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Abstract

There are several ways to define a point of inflection. We will study four pos-
sible definitions and show that in general they are not equivalent. We prove a
chain of implications between them, and construct counterexamples to all the con-
verse implications. However, we show that for a certain class of functions they
are all equivalent. Our definition of point of inflection requires a tangent, since
that is necessary for constructing our chain of implications. Three of the possible
definitions have been studied carefully in the past, but with slightly different as-
sumptions. However, our concept of three-point secants seems to be new. We also
discuss whether a function with a crossing zero must be locally monotonic around
the zero and whether a point of inflection with horizontal tangent must be a terrace
point. Finally we address some misconceptions among calculus students and give
counterexamples to these misconceptions. However, we show that if we restrict
ourselves to the above class of functions, the misconceptions are actually true.

1 Introduction
There are several ways to define a point of inflection. The usual definition is to say that
f ′′ changes sign, but some authors instead require an extremum for f ′ or a crossing
tangent. In this article, we also consider what we call the three-point secants property,
which could also be used as a definition, and show that these four possible definitions
of point of inflection are in general not equivalent. However, we show that if we restrict
ourselves to functions that are twice differentiable in a punctured neighborhood around
a point c, with f ′′ changing sign at c, and having a (possibly vertical) tangent at c,
then we have a chain of implications between these properties, and if we consider the
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class of functions where f ′′ is continuous and only has isolated zeros, then these four
properties are in fact equivalent. Two of the three alternative definitions require f to
have a tangent at c, and for the third one, we need a tangent to show that it holds at
a point of inflection. This illustrates why we believe it is natural to require that there
should be a tangent at a point of inflection, which some authors do not require.

We also show that a function that is locally monotonic around a zero must have a
crossing zero, and that a point of inflection with a horizontal tangent is a terrace point,
but that the converse of both statements only holds for the above class of functions.

Finally we address some misconceptions among calculus students and give coun-
terexamples to these misconceptions. However, we show that if we restrict ourselves
to the above class of functions, the misconceptions are actually true.

This article extends the results of [2, 5, 7, 9, 11], who studied three of the properties.
However, we also consider a fourth property and terrace points, and we feel that our
focus on the existence of a tangent in the definition gives new insight.

2 Preliminaries
We first make some preliminary definitions.

Definition 1. Let f be defined on an open interval (a,b), except possibly at a point
c ∈ (a,b). We say that f changes sign at c if we can find points a′ and b′ with a ≤ a′ <
c < b′ ≤ b such that f has opposite signs on (a′,c) and (c,b′). We say that f has the
same sign around c if we can find a′, b′ as above such that f has the same sign on
(a′,c) and (c,b′).

In most of our examples, f is defined at c, but we sometimes need to consider the
more general situation.

Definition 2. Let f be defined on an open interval (a,b) with c ∈ (a,b), and suppose
that f (c) = 0. We call c a crossing zero if f changes sign at c, and a kissing zero if f
has the same sign around c. We say that f has an isolated zero if we can find a′, b′ as
above such that f does not have any other zeros than c on (a′,b′).

Notice that if f is continuous with f (c) = 0, then c is either a crossing, a kissing or
a non-isolated zero. Notice also that changing sign at c is not the opposite of having the
same sign around c. To see that, we will introduce an important family of functions.

fn(x) =
xn sin(1/x) if x , 0,

0 if x = 0.

These functions have been studied by [5] and [6] among others. We see that f1 does
not change sign at 0, but neither does it have the same sign around 0 (Figure 1). Since
it oscillates between positive and negative values on both sides of c = 0, it changes sign
infinitely often near c. This linguistic paradox of a function not changing sign at c
because it changes sign infinitely often near c is a crucial mathematical point.

Since limx→0
f1(x)− f1(0)

x−0 = limx→0 sin(1/x) does not exist, f1 is not differentiable at
0, but since limx→0

f2(x)− f2(0)
x−0 = limx→0 xsin(1/x) = 0, f2 is differentiable at 0. Notice

2



Figure 1: f1(x) = xsin(1/x)

that near the origin, the function oscillates between the two parabolas y = ±x2, while
for large x, it approaches the skew asymptote y = x (Figure 2). We have

f ′2(x) =
2xsin(1/x)− cos(1/x) if x , 0,

0 if x = 0,

but limx→0 f ′2(x) does not exist, so f2(x) is not continuously differentiable at 0.

Figure 2: f2(x) = x2 sin(1/x)

For the rest of this paper, we write this kind of functions as just xn sin(1/x), and
assume that the value is 0 for x = 0. These functions will be useful for constructing
counterexamples. Our guiding principle for constructing counterexamples is to start
with a function that has the property we want, and then add an xn sin(1/x) term to create
an oscillating graph that breaks the property. We can for example now easily construct
a differentiable function with an extremum where the derivative does not change sign.
We start with the simplest example of a strict minimum, namely a parabola, and add an
oscillating term of the form x2 sin(1/x). However,

f (x) = x2+ x2 sin(1/x) = x2
(
1+ sin(1/x)

)
,

has infinitely many zeros that are all global extrema. We therefore “lift” the graph off
the x-axis by reducing the amplitude of the oscillating term, and we choose for instance
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(see Figure 3)

h1(x) = x2+1/2 x2 sin(1/x) = x2
(
1+1/2sin(1/x)

)
.

