,n ∈ N. If p|mn, then p|m or
p|n.

▶ Proof: Assume that p̸ |m. Then gcd(p,m) = 1, and we can
find x and y such that xp + ym = 1.

▶ Then xpn + ymn = n, and since p|mn, it follows that p|n.

▶ This fails if p is not prime, since 6|(3 · 4) without 6 dividing
either 3 or 4.
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The Fundamental Theorem of Arithmetic 13

▶ Proof of uniqueness: Suppose the decomposition is not
unique. After canceling common factors, we can then
assume that

p1 · · · pk = q1 · · · ql ,

where pi ̸= qj for all i and j .
▶ It then follows from our lemma that p1 either divides q1,

which is impossible since we assumed that p1 is not equal
to q1, or p1 divides q2 · · · ql . Applying the lemma again, we
eventually get a contradiction.
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Least Common Multiple

▶ We denote the least common multiple of m and n by
lcm(m,n).

▶ If m = pa1
1 · · · pak

k and n = pb1
1 · · · pbk

k , then

gcd(m,n) = pmin(a1,b1)
1 · · · pmin(ak ,bk )

k

and
lcm(m,n) = pmax(a1,b1)

1 · · · pmax(ak ,bk )
k ,

and since max(a,b) + min(a,b) = a + b, we have

gcd(m,n) · lcm(m,n) = mn,

lcm(m,n) =
mn

gcd(m,n)
.

▶ This shows that lcm(m,n) = mn precisely when
gcd(m,n) = 1.
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Modular Arithmetic 1

▶ We will say that a ≡ b (mod n) if n divides a − b, which
means that a and b have the same remainder when we
divide by n.

▶ We write a = {x ∈ Z | x ≡ a (mod n)} to denote the set of
integers that are equivalent to a and call this the
congruence class of a.

▶ Since every number is congruent mod n to a number
between 0 and n − 1, we can write Zn = {0, . . . ,n − 1} to
denote the set of congruence classes mod n.
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Modular Arithmetic 5

▶ We now define addition and multiplication of congruence
classes by setting

a + b = a + b,

a · b = a · b.

▶ The important part about this definition is that it is
“well-defined” in the sense that it does not matter which
representative we choose of each class.

▶ For instance, if a1 ≡ a2 (mod n) and b1 ≡ b2 (mod n),
then a1 + b1 ≡ a2 + b2 (mod n) so a1 + b1 = a2 + b2.
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Modular Arithmetic 9

▶ Let us compute the multiplication table for Z2.

0 1
0 0 0
1 0 1

▶ Can you express in words what this table says about
multiplication of odd and even numbers?

▶ Let us compute the multiplication table for Z3.
0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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▶ Let us compute the multiplication table for Z5.

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

▶ Notice that

2
2
= 4, 2

3
= 3, 2

4
= 1,

3
2
= 4, 3

3
= 2, 3

4
= 1,

4
2
= 1, 4

3
= 4, 4

4
= 1.
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▶ We will say that a ∈ Zn is invertible if it has a multiplicative
inverse, i.e., there is b ∈ Zn such that a b = 1.

Lemma
a is invertible in Zn if and only if gcd(a,n) = 1.

▶

(a,n) = 1 ⇐⇒ ∃b, c such that ba + cn = 1

⇐⇒ ba − 1 = −cn ⇐⇒ a b = 1.

▶ It follows that if p is prime, then for any a ∈ Zp with
1 ≤ a ≤ p − 1 we have gcd(a,p) = 1, and it follows that all
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▶ Notice that if p is prime, then in Zp we can add, multiply
and subtract, and that all non-zero elements have a
multiplicative inverse. This is not true for Z, since 1/2 ̸∈ Z,
and is one of the main reasons why we are interested in
Zp.

▶ If a is invertible, then the equation a x = b has the solution
x = a−1b.
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▶ Let us compute the multiplication table for Z6.

0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

▶ Notice that 5 is the only invertible element, and that its row
is a permutation of the classes.

▶ Notice that {0,3} and {0,2,4} are closed under addition
and multiplication.

