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Why Talk about Probability and Combinatorics?

▶ Many teachers have a weak background.

▶ It is difficult to get partial credit. Either it is right or it is
wrong.

▶ It is easy to make mistakes. Wrong arguments can look
correct and correct arguments can look wrong!

▶ If you think you understand probability, then you don’t
understand it!

▶ That’s why it’s fun!
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What Do I Want to Talk about Today? 1

▶ Sometimes we discuss things you can say to all the
students.

▶ Sometimes we discuss things you can say to good
students once in a while.

▶ Sometimes we discuss things you will probably never say
to any students, but which give you an understanding that
makes you feel confident when you give a simplified
explanation to the students.
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What is the Difference Between Probability and
Combinatorics?

▶ In combinatorics, the answer is always a whole number.

▶ In probability, the answer is a number between 0 and 1.
▶ You often use combinatorics to compute probabilities, but

you must not confuse the concepts.
▶ I once moderated the draft of an exam paper in primary

school teacher education, which asked about the number
of ways you could get two aces when you draw five cards
from a deck.

▶ They reassured us that we could assume that the deck
was well shuffled!
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Making a Test

▶ Many exercises, especially in lower secondary school, are
confusing because it is (in my opinion) unclear whether the
samples are ordered or unordered and with or without
replacement.

▶ A Norwegian textbook asked the following question: “A
teacher has 2 problems about algebra, 3 about geometry
and 4 about probability, and wants to make a test with one
problem of each type. How many different tests can the
teacher make?”

▶ Discuss: Is it ordered or unordered?
▶ Remember Helmer’s Law: Anything that can be

misunderstood by a student will at some stage be
misunderstood.
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Making a Test Discussion

▶ The problem with the test question is that from a practical
point of view, there is a difference between a test where
the first question is easy, and a test where the first
question is hard. So the practical problem is best solved
using an ordered model.

▶ However the authors of the book asked the question after
introducing the combinatorial product rule, which assumes
that the order does not matter.
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Boy and Girl

▶ I have two children. I can either have two boys, two girls or
one of each. (We ignore identical twins and other
complications, and assume equal and independent
birthrates.) I use the rule that says that the probability of an
event E is given by

P(E) =
number of favorable outcomes
number of possible outcomes

,

and get

P(I have a boy and a girl) =
1
3
.

▶ Discuss: Is this correct?
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Boy and Girl Discussion
▶ The favorable/possible formula only applies to uniform

distributions, where each outcome is equally likely. If we
order the kids by age, the event “a boy and a girl” is the
union of the two simple events “big brother and little sister”
and “big sister and little brother”.

big brother and little brother big brother and little sister
big sister and little brother big sister and little sister

▶ Using an ordered model, we get a uniform distribution,
which allows us to use the favorable/possible rule, giving
us the answer 2/4 = 1/2.

▶ Notice that after having done the computations, we
conveniently forget about the ordering.

▶ However, if we use the unordered model, we no longer get
a uniform distribution. Two of the outcomes have
probability 1/4 and one has probability 1/2. Hence we
cannot use the favorable/possible formula.
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Two Dice

a. How many outcomes can you get when you roll two regular
dice?

b. Which of these outcomes is most likely to occur when you
roll two dice?

▶ 1,6,
▶ 6,6,
▶ They are equally likely.

▶ The answers are given as 36 and 1,6.
▶ Discuss: Can the questions be interpreted in different

ways? Are there alternative answers? Are the answers
consistent?
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Two Dice Discussion 1

▶ In a) they mean ordered, in b) they mean unordered. Both
interpretations are possible, but you need to be consistent.

▶ The question is whether you can differentiate between the
dice.

▶ Assume that one die is yellow and the other is blue. Then
there are 36 possible outcomes.

Y-1 Y-2 Y-3 Y-4 Y-5 Y-6
B-1
B-2
B-3
B-4
B-5
B-6
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Two Dice Discussion 2

▶ How many different outcomes are there if the dice are
identical and are thrown at the same time in a dice cup?

▶ There are therefore 15 + 6 = 21 outcomes. We have a
non-uniform probability model, where 15 outcomes (those
above the diagonal) have a probability of 1/18 and 6
outcomes (those on the diagonal) have a probability of
1/36.