Since

Figure 3: h1(x) = x2+1/2 x2 sin(1/x)

h′1(x) = 2x+ xsin(1/x)−1/2cos(1/x),

we see that h′1 oscillates between positive and negative values near ±1/2 arbitrarily
close to 0, so that h′1 does not change sign at 0, since it changes sign infinitely often
near 0. You may think that the problem is that h1 is not twice differentiable, but we
now give another counterexample that is actually twice continuously differentiable. In
fact, in Theorem 12, we show that the converse implication is true if f ′′ is continuous
and has only isolated zeros, so it is the nature of the zero of the second derivative that
is crucial. We will therefore in the rest of this article always give two counterexamples
if our first is not twice continuously differentiable.

For our twice continuously differentiable counterexample, we need at least x5 in
front of the sine term, and we might want to try

f (x) = x2+ x6 sin(1/x), (1)

which gives
f ′(x) = x

(
2+6x4 sin(1/x)− x3 cos(1/x)

)
.

However, here the derivative changes sign, since the trigonometric terms are all damp-
ened by monomial terms. We therefore instead try

k1(x) = x6+1/2 x6 sin(1/x), (2)

which gives
k′1(x) = x4

(
6x+3xsin(1/x)−1/2cos(1/x)

)
,

and we see that k1 has a minimum at 0, but that k′1 does not change sign around 0, since
the term in the parenthesis oscillates. Notice that in (1) we did not include the 1/2
coefficient, since the power was higher in front of the sine term than in the monomial.
It is only when they are equal, that we need to lift the sine term off the x-axis. We have
thus proved the following theorem, which was also discussed in [3].
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Theorem 1. If f is differentiable on (a,b) and f ′ changes sign at c ∈ (a,b), the c is a
local extremum. The function

h1(x) = x2+1/2 x2 sin(1/x)

shows that the converse is not true.We call h1 an oscillating parabola. The function

k1(x) = x6+1/2 x6 sin(1/x)

is a counterexample that is also twice continuously differentiable.

3 Points of Inflection
We need one more concept before we can define a point of inflection.

Definition 3. Let f be continuous on an open interval (a,b) with c ∈ (a,b). We say that
f has a vertical tangent at c if limh→0

(
f (c+ h)− f (c)

)
/h =∞ or −∞. We say that f

has a tangent at c if either f is differentiable at c or f has a vertical tangent at c.

There is no standard definition of point of inflection ([4, 5]), but we will use the
following.

Definition 4. Let f be continuous on an open interval (a,b) with c ∈ (a,b) and assume
that f is twice differentiable except possibly at c, but that f has a tangent at c. We call
c a point of inflection if f ′′ changes sign at c.

Let us start by discussing the main alternative options. Some authors define it in
terms of a change of strict convexity at c, without explicitly considering the second
derivative. They define convexity by saying that the graph lies below the secant line, or
by saying that f ′ is monotonic ([12]). It follows from a theorem of Aleksandrov ([1])
that a convex function is twice differentiable almost everywhere, and it is not easy to
construct an example of a strictly convex functions that fails to be twice differentiable
at infinitely many points, and students are not likely to come across such functions, so
we do not see any significant loss in generality by requiring f to be twice differentiable
except possibly at c. This allows us to compare and contrast extrema and points of
inflection in terms of f ′ and f ′′, respectively.

Some authors ([8]) simply require a change in non-strict convexity, which gives
a straight line infinitely many points of inflection, just like a constant function has
infinitely many extrema. We feel, however, that these two cases are different. An
extremum is simply defined by the inequality f (x) ≥ (or ≤) f (c), while a point of in-
flection is meant to indicate an actual inflection in the graph.

Some authors ([13]) define a point of inflection to be a point where the tangent
crosses the graph. We will see later that this is not equivalent to our definition.

Some authors define a point of inflection to be a point where the tangent is steepest
or least steep, that is f ′ has an extremum at c. This is discussed in [7], and we will see
later that this is not equivalent to our definition.

These two alternative properties have been discussed carefully by several authors
([2, 5, 7, 9, 11]). In this article we will also consider another property, which we call
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tree-point secants. There is also the question of what conditions you want to put on the
function at the point c. We have not found anybody who does not require f to be both
defined and continuous at c, but for instance [12] does not require f to be differentiable
at c, while for instance [2] requires f to be differentiable at c. In this article we take
a middle position and require f to have a tangent at c. Since convexity is about how
the graph lies with respect to the tangent, and a point of inflection is about change in
convexity from left to right, it makes sense philosophically to assume that the tangents
on the left and right agree at c. In addition, we will show that if f has a tangent at c, then
a point of inflection will imply that f also satisfies these three other properties, and in
Theorem 12, we will show that for functions whose second derivatives are continuous
with only isolated zeros, the four properties are in fact equivalent. We feel that this is
an important point, and we will therefore not say that

f (x) =
{

x2+ x if x ≥ 0,
−x2 if x < 0

has a point of inflection at 0, since the one-sided tangents do not coincide at 0 (see
Figure 4).

Figure 4: No tangent Figure 5: f (x) = x1/3,
vertical tangent

Figure 6: No second
derivative

However, we say that x1/3 has a point of inflection at 0, even though f ′(0) does not
exist, because f has a vertical tangent at 0 (see Figure 5).

