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Natural numbers

▶ Let N denote the positive, natural numbers {1,2,3, . . .}.
▶ Computer scientists start with 0, and many

mathematicians now include 0 in N.
▶ Remember that positive means > 0 and negative means

< 0, so nonnegative is not the same as positive, but means
positive or zero.



Why is (−1)(−1) = 1?

▶ One way to understand why (−1)(−1) = 1, is to say that
multiplying by −1 is the same as “flipping” across zero on
the number line, in which case, flipping twice does nothing.

▶ However, it is instructive to also see an algebraic proof.
Assume that we know how to multiply natural numbers,
and that we want to extend this to integers. We want to do
this in such a way that the following three properties are
preserved.

1. Commutative ab = ba
2. Associative (ab)c = a(bc)
3. Distributive a(b + c) = ab + ac



Why is (−1)(−1) = 1? 1

▶ Assume that a,b ∈ N. We know that

a(−b) = (−b) + (−b) + · · ·+ (−b) = −ab (1)

by repeated addition.
▶ To compute (−a)b, we use commutativity and Equation (1)

to get
(−a)b = b(−a) = −ba = −ab.



Why is (−1)(−1) = 1? 2

▶ We want to show that (−1)(−1) = 1, and to do that, we
want to show that (−1)(−1) “behaves” like 1.

▶ We consider (−1)(−1)− 1 and use distributivity

(−1)(−1)− 1 =

(−1)(−1) + (−1) =
(−1)(−1) + (−1) · 1 =

(−1)(−1 + 1) =
(−1) · 0 = 0.

Hence (−1)(−1) = 1.



Why do we use parentheses?
▶ We use a parenthesis when we need to manipulate order

of operations. 2 · 3 + 4 means first multiply and then add. If
we want to first add, we must write 2(3 + 4).

▶ We can write
1− (−2+ x) = 1+(−1)(−2+ x) = 1+(2− x) = 1+ 2− x ,
so we see that we must change the sign of all terms when
we remove a parenthesis with a minus in front of it.

▶ Notice that wrote 1 − (−2 + x) and not for example
1 − (−2 + 3). If there were just numbers, we would
probably evaluate the term inside the parenthesis instead
of keeping the parenthesis.

▶ You can also explain the rule by giving an accounting
example. You have $10 and spend $1 and $2. You can
either write 10 − 1 − 2 or 10 − (1 + 2), where you first
compute as you spend, and in the second example add up
all your expenses.



Rounding 1

▶ Why do we round 0.5 to 1 and not 0?
▶ This is a convention, but it does have one advantage and

one disadvantage.
▶ If you are doing a long computation, and you have found

that the first digit is 0.5, the you know that it should be
rounded to 1. If your convention is that 0.5 goes to 0, while
0.5 followed by anything other than just 0’s goes to 1, then
you need to keep computing.



Rounding 2

▶ However, always rounding 0.5 up creates a bias away from
0. What this means is that numbers tend to become larger.
If you add two numbers that are 0.5 and 1.5, you would
first round them to 1 and 2 and get 3 as the sum, while the
actual sum is 2.

▶ For this reason, some people use round-to-even, which
means that 0.5 is rounded to 0, while 1.5 is rounded to 2. If
you then add two numbers that are 0.5 and 1.5, you get
0 + 2 = 2, which is the right answer, as opposed to 3,
which we got above.



Division

▶ There are two ways to interpret division.
▶ Partitive division: You and your friend have 6 apples. If you

share them, you get 6 : 2 = 3 apples each.
Thing/number=thing.

▶ Measurement division: You have a barrel of 6l of water,
and glasses that take 0.5l. You can fill 6 : 0.5 = 12 glasses.
Thing/thing=number.

▶ Notice that measurement division also makes sense when
the divisor is not an integer.



Division by zero
▶ The key to understanding division and fractions is that

a
b
= c ⇐⇒ a = bc. (2)

This shows why we cannot divide by 0. If b = 0, we get

a
0
= c ⇐⇒ a = 0 · c = 0,

which shows that we get a contradiction if we try to assign
a value to a/0 when a ̸= 0.

▶ But what if a = 0? In that case, the above equation just
says that 0 = 0 · c = 0, which is true for any c. But that is
precisely the problem. We could theoretically define 0/0 to
be anything, without violating (2), but which value should
we choose? Since we theoretically could pick any value,
we say that 0/0 is an indeterminate form.



Multiplication of fractions

▶ We can interpret multiplication of fractions geometrically.

▶



Multiplication of fractions 1

▶ We will not give a thorough discussion of fractions, just
give a brief outline of how it could be developed.

▶ We think of the unit fraction 1/n, where n ∈ N, as one
n-part of the interval [0,1].