▶ Since gcd(n − 1,n) = 1 and (n − 1)i ≡ −i ≡ n − i (mod n),
we see that the last row in the multiplication table of Zn will
always be the classes in decreasing order.
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Divisibility by 3 or 9

Theorem
A number is divisible by 3 (or 9) if and only if its digit sum is
divisible by 3 (or 9).
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▶ Proof: Since 10 ≡ 1 (mod 3) and (mod 9), we have∑
ai10i ≡

∑
ai1i ≡

∑
ai (mod 3) and (mod 9).
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▶

111,111,093 ≡ 18 ≡ 9 ≡ 0 (mod 9),

so 9 divides 111,111,093.
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▶ Proof: We have
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which is 0 if and only if 10a + b ≡ 0 (mod 7), since 5 is
invertible in Z7.
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▶

86,419,746 = 10 · 86,419,74 + 6 = 100 · 864,197 + 46 =

86 · 106 + 419 · 103 + 746 · 100.

▶

86,419,74 + 5 · 6 = 8,642,004,
8,642,00 + 5 · 4 = 864,220,

86,422 + 5 · 0 = 86,422,
8,642 + 5 · 2 = 8,652,

865 + 5 · 2 = 875,
87 + 5 · 5 = 112,
11 + 5 · 2 = 21,
2 + 5 · 1 = 7.

so 7 divides 86,419,746.
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▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 11

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.

▶ The first method is simple, but requires a lot of
computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 12

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 7 13

▶

86,419,746 ≡ 86 − 419 + 746 ≡ 413 (mod 7),

and 7 divides 413 so so 7 divides 86,419,746.
▶ The first method is simple, but requires a lot of

computations. The second method requires only half as
much computation, but the 2c term requires more
computation.

▶ The most efficient is probably a combination. In our
example, we could for example use the first method to
conclude that 7 divides 413 since 7 divides 41 + 5 · 3 = 56.



Divisibility by 8

Theorem
A number, 1000e + f , where f is the last three digits, is divisible
by 8 if and only if the last three digits are divisible by 8.

▶ Proof: We have
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▶ The second part follows from 103 ≡ (−1)3 ≡ −1 (mod 11),
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▶

13,580,237 = 10 · 1,358,023 + 7 =

13 · 106 + 580 · 103 + 237 · 100.

▶

1,358,023 − 7 = 1,358,016,
135,801 − 6 = 135,795,
13,579 − 5 = 13,574,

1357 − 4 = 1353,
135 − 3 = 132,

13 − 2 = 11,

so 11 divides 13,580,237.
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last digit, d is the last two digits, and the ai ’s are blocks of digits
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▶ As an another application of modular arithmetic, we will
show how we can solve one of the mathematical problems
in the Chinese novel Legends of the Condor Heroes (�p
ñÄ³, Shèdiāo yı̄ngxióng zhuàn) by JĪN Yōng Ñ¸.

▶ The heroine HUÁNG Róng (ÃÉ) is angry at The Divine
Mathematician Yı̄nggū (^�P[Ñ), so she gives her
three problems that she thinks Yı̄nggū will not be able to
solve.
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the remainder, five and five has three as the remainder,
seven and seven has two as the remainder, what
mathematical operand is that? Author’s note: this problem
belongs to the theory of numbers of higher mathematics;
our Song Dynasty scholars have been quite profound in
this kind of study.”
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▶ We need to solve the equations

n ≡ 2 (mod 3)
n ≡ 3 (mod 5)
n ≡ 2 (mod 7)

▶ There is a method called the Chinese Remainder Theorem
that gives an algorithm for solving this kind of problems.
We will first find numbers n1, n2 and n3 such that

n1 ≡ 1 (mod 3)
n1 ≡ 0 (mod 35)
n2 ≡ 1 (mod 5)
n2 ≡ 0 (mod 21)
n3 ≡ 1 (mod 7)
n3 ≡ 0 (mod 15)
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▶ We can then find a solution by setting

n = 2n2 + 3n2 + 2n3

▶ The reason why we can find the ni is that 3, 5 and 7 do not
have any common factors. Therefore gcd(3,5 · 7) = 1, and
we can find a and b such that 3a + 35b = 1. We can then
set n1 = 35b.

▶ To find a and b we use the Euclidean algorithm.

gcd(35,3) = (35 − 11 · 3,3) = (2,3) = (2,3 − 2 · 1)
= (2,1) = (2 − 2 · 1,1) = (0,1),

and then run it backwards to get

1 = 3 − 2 = 3 − (35 − 11 · 3) = 12 · 3 − 35.