The following example shows a point of inflection at 0, even though f ′′(0) does
not exist. The left and right first derivatives match, so that f ′(0) exists, but the left and
right second derivatives do not match (see Figure 6)

f (x) =
{

x2 if x ≥ 0,
−x2 if x < 0.

However, if f ′′ does exist at a point of inflection, c, then we can use the Mean Value
Theorem to show that f ′′(c) must equal 0. We have

f ′′(c) = lim
h→0

f ′(c+h)− f ′(c)
h

= lim
h→0

f ′′
(
t(h)
)
,

where t(h) lies between c and c+ h. Since f ′′ changes sign at c, one of the one-sided
limits is greater than or equal to zero and the other is less than or equal to zero, so if
the second derivative exists, it follows that f ′′(c) = 0.

Notice that if f ′′(c) = 0 and c is a point of inflection, then c is automatically an
isolated zero of f ′′, since we require that f ′′ changes sign at c. This observation will
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be important later on, and explains why functions of the form xn sin(1/x) do not have a
point of inflection at 0.

We now define a series of properties.

Definition 5. Let f be twice differentiable on a punctured interval (a,b)−{c} and with
a tangent at c. We consider the following properties.

• W1 ( f ′′ changes sign): f ′′ changes sign at c.

• W2 ( f ′ extremum): The first derivative has a strict local extremum at c or
limh→0

(
f (c+h)− f (c)

)
/h =∞ or −∞.

• W3 (crossing tangent): The tangent crosses the curve at c with an isolated
crossing point.

• W4 (three-point secants): There is an interval I around c such that for all x1 ∈ I
on one side of c, there is an x2 ∈ I on the other side of c, such that

(
x2, f (x2)

)
lies

on the secant through
(
x1, f (x1)

)
and
(
c, f (c)

)
.

• W5 ( f ′′ = 0): f ′′(c) = 0 if it exists.

We have defined c to be a point of inflection if f satisfies W1 ( f ′′ changes sign),
while W2 ( f ′ extremum) has been studied in [7], and [13] used W3 (crossing tangent).
The relationship between the first three properties have been studied by several authors
([2, 5, 7, 9, 11]), but we have not seen W4 (three-point secants) used elsewhere, even
though it is somewhat related to one of the properties studied in [4].

In Theorems 3, 4, 5, and 6 we show that for functions that are twice differentiable on
a punctured interval (a,b)−{c} and with a tangent at c, we have a chain of implications
among these properties. We know that W5 ( f ′′ = 0) is not equivalent to the other
properties, since x4 is an elementary counterexample, and in Theorems 7, 8, and 10 we
show that the converses of the other implications are also false. However, in Theorem
12, we show that for functions that are twice continuously differentiable on an interval
(a,b) and with only isolated zeros of f ′′, the first four properties are equivalent.

It is possible to define a point of inflection without requiring a tangent, and only
using W1 ( f ′′ changes sign). However, by requiring a tangent line, we get the three
additional properties W2 ( f ′ extremum), W3 (crossing tangent), and W4 (three-point
secants), and in Theorem 12, we will show that these properties are equivalent to a
point of infection for an interesting class of functions. In our view, this is a strong
argument for requiring that there should be a tangent at a point of inflection.

We know that W1 ( f ′′ changes sign) implies that f ′ has an extreme point. However,
points of inflection and extreme points are fundamentally different in a subtle way.
The actual definition of strict local extremum is that the value of f is extreme, and
f ′ changing sign is a necessary, but not sufficient conditions. On the other hand, the
actual definition of point of inflection is W1 ( f ′′ changes sign), and we show that W2
( f ′ extremum), W3 (crossing tangent), W4 (three-point secants), and W5 are necessary,
but not sufficient conditions.

For people living in countries with ski-jumps, the landing part of the hill is a great
example of a point of inflection (see Figure 7). Unfortunately, in the sport it is called
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the critical point, which does not agree with the mathematical definition of a critical
point.

Figure 7: Ski jumping hill ([15])

We now want to state a series of theorems about implications among the W prop-
erties, but we first need to recall an interesting theorem, which unfortunately is often
not covered in basic courses in analysis, namely Darboux’s Theorem ([9]). We will
therefore give a quick proof of it.

Theorem 2. If f (x) differentiable on the interval [a,b] and f ′(a)< k < f ′(b) (or f ′(a)>
k > f ′(b)), then there is a point x0 with a < x0 < b and f ′(x0) = k.

Proof. By considering f (x)−kx, we can assume that k = 0. Since f ′(a) < 0, there is a δ
such that a < x < a+δ implies that

(
f (x)− f (a)

)
/(x−a) < 0, and therefore f (x) < f (a).

Similarly, there is a δ′ such that b−δ′ < x < b implies that
(

f (b)− f (x)
)
/(b− x) < 0, and

therefore f (x) < f (b). Since f is continuous, it must have a minimum on [a,b], and it
now follows that it must be at an interior point, and the derivative must be 0 there. □

We can now state the following useful corollary.

Corollary 1. If f is differentiable on (a,b), then f ′ cannot have a removable or a jump
discontinuity.