▶ We think of the fraction m/n where m ∈ N ∪ {0},n ∈ N as
m n-parts. Notice how the term numerator denotes the
number of things we have, and the denominator describes
what we have m of.

▶ Then k(m/n) = (km)/n.
▶ We think of the product of a unit fraction 1/l and a fraction

m/n as m/(ln), i.e., m ln-parts.



Multiplication of fractions 2

▶ We then have(
k
l

)(m
n

)
=

(
k
(

1
l

))(m
n

)
= k

((
1
l

)(m
n

))
= k

(m
ln

)
=

km
ln

.

▶ Notice how the crucial point was to first consider unit
fractions.



Division by fractions

▶ Many students do not understand why dividing by a fraction
is the same as inverting the second fraction and multiplying

a
b
:

c
d

=
a
b

d
c
. (3)

To see this, we must show that if multiply the number on
the right by the divisor, we get the dividend, i.e.,(

a
b

d
c

)
c
d

=
a
b

(
d
c

c
d

)
=

a
b
.



Division by fractions 1

▶ Another way to see this is to use complex fractions

a
b

bd
c
d

bd
=

ad
bc

.



Division by fractions 2

▶ It is also instructive to consider unit fractions, 1/d . There
are many ways to argue that

a :
1
d

= ad .

▶ Then
a
b
:

1
d

=
1
b

a :
1
d

=
1
b

ad =
ad
b

.

▶ It then follows from associativity that

a
b
:

c
d

=
a
b
:

(
c

1
d

)
=

(a
b
: c

)
:

1
d

=
ad
bc

.



Powers

▶ Assume that we have defined an with n ∈ N to be

an =

n︷ ︸︸ ︷
a · . . . · a . (4)

For n, m ∈ N it is easy to see that we have the following
property

anam =

n︷ ︸︸ ︷
a · · · a

m︷ ︸︸ ︷
a · · · a =

n+m︷ ︸︸ ︷
a · · · a = an+m. (5)

▶ We now want to extend Definition (4) to n ∈ Z in way that
preserves property (5). In other words, we will assume that
(5) holds, and see what that implies about a0 and a−n for
n ∈ N.



Powers 1

▶ Setting m = 0 in (5), we get

an = an+0 = an · a0,

so if a ̸= 0, we can divide by an and conclude that a0 = 1.
(We will discuss 00 later.)

▶ We now set m = −n in (5) and get

1 = a0 = an−n = ana−n,

so it follows that
a−n =

1
an .

▶ You can also make a table showing that 103 = 1000,
102 = 100, 101 = 10, and then ask students to spot the
pattern and see guess that 100 = 1 and 10−1 = 1/10.



Empty Product

▶ Another way to understand this, is to interpret a0 as an
“empty product”.

▶ 102x means that x is multiplied by 10 twice. 100x means
that x is multiplied by 10 zero times. But not multiplying is
the same as multiplying by 1, so 100x = x , and 100 must
be 1.

▶ In the same way, 2a = a + a, while 0a is to add x zero
times. But not adding at all is the same as adding 0, so
0a = 0.

▶ The “empty sum” 0 · a is the additive identity 0, while the
“empty product” a0 is the multiplicative identity 1.

▶ So a0 = 1 for the same reason as 0a = 0.



Why is 0! = 1?

▶ Another “empty product” is 0!. We have
n! = n(n − 1) · · · 2 · 1 for n ∈ N, but it is sometimes
convenient to have an expression for 0!, too.

▶ In principle we could define 0! to be whatever we want, but
we want our definition to preserve the properties we like.

▶ We have n! = n(n − 1)! for n ≥ 2, and if we want this to
hold for n = 1, we must set 0! = 1.

▶ Notice that we use this convention in for instance the
formula

ex =
∞∑

n=0

xn

n!
.



Fractional Exponents
▶ Again we want to extend a definition to a larger set of

numbers by preserving a property. We know that for m,
n ∈ N we have

(an)m = an · · · an︸ ︷︷ ︸
m

= (

n︷ ︸︸ ︷
a · · · a) · · · (

n︷ ︸︸ ︷
a · · · a)︸ ︷︷ ︸

m

=

n·m︷ ︸︸ ︷
a · · · a = an·m.

(6)
We want to extend the definition of an to n ∈ Q, while
maintaining property (6), so we write x = a1/n.

▶ Then
xn = (a1/n)n = a(

1
n n) = a1 = a

so we see that
a1/n = n

√
a.

▶ Using property (6) again, we get that

am/n = (am)
1
n =

n
√

am.



Is 00 = 1?

▶ We have seen that for a ̸= 0 we have a0 = 1, so
lima→0 a0 = 1. It therefore seems natural to define 00 = 1.
However, for x > 0, we have 0x = 0 and it follows that
limx→0+ 0x = 0.