▶ It follows that we can set n1 = −35. However, since our
solution n is only determined up to multiples of
3 · 5 · 7 = 105, we can instead set n1 = 105 − 35 = 70.
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▶ In the same way we can find n2 = 21 and n3 = 15, which
gives us n = 2 · 70 + 3 · 21 + 2 · 15 = 233 as a solution, but
if we want to get a number between 0 and 104, we can use
23 ≡ 233 − 2 · 105.
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Fermat’s Little Theorem 1

Theorem (Fermat’s Little Theorem)

Let p be a prime number. If gcd(p,a) = 1, then ap−1 ≡ 1
(mod p).

▶ Proof: Consider the set of nonzero congruence classes
{1, . . . ,p − 1} and the set {a1, . . . ,a(p − 1)}.

▶ We have

a · i ≡ a · j (mod p),
a(i − j) ≡ 0 (mod p)

and since p̸ |a, this can only happen if i = j , so the two sets
of classes are the same.
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▶ We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! ̸≡ 0 (mod p).



Fermat’s Little Theorem 5

▶ We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! ̸≡ 0 (mod p).



Fermat’s Little Theorem 6

▶ We can also write this as ap ≡ a (mod p). In this form, the
statement is also true for a = kp.

▶ For small values we can see this directly.
▶ a2 − a = a(a − 1) is always divisible by 2, since in the

product of two consecutive integers, one the the factors
must be even.

▶ Similarly, a3 − a = a(a2 − 1) = (a + 1)a(a − 1) is always
divisible by 3, since in the product of three consecutive
integers, one the the factors must be divisible by 3.
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Euler’s ϕ function 1

▶ In 1763, Leonhard Euler (1707–1783) defined ϕ(n) to be
the number of integers k with 1 ≤ k ≤ n that are coprime
with n.

▶ If p is prime and 1 ≤ k ≤ p, then gcd(k ,p) = 1 unless
k = p, since gcd(p,p) = p .

▶ It follows that

ϕ(p) = p − 1 = p
(

1 − 1
p

)
for any prime number p.

▶ Notice, however, that ϕ(1) = 1, since 1 is the only number
that is coprime with itself.
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▶ For powers of a prime, we see that the only numbers less
than or equal to pk that have a common factor greater than
1 with pk are the multiples of p, i.e., xp for 1 ≤ x ≤ pk−1.
This gives us

ϕ(pk ) = pk − pk−1 = pk
(

1 − 1
p

)
,

▶ ϕ(4) = ϕ(22) = 4 − 2 = 2.
▶ ϕ(8) = ϕ(23) = 8 − 4 = 4.
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▶ To compute ϕ(pq) for the product of two distinct primes, p
and q, we will first give an example and consider p = 5 and
q = 7. The only numbers less than or equal to 35 that are
not coprime with 35 are the multiples of 5 and 7. There are
7 multiples of 5 and 5 multiples of 7 less than or equal to
35, i.e. 5, 10, 15, 20, 25, 30, 35 and 7, 14, 21, 28, 35.
Notice that the only number in this list that is a multiple of
both 5 and 7 is 35, since
lcm(5,7) = 5 · 7/ gcd(5,7) = 35/1 = 35.

▶ We have therefore only counted one number twice, namely
35.

▶ It follows that
ϕ(35) = 35 − 7 − 5 + 1 = 24 = 4 · 6 = ϕ(5)ϕ(7)
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▶ For the general case we start with the pq numbers from 1
to pq and subtract the q multiples of p and the p multiples
of q. Since lcm(p,q) = pq/ gcd(p,q) = pq, the only
number that is subtracted twice is pq. It follows that

ϕ(pq) = pq − q − p + 1 = (p − 1)(q − 1) = ϕ(p)ϕ(q).