Proof. If L = limx→c f ′(x) , f ′(c), then we can without loss of generality assume that
f ′(c)> L, set ϵ = ( f ′(c)−L)/2, and find a δ such that if 0< |x−c|< δ, then | f ′(x)−L|< ϵ.
If we choose t ∈ (c,c+δ), then f ′(t) < L+ ϵ < f ′(c), but there is no point in (c, t) where
f ′(x) equals L+ ϵ, which contradicts Darboux’s Theorem. We can conclude that f ′

cannot have a removable discontinuity.
If A = limx→c− f ′(x) , limx→c+ f ′(x) = B, then we can without loss of generality

assume that A < B, set ϵ = (B− A)/2, and find a δ such that if 0 < c− x < δ, then
| f ′(x)− A| < ϵ, and if 0 < x− c < δ, then | f ′(x)− B| < ϵ. If we choose t1 ∈ (c− δ,c)
and t2 ∈ (c,c+ δ), then f ′(t1) < A+ ϵ = B− ϵ < f ′(t2). However, there is no point in
(t1, t2) where f ′(x) equals A+ϵ = B−ϵ, which contradicts Darboux’s Theorem. We can
conclude that f ′ cannot have a jump discontinuity. □

We are now ready to state the first step in our chain of implications.

Theorem 3. Let f be twice differentiable on a punctured interval (a,b)− {c} and with
a tangent at c. If f satisfies W1 ( f ′′ changes sign), then it satisfies W2 ( f ′ extremum).
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Proof. If f ′ is continuous at c, then this follows easily from the Mean Value Theorem,
but how do we know that f ′ is continuous? The proof consists of showing that either
f ′ is continuous at c, or there is a vertical tangent at c. We know that f ′ is increasing
on one side of c and decreasing on the other, and therefore both limx→c+ f ′(x) and
limx→c− f ′(x) exist or are equal to ±∞. It then follows from Corollary 1 that either
both one-sided limits exist and therefore f ′ is continuous at c, or there is a vertical
tangent at c. □

Theorem 4. Let f be twice differentiable on a punctured interval (a,b)− {c} and with
a tangent at c. If f satisfies W2 ( f ′ extremum), then it satisfies W3 (crossing tangent).

Proof. We can assume without loss of generality that f ′ has a strict minimum at c.
If x is to the right of c, we use the Mean Value Theorem to show that f (x)− f (c) =
f ′(d)(x− c) where d is between c and x. Since f ′ has a strict minimum at c, we have
f ′(d) > f ′(c), and it follows that

f (x) = f (c)+ f ′(d)(x− c) > f (c)+ f ′(c)(x− c),

which shows that f lies above the tangent to the right. A similar argument works for x
to the left of c, and we can conclude that we have a crossing tangent. □

To show that W3 (crossing tangent) implies W4 (three-point secants) is a bit more
complicated, and we first prove a lemma. The idea behind Lemma 1 is that the graph
of a function cannot be separated from the tangent by a secant (see Figure 8).

Figure 8: Secant lemma

Lemma 1. Assume that f is continuous on (a,b) with a tangent at c ∈ (a,b), and that
there is r ∈ (c,b) such that

(
r, f (r)

)
does not lie on the tangent. Consider the secant

lr from c to r. Then there exists a point s ∈ (c,r) so that the secant ls from c to s lies
between the secant lr and the tangent.

Proof. We first assume that the tangent, t, is not vertical, and that the slope, p, of the
secant lr is larger than the slope, f ′(c), of the tangent. Assume that the lemma is false,
i.e., there is no point s, so that ls lies between lr and t. Then for all s ∈ (c,r), the
point

(
s, f (s)

)
must lie on or above the secant lr. Since the equation of lr is given by

y = f (c)+ p(x− c), we get f (s) ≥ f (c)+ p(s− c) and

f (s)− f (c)
s− c

≥
f (c)+ p(s− c)− f (c)

s− c
= p > f ′(c),
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and if we take the limit when s approaches c, we would get the contradiction f ′(c) >
f ′(c). When the slope of the secant is less than the slope of the tangent, the inequalities
are simply reversed. A similar argument also holds if the tangent is vertical. In that
case we must show that the limit of the fraction equals∞ or −∞. But that is impossible
if the curve is separated from the tangent by a secant. □

We now prove the next step in our sequence of implications among the W proper-
ties.

Theorem 5. Let f be twice differentiable on a punctured interval (a,b)− {c} and with
a tangent at c. If f satisfies W3 (crossing tangent), then it satisfies W4 (three-point
secants).

Figure 9: Three-point secants

Proof. Let t be the tangent at c, and assume that there exists a neighborhood (a,b) such
that f lies below the tangent for x ∈ (a,c) and above for x ∈ (c,b). We now select r ∈
(c,b) on the right and consider the secant lr through A1 =

(
r, f (r)

)
and
(
c, f (c)

)
. In order

for f to satisfy the three-point secants property, we must show that lr also intersects the
graph of f on the left. For this purpose, we now consider three possibilities f1, f2 and
f3 for the graph of f on the left (see Figure 9). In Figure 9, the tangent is the x-axis, and
the point of inflection is at the origin. Either there is an s ∈ (a,c) so that B1 =

(
s, f (s)

)
lies on lr (see the graph f1), or the graph of f for x ∈ (a,c) lies completely between the
tangent t and the secant lr (see the graph f2) or the graph of f for x ∈ (a,c) lies below
the secant lr (see the graph f3). However, it follows from Lemma 1 that the f3 case is
impossible, since then the secant would separate the graph from the tangent. In the f2
case, we can pick any point s ∈ (a,c) and consider the secant ls from B2 =

(
s, f (s)