▶ This shows that the function f (a, x) = ax does not have a
limit at (0,0) since we get different values depending on
how we approach (0,0). It follows that f is not continuous
at (0,0).

▶ That makes it harder to find a good value for 00, but not
impossible.



Is 00 = 1? 1

▶ We often write a polynomial as

p(x) =
n∑

k=0

akxk .

▶ However, then

p(0) = a000 + · · ·+ an0n = a000 = a0,

and we are implicitly assuming that 00 = 1.



Is 00 = 1? 2

▶ We can also consider a power series like

f (x) =
1

1 − x
=

∞∑
n=0

xn.

Then

f (0) = 1 =
∞∑

n=0

0n = 00.

If we do not define 00 to be 1, we will have trouble with
even simple expressions like this.



Is 00 = 1? 3

▶ Another example is the Binomial Theorem

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k .

▶ Setting a = 0 on both sides and assuming b ̸= 0 we get

bn = (0 + b)n =
n∑

k=0

(
n
k

)
0kbn−k =

(
n
0

)
00bn = 00bn,

where, we have used that 0k = 0 for k > 0, and that(n
0

)
= 1.

▶ We see that we must set 00 = 1 in order for the binomial
theorem to be valid.



Is 00 = 1? 4

▶ In order for the differentiation rule

d
dx

xn = nxn−1

to hold for n = 1 when x = 0, we get

1 =
d
dx

x =
d
dx

x1 = 1 · x1−1 = x0,

which requires 00 = 1.
▶ So to sum up, we must write 00 = 1 to make many

expressions work, and this also agrees with our earlier
discussion of the “empty product”.



Rational numbers
▶ We will study the rational numbers

Q =
{ a

b

∣∣∣a,b ∈ Z,b ̸= 0
}
.

We want to show that
√

2 is irrational.
▶ We will need the following lemma.

Lemma
A natural number a is even if and only if a2 is even.

▶ Proof: If a is even we can write a = 2k with k ∈ Z and then

a2 = (2k)2 = 4k2 = 2(2k2),

so we see that

a is even =⇒ a2 is even.



Rational numbers 1

▶ In order to show

a is even ⇐= a2 is even,

we will use that

p =⇒ q is the same as ¬p ⇐= ¬q.

▶ So we will show that

a is odd =⇒ a2 is odd.

▶ If a = 2k + 1 with k ∈ Z, then

a2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1,

so a2 is odd.



Rational numbers 2
▶ We can now prove that

Theorem
√

2 is irrational.

▶ Proof: We will assume that
√

2 is rational and can be
written as a/b, where a, b ∈ Z are relatively prime, i.e.,
they have no common factors. Then

2 =
a2

b2 and 2b2 = a2,

and we see that a2 is even. But then we know from the
above Lemma that a is also even, so a = 2k with k ∈ Z and

a2 = (2k)2 = 4k2 = 2b2 or b2 = 2k2.

Since b2 is even, it follows that b is also even. We have
now shown that both a and b are even, but this contradicts
the assumption that a and b are relatively prime.



Countable

▶ We say that f : X → Y is a bijection if it is one-to-one and
onto. That means that x1 ̸= x2 =⇒ f (x1) ̸= f (x2) and that
∀y ∈ Y ,∃x ∈ X such that f (x) = y .

▶ We say that two sets X and Y have the same cardinality if
there is a bijection f : X → Y .



Countable 1

▶ We say that X is countably infinite if there is a bijection
f : N → X .

▶ We say that X is countable if there is a surjection
f : N → X . This means that we can write the elements of X
as a list.

▶ A countable set is either countably infinite or finite.



Countable 2

▶ The set of integers, Z is countable, since

Z = {0,1,−1,2,−2,3,−3, ...}.

▶ The set of rational numbers, Q, is countable. This can be
seen in many ways.



Countable 3

▶ The rational numbers a/b correspond to the pair (a,b), so
Q corresponds to Z× (Z− {0}).

▶



Countable 4

▶
...
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4
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6

· · ·

· · ·

· · ·

· · ·

· · ·

▶ This shows that the set of positive rational numbers is
countable. By alternating between positive and negative
numbers, we can show that the whole of Q is countable.

▶ This picture also shows that a countable union of
countable sets is countable.



Countable 5

▶ In 1874, Georg Cantor (1845 -– 1918) proved that R is not
countable.

▶ Assume that R is countable. Then [0,1] is also countable,
and we can write [0,1] = {r1, r2, . . .} where ri = 0.di1di2 . . ..

▶

▶ We then construct a number r = 0.d1d2 . . ., where di ̸= dii
and di ̸= 9. Then r ̸= ri for all i , and r is not in the list.