▶ Notice that this can also be written as

ϕ(pq) = (p − 1)(q − 1) = pq
(

1 − 1
p

)(
1 − 1

q

)
.
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▶ To compute ϕ(paqb) for the product of powers of two
distinct primes, p and q, we again start with the paqb

numbers from 1 to paqb and subtract the pa−1q multiples
of p and the pqb−1 multiples of q. However, this time
multiples of pq are counted twice so we must add the
pa−1qb−1 multiples of pq to get

ϕ(paqb) = paqb − pa−1qb − paqb−1 + pa−1qb−1

= paqb − paqb/p − paqb/q + paqb/(pq)

= paqb(1 − 1/p − 1/q + 1/(pq))

= paqb(1 − 1/p)(1 − 1/q) = ϕ(p)ϕ(q).
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▶ To compute ϕ(paqbr c) for the product of powers of three
distinct primes, p, q and r , we start in the same way, but
now multiples of pq, pr and qr that are not multiples of pqr
are all counted twice so we must add these multiples.

▶ However, multiples of pqr are first subtracted three times
(multiples of p, q and r ) and then added three times
(multiples of pq, pr and qr ), so we must subtract them.
This gives us

ϕ(paqbr c) = paqbr c − paqbr c/p − paqbr c/q − paqbr c/r

+paqbr c/(pq) + paqbr c/(pr) + paqbr c/(qr)− paqbr c/(pqr)

= paqbr c(1 − 1/p − 1/q − 1/r + 1/(pq) + 1/(pr) + 1/(qr)

−1/(pqr) = paqbr c(1 − 1/p)(1 − 1/q)(1 − 1/r).
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This gives us

ϕ(paqbr c) = paqbr c − paqbr c/p − paqbr c/q − paqbr c/r

+paqbr c/(pq) + paqbr c/(pr) + paqbr c/(qr)− paqbr c/(pqr)

= paqbr c(1 − 1/p − 1/q − 1/r + 1/(pq) + 1/(pr) + 1/(qr)

−1/(pqr) = paqbr c(1 − 1/p)(1 − 1/q)(1 − 1/r).
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▶ Using similar arguments, we can show that

ϕ

(
r∏

i=1

pai
i

)
=

r∏
i=1

pai
i

(
1 − 1

pi

)
.

▶ This can also be written as

ϕ(n) = n
∏
p|n

(
1 − 1

p

)
,

where the product is over all the prime factors in n.
▶ Notice also that this formula shows that ϕ is multiplicative

in the sense that

gcd(m,n) = 1 =⇒ ϕ(mn) = ϕ(m)ϕ(n).

▶ So ϕ(12) = ϕ(4)ϕ(3) = (4 − 2)2 = 4, while
ϕ(2)ϕ(6) = 1 · (3 − 1)(2 − 1) = 2.
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Euler’s Theorem

▶ We can generalize Fermat’s Little Theorem as follows.

Theorem (Euler’s Theorem)

If gcd(a,n) = 1, then aϕ(n) ≡ 1 (mod n).

▶ Proof: Similar to the proof of Fermat’s Little Theorem, of
which it is a generalization, since ϕ(p) = p − 1.

▶ Instead of considering the set of nonzero congruence
classes, we consider the set {c1, . . . , cϕ(n)} of congruence
classes corresponding to c with gcd(c,n) = 1.
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Euler’s Theorem 2

▶ For n = 5, we get that ϕ(5) = 4 and 2
4
= 3

4
= 4

4
= 1, but

notice that 4
2
= 1, too.

▶ For n = 6, we get that ϕ(6) = 2 and 52
= 1.

▶ For n = 8, we get that ϕ(8) = 4 and 3
4
= 54

= 74
= 1, but

notice that 3
2
= 52

= 72
= 1, too.
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Order of an element

▶ If a ∈ Zn is invertible, we will say that the order of a is the
smallest positive number k such that ak ≡ 1 (mod n).

Lemma
If gcd(a,n) = 1 and k is the order of a, then k |ϕ(n).

▶ Proof: We know that aϕ(n) ≡ 1 (mod n). If we divide ϕ(n)
by k , we get ϕ(n) = lk + r , where 0 ≤ r < k , and then

1 ≡ aϕ(n) ≡ alk+r ≡ (ak )
l
ar ≡ ar (mod n).

Since k is smallest positive number with ak ≡ 1 (mod n),
we must have r = 0, so k |ϕ(n).

▶ In Z5, the orders of 2 and 3 are ϕ(5) = 4, but the order of 4
is 2.

▶ In Z6, the order of 5 is ϕ(6) = 2.
▶ In Z8, the orders of 3, 5 and 7 are 2 = ϕ(8)/2.
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