)
to(

c, f (c)
)
. Since ls lies between lr and t on the left, it lies between t and lr on the right,

too. There are now three possible cases. Either the graph is always below ls on the
right, always above ls on the right, or it intersects ls on the right. The graph cannot
lie below, since it intersects lr in A1, and it cannot lie above, because then it would
be separated from the tangent by a secant, which is impossible by Lemma 1. We can
therefore find r′ ∈ (c,b) such that A2 =

(
r′, f (r′)

)
lies on ls. So in either case we now

have a pair, which we simply denote as r and s, such that
(
r, f (r)

)
,
(
c, f (c)

)
and
(
s, f (s)

)
lie on a common secant l.
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If f is differentiable at c, then the slope of the tangent is the limit of the slopes of
nearby secants, so we can find a neighborhood (a′,b′) with s ≤ a′ < c < b′ ≤ r, such
that for x ∈ (a′,b′), the secant lx from

(
x, f (x)

)
to
(
c, f (c)

)
lies between t and l. But in

that case it is clear that lx intersects the graph of f on the other side of c, too, so W4
(three-point secants) holds.

If f is not differentiable at c, but has a vertical tangent at c, then the tangent is still
the limit of the slope of nearby secants, so the same argument as above holds. □

Notice that if we had not included the existence of a tangent at c as part of the
definition of a point of inflection, we would not have been able to conclude that there
are three-point secants around a point of inflection (see Figure 4). The fact that W2 ( f ′

extremum) and W3 (crossing tangent) both require f to have a tangent at c, and that
Theorem 5 shows that W4 (three-point secants) holds if f has a tangent at c, indicates
that it is natural to require that f should have a tangent at a point of inflection.

We can now prove the last step in our chain of implications.

Theorem 6. Let f be twice differentiable on a punctured interval (a,b)− {c} and with
a tangent at c. If f satisfies W4 (three-point secants), then it satisfies W5 ( f ′′ = 0).

Proof. The three-point secants property shows that for all ϵ > 0, there exists points a,b
with c− ϵ < a < c < b < c+ ϵ such that

(
a, f (a)

)
,
(
c, f (c)

)
and
(
b, f (b)

)
lie on the secant.

The Mean Value Theorem then gives us points a′ and b′ between a and c, and b and c,
respectively such that

f ′(a′) =
f (c)− f (a)

c−a
=

f (b)− f (c)
b− c

= f ′(b′).

This then implies that

f ′′(c) = lim
b′→c+

f ′(b′)− f ′(c)
b′− c

= lim
a′→c−

f ′(a′)− f ′(c)
a′− c

.

Since f ′(a′) = f ′(b′), the numerators are equal, while the denominators have opposite
sign, so the limits must have opposite sign, and we get f ′′(c) = 0. □

We will now see that the converses of Theorems 3, 4, 5, and 6 are false. As ex-
plained previously, we will in each case make sure that we also have a counterexample
that is twice continuously differentiable.

First of all, f (x) = x4 satisfies W5 ( f ′′ = 0), but none of the other properties, so the
converse of Theorem 6 fails.

Theorem 7. The function f2(x) = x2 sin(1/x) shows that W4 (three-point secants) does
not imply W3 (crossing tangent). The function f4(x) = x4 sin(1/x) is a counterexample
that is also twice continuously differentiable.

Proof. Both f2 and f4 have the x-axis as the tangent at x = 0, and since they are odd
functions, they automatically satisfy W4 (three-point secants). However, since they
take on both positive and negative values near the origin, they do not satisfy W3 (cross-
ing tangent), see Figure 2. □
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We now want to construct a counterexample to see that W3 (crossing tangent) does
not imply W2 ( f ′ extremum), and we follow the principle used when discussing the
oscillating parabola, and start with a function with the stated property, namely that f
has a crossing tangent, and add an oscillating term. The simplest example of a crossing
tangent is x3, so we examine functions of the form f (x) = x3 + axn sin(1/x). If n < 3,
then the oscillations are so big that we will not get a crossing tangent, and if we set
n = 3 and a = 1, then the curve touches the tangent infinitely many times. We therefore
set (see Figure 10)

h2(x) = x3+1/2 x3 sin(1/x) = x3
(
1+1/2sin(1/x)

)
.

Figure 10: h2(x) = x3+1/2 x3 sin(1/x)

Then
h′2(x) = 1/2 x

(
6x+3xsin(1/x)− cos(1/x)

)
, (3)

and since the parenthesis consists of terms involving x and an undamped oscillating
term, we see that the parenthesis changes sign infinitely often near 0. Hence h′2 takes
on both positive and negative values near 0, and 0 is not an extremum of h′2.

To construct a counterexample that is twice continuously differentiable, we will
need at least x5 in front of the sine term, and as we saw when discussing k1 in Equation
(2), we need the same power in the monomial, too, so we set

k2(x) = x5+1/2 x5 sin(1/x),

which gives
k′2(x) = 1/2 x3

(
10x+5xsin(1/x)− cos(1/x)

)
.

Again we see that k2 has a crossing tangent at 0, but that k′2 does not have an extremum
at 0. We have thus proved the following theorem.

Theorem 8. The function

h2(x) = x3+1/2 x3 sin(1/x)

shows that W3 (crossing tangent) does not imply W2 ( f ′ extremum). We call h2 an
oscillating cubic. The function

k2(x) = x5+1/2 x5 sin(1/x)

is a counterexample that is also twice continuously differentiable.

12



Notice that there is a subtle difference between the oscillating parabola and the
oscillating cubic. The oscillating parabola has an extremum, because extremum is
defined geometrically and not analytically, i.e., in terms of an inequality and not in
terms of f ′ changing sign. The oscillating cubic, on the other hand, does not have
a point of inflection, since that is defined analytically, and not in terms of geometric
properties like W3 (crossing tangent).

The oscillating cubic illustrates a common misconception, which we summarize in
the following theorem.

Theorem 9. Let f be differentiable on (a,b) with a zero at c ∈ (a,b). If f is locally
strictly monotonic around c, then c is a crossing zero. However, the converse is not
true, and a counterexample is given by the oscillating cubic (see Figure 10)

h2(x) = x3+1/2 x3 sin(1/x).

Proof. The first part is immediate, and h2 obviously has a crossing zero, but the deriva-
tive (3) changes sign all the time around 0, so h2 is not monotonic on any neighborhood
around 0. □

We will now continue finding counterexamples to the converse implications among
the W properties. To show that W2 ( f ′ extremum) does not imply W1 ( f ′′ changes
sign), we could simply integrate h1(x) = x2 + 1/2 x2 sin(1/x), which was an example
of a function with an extremum where the derivative did not change sign. However,
it is not easy to find a simple anti-derivative of h1. We would also like to relate the
discussion to the concept of terrace point. This is not a standard term in calculus
books, but has recently been popularized by for instance ([10]).

Definition 6. Let f be differentiable on an open interval (a,b) with c ∈ (a,b). We call
c a terrace point if f ′(c) = 0, and f ′ has the same sign around c.

We will first prove a simple lemma. Recall that h2(x) = x3+1/2 x3 sin(1/x) was not
increasing. However, if we add a monomial xm with m ≥ 1 in front of the sine term, the
function becomes increasing.

Lemma 2. If n ≥ 3 is odd and m ≥ 1, then

f (x) = xn
(
1+ xm sin(1/x)

)
,

is increasing for all x, and 0 is a terrace point. If m ≥ 3, then 0 is a point of inflection.

Proof. We have

f ′(x) = xn−1
(
n+ (n+m)xm sin(1/x)− xm−1 cos(1/x)

)
,

and since n−1 is even, we simply need to show that the parenthesis is positive in order
to conclude that f is increasing. If m−1 ≥ 1, the parenthesis will be close to n when x
is small, and if m = 1, we need to show that(

n+ (n+1)xsin(1/x)− cos(1/x)
)
> 0.

13



If |x| < 1/π, then |xsin(1/x)| < |x| < 1/π and if |x| ≥ 1/π, then |1/x| ≤ π. Since 1/x is the
argument of the sine function, we see that x and sin(1/x) have the same sign and the
product is nonnegative, so 0 ≤ xsin(1/x) for |1/x| ≤ π (see Figure 1). Combining this,
we see that −1/π < xsin(1/x) for all x, and hence

n+ (n+1)xsin(1/x)− cos(1/x) > n− (n+1)/π−1
> n− (n+1)/3−1 = 2n/3−4/3 ≥ 2/3,

since π > 3 and n ≥ 3, so f is increasing and 0 is a terrace point.
We have

f ′′(x) = xn−2
(
n(n−1)+ (n+m−1)(n+m)xm sin(1/x)

−2(m+n−1)xm−1 cos(1/x)− xm−2 sin(1/x)
)
,

and since n−2 is odd, we simply need to show that the parenthesis is positive in order
to conclude that f has a point of inflection. If m−2 ≥ 1, then there are powers of x in
front of all the trigonometric terms, so the parenthesis will be close to n(n− 1) when
x is small, so f ′′ will change sign at 0. However, if m− 2 ≤ 0, we will not be able to
dampen the last sine term with monomials, and f ′′ will oscillate. □

This shows that when the power in front of the sine term is higher than the power
of the monomial, the amplitudes of the oscillations are so small that the function is still
increasing, but if the power in front of the sine term is only one or two higher than the
power of the monomial, there will still be enough oscillation to prevent a change in the
sign of f ′′ at 0. However, if m ≥ 3, the oscillations are so small that we get a point of
inflection at 0. We will also not need to reduce the amplitude of the oscillating term by
a factor of 1/2, like we did for h2(x), and we define (see Figure 11)

h3(x) = x3+ x4 sin(1/x) = x3
(
1+ xsin(1/x)

)
.

Notice that in Figure 11 we have used different scales along the two axes to highlight

Figure 11: h3(x) = x3+ x4 sin(1/x)

the oscillations in h′3. We see that h′3 has a minimum and hence h3 satisfies W2 ( f ′

extremum). However, since

h′′3 (x) = 6x+12x2 sin(1/x)−6xcos(1/x)− sin(1/x), (4)

14



and since the terms involving x are small and sin(1/x) oscillates, we see that h′′3 does
not change sign at 0 since it changes sign infinitely often near 0. This counterexample
was also given in ([Ko]), where it was also claimed that

f (x) = x3+ x6 sin(1/x)

is a twice continuously differentiable counterexample. However, Lemma 2 shows that
f ′′ does change sign around 0. This is probably just a typo in [Ko], since if we set

k3(x) = x5+ x6 sin(1/x),

then we can use Lemma 2 with n =m = 3 to conclude that k′3 has a minimum 0, but that
k′′3 does not change sign at 0. We have thus proved the following theorem.

Theorem 10. The function

h3(x) = x3+ x4 sin(1/x)

shows that W2 ( f ′ extremum) does not imply W1 ( f ′′ changes sign). We call h3 an
asymptotic oscillating cubic, since limx→∞(h3(x)/2x3) = 1. The function

k3(x) = x5+ x6 sin(1/x)

is a counterexample that is also twice continuously differentiable.

It turns out that h3 (see Figure 11) is also a counterexample to another interesting
result, so we would also like to state the following theorem.

Theorem 11. A point of inflection with a horizontal tangent is a terrace point, but the
asymptotic oscillating cubic h3(x) = x3 + x4 sin(1/x) has a terrace point that is not a
point of inflection at 0.

Proof. If c is a point of inflection with f ′′ > 0 on an interval (c,b), then for x ∈ (c,b), we
can use the Mean Value Theorem to conclude that f ′(x)− f ′(c) = f ′′(y)(x−c) for some
point y ∈ (0, x). Since f ′(c) = 0 and f ′′(y) > 0, it follows that f ′(x) > 0 for x ∈ (c,b), and
a similar argument shows that there is an interval (a,c) such that f ′(x) > 0 for c ∈ (a,c).
The counterexample follows from Lemma 2. □

4 Functions with a continuous second derivative that
has only isolated zeros

We observed at the beginning of this paper that for a continuous function, a zero is
either a crossing zero, a kissing zero or a non-isolated zero. Except for x4, all our
counterexamples have had non-isolated zeros of f ′′. However, if f ′′ is continuous and
c is a point of inflection with f ′′(c) = 0, then f ′′ changes sign, and c must therefore
be an isolated zero of f ′′. In this section, we will therefore restrict ourselves to the
following class of functions, which was also studied in ([7]),

V = { f | f ′′ is continuous and has only isolated zeros}.
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The key point is that for f ∈ V , a zero of f ′′ must either be a crossing zero or a
kissing zero. However, notice that V does not exclude all oscillating functions of the
form we have considered. It follows from Lemma 2 that functions of the form

f (x) = xn(1+ xm sin(1/x)) with n odd and m ≥ 3

are in V. The point is that in this case the oscillations are sufficiently small to not create
infinitely many zeros of f ′′. Notice also that we exclude linear functions from V .

We can now prove a useful lemma, which shows that for our class V of functions,
f , f ′, and f ′′ all have fixed sign on both sides of c. This simplifies many arguments,
and is one of the reasons why we want to consider this family of functions.

Lemma 3. If f ′′ is continuous and has only isolated zeros, then both f ′ and f also
have only isolated zeros, and we can find an interval (a′,b′) around c such that f , f ′,
and f ′′ all are nonzero on (a′,b′)−{c} and have fixed sign on both sides of c. Moreover,
if

f ′(c) = f (c) = 0,

then there are only two possible cases for x > c:

R1 : f > 0, f ′ > 0, f ′′ > 0,
R2 : f < 0, f ′ < 0, f ′′ < 0,

and there are only two possible cases for x < c:

L1 : f > 0, f ′ < 0, f ′′ > 0,
L2 : f < 0, f ′ > 0, f ′′ < 0.

So all together, there are four possible cases, by combining one from the left and
one from the right.

Figure 12: The four cases

Proof. Since f ′′ is continuous and has only isolated zeros, it must be nonzero on
(a′,b′)− {c} and have fixed sign on both sides of c. We now prove that f ′ also has
only isolated zeros. Assume that f ′ has a non-isolated zero at d ∈ (a′,b′). Then we can
find e ∈ (a′,b′) arbitrarily close to d with f ′(e) = 0. By choosing e sufficiently close to
d, we can assume that either d = c or that d and e are on the same side of c. But then
it follows from Rolle’s Theorem that f ′′ must have a zero between d and e, and this
zero cannot be at c, since c is not between d and e. But we know that f ′′ is nonzero
on (a′,b′)−{c}, so it follows that f ′ has only isolated zeros. We then apply exactly the
same argument to get that f also has only isolated zeros. Since f ′ and f ′′ are also both
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continuous and have only isolated zeros, it follows that they all are also both nonzero
on (a′,b′)−{c} and have fixed sign on both sides of c.

Notice that we cannot choose the signs of f , f ′, and f ′′ freely. We only get four
cases, not eight. For instance, since f (c) = 0, we cannot have f > 0 and f ′ < 0 on
the right, since the Mean Value Theorem would give us positive values of f ′ if f is
positive. Similarly, since f ′(c) = 0, we cannot have f ′ > 0 and f ′′ < 0 on the right. So
we observe that on the right, the three functions must all have the same sign, while on
the left, they must have alternating signs. □

Remark 1. The assumptions that f ′(c) = f (c) = 0 are not as restrictive as it may seem,
since by adding a linear function, we can make both f (c) and f ′(c) equal to zero without
affecting the value of f ′′(c).

Remark 2. Notice also that the Rolle’s Theorem argument only works one way. If f ′′

has only isolated zeros, then so does f ′, but the converse is not true, as can be seen
from the asymptotic oscillating cubic h3 (see Figure 11). The origin is a non-isolated
zero for h′′3 , but an isolated zero for both h′3 and h3.

We now show that for functions in V , all the implications we have considered can
be reversed, namely Theorems 5, 4, 3, 1, 9 and 11.

Theorem 12. Let f ′′ be continuous with only isolated zeros on (a,b) and let c ∈ (a,b).
Then

W4 (three-point secants) =⇒W3 (crossing tangent),

W3 (crossing tangent) =⇒W2 ( f ′ extremum),

W2 ( f ′ extremum) =⇒W1 ( f ′′ changes sign),

c is an extremum of f =⇒ f ′ changes sign at c,

c is a crossing zero =⇒ f is locally strictly monotonic around c, and

c is a terrace point =⇒ c is a point of inflection with horizontal tangent.

Proof. Adding a linear function to f will not affect any of the conditions, so we can
assume that f ′(c) = f (c) = 0.

W4 (three-point secants) =⇒ W3 (crossing tangent). The result follows from
Lemma 3, since we can only have L1&R2 or L2&R1.

W3 (crossing tangent) =⇒ W2 ( f ′ extremum). We know that f (x) > 0 (< 0) for
x > c and f (x) < 0 (> 0) for x < c, and we can now use Lemma 3 to conclude that we
must have case L2&R1 (L1&R2), and we see that f ′ has an extremum.

W2 ( f ′ extremum) =⇒ W1 ( f ′′ changes sign). If f ′ has an extremum, then we
know that f ′′(c) = 0. If c is an extremum of f ′, then f ′ must be positive (negative) on
both sides of c, and we see from Lemma 3 that f ′′ changes sign at c.

f extremum =⇒ f ′ changes sign. We can apply Lemma 3 to conclude that f ′ has
fixed signs on both sides of c, which shows that f ′ changes sign at c.

If c is a terrace point, we can without changing the value of f ′′ add a constant to
ensure that f (c) = f ′(c) = 0, and therefore use Lemma 3. But then we see that if f ′

does not change sign at c, then f ′′ changes sign at c. □
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With the exception of the three-point secants, similar results were also obtained
in [2, 5, 7, 9, 11]. It is important to realize that the crucial aspect is not differentia-
bility. This result does not hold for C∞ functions, since we could construct infinitely
differentiable counterexamples of the form

f (x) =


(
e−x−2

sin(1/x)
)2

if x > 0,

0 if x = 0,

−
(
e−x−2

sin(1/x)
)2

if x < 0.

If we instead consider analytic functions, i.e., functions that converge to their Taylor
series, then they belong to V , except for linear functions, since their second derivatives
are constantly equal to zero. However, as discussed earlier, we do not consider linear
functions to have points of inflection, so that distinction does not affect our discussion.

5 Misconceptions in Calculus
Some misconceptions about points of inflections were studied in [14]. Calculus stu-
dents are told about x3 and x4, and one of the goals of this article is to raise awareness
of the more complex counterexamples discussed above. In this section, we therefore
discuss some misconceptions related to these counterexamples. Our experience tells us
that many calculus students have the following misconceptions, with counterexamples
in parenthesis.

1. If f is differentiable at a strict, interior extremum, then f ′ changes sign, so if
you want to find the extrema of a differentiable function on an open interval,
you only need to find the points where f ′ changes sign. (Oscillating parabola
h1 = x2+1/2 x2 sin(1/x), see Figure 3 and Theorem 1.)

2. If f has a crossing zero, then f must be locally monotonic. (Oscillating cubic
h2 = x3+1/2 x3 sin(1/x), see Figure 10 and Theorem 9.)

3. A terrace point is a point of inflection. (Asymptotic oscillating cubic h3 = x3 +

x4 sin(1/x), see Figure 11 and Theorem 11.)

4. If f ′(c) = 0, then c is either an extremum or terrace point. (Oscillating cubic
h2 = x3+1/2 x3 sin(1/x), see Figure 10.)

5. If f ′(c) = f ′′(c) = 0, then c is an extremum or a point of inflection. (Asymptotic
oscillating cubic h3 = x3+ x4 sin(1/x), see Figure 11.)

Why would a student hold these false beliefs? The opposite of all the claims are
indeed true and if we assume that f ′′ is continuous and has only isolated zeros, then all
the claims are indeed true! The first three misconceptions, which are related to Theo-
rems 1, 9 and 11, all seem geometrically “obvious”. Claim 1 is related to how students
are taught to find extrema. Claim 2 makes sense verbally. The standard example of
a terrace point is x3, which indeed does have a point of inflection, and students may
believe that this is a generic example, which would make Claim 3 true.
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The last two claims are related to the first and second derivative test. They learn
that if f ′ changes sign at c, i.e., c is a crossing zero of f ′, then f has either a maximum
or a minimum, and they are shown x3, which has a terrace point since f ′ has a kissing
zero at c. They may then believe that every zero is either a crossing zero or a kissing
zero, which would make Claim 4 true.

Claim 5 is about the case left open by the second derivative test. Strong students
are familiar with x4 and know that you do not necessarily get a point of inflection when
f ′(c) = f ′′(c) = 0. However, they may believe that x4, x3, and −x4, i.e., minimum,
point of inflection and maximum, are the only three possible cases, which would make
Claim 5 true.

We therefore believe that it will be instructive for calculus students to learn about
these counterexamples, and to learn under which conditions they can be avoided.
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