1 2 3 4 5 6
1 X XX XX XX XX XX
2 X XX XX XX XX
3 X XX XX XX
4 X XX XX
5 X XX
6 X
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Sum of Two Dice 1

▶ What is the most likely sum if you roll two dice?

▶ Pretend that one cube is yellow and the other is blue.
Y-1 Y-2 Y-3 Y-4 Y-5 Y-6

B-1 2 3 4 5 6 7
B-2 3 4 5 6 7 8
B-3 4 5 6 7 8 9
B-4 5 6 7 8 9 10
B-5 6 7 8 9 10 11
B-6 7 8 9 10 11 12

▶ The probability of getting 7 is 6/36 = 1/6.
▶ If the dice are identical, we have a non-uniform probability

model. The probability of getting 7 is 3 · 1/18 = 1/6, while
the probability of getting 6 is 2 · 1/18 + 1 · 1/36 = 5/36.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 4 5 6 7 8
3 6 7 8 9
4 8 9 10
5 10 11
6 12



Sum of Two Dice 1

▶ What is the most likely sum if you roll two dice?
▶ Pretend that one cube is yellow and the other is blue.

Y-1 Y-2 Y-3 Y-4 Y-5 Y-6
B-1 2 3 4 5 6 7
B-2 3 4 5 6 7 8
B-3 4 5 6 7 8 9
B-4 5 6 7 8 9 10
B-5 6 7 8 9 10 11
B-6 7 8 9 10 11 12

▶ The probability of getting 7 is 6/36 = 1/6.
▶ If the dice are identical, we have a non-uniform probability

model. The probability of getting 7 is 3 · 1/18 = 1/6, while
the probability of getting 6 is 2 · 1/18 + 1 · 1/36 = 5/36.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 4 5 6 7 8
3 6 7 8 9
4 8 9 10
5 10 11
6 12



Sum of Two Dice 1

▶ What is the most likely sum if you roll two dice?
▶ Pretend that one cube is yellow and the other is blue.

Y-1 Y-2 Y-3 Y-4 Y-5 Y-6
B-1 2 3 4 5 6 7
B-2 3 4 5 6 7 8
B-3 4 5 6 7 8 9
B-4 5 6 7 8 9 10
B-5 6 7 8 9 10 11
B-6 7 8 9 10 11 12

▶ The probability of getting 7 is 6/36 = 1/6.

▶ If the dice are identical, we have a non-uniform probability
model. The probability of getting 7 is 3 · 1/18 = 1/6, while
the probability of getting 6 is 2 · 1/18 + 1 · 1/36 = 5/36.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 4 5 6 7 8
3 6 7 8 9
4 8 9 10
5 10 11
6 12



Sum of Two Dice 1

▶ What is the most likely sum if you roll two dice?
▶ Pretend that one cube is yellow and the other is blue.

Y-1 Y-2 Y-3 Y-4 Y-5 Y-6
B-1 2 3 4 5 6 7
B-2 3 4 5 6 7 8
B-3 4 5 6 7 8 9
B-4 5 6 7 8 9 10
B-5 6 7 8 9 10 11
B-6 7 8 9 10 11 12

▶ The probability of getting 7 is 6/36 = 1/6.
▶ If the dice are identical, we have a non-uniform probability

model. The probability of getting 7 is 3 · 1/18 = 1/6, while
the probability of getting 6 is 2 · 1/18 + 1 · 1/36 = 5/36.

1 2 3 4 5 6
1 2 3 4 5 6 7
2 4 5 6 7 8
3 6 7 8 9
4 8 9 10
5 10 11
6 12



Sum of Two Dice 2

▶ This is important in many board games, for example in
Catan.



Four Types of Sampling
▶ Select k from n objects

With
Replacement Without Replacement

Ordered nk n!
(n − k)!

= n · · · (n − k + 1)

Unordered

(
k + n − 1

k

) (
n
k

)
=

n!
k !(n − k)!

▶ Note that
n!

k !(n − k)!
=

n!/(n − k)!
k !

=
n · · · (n − k + 1)

1 · · · k
.

▶
(

k + n − 1
k

)
can be written as

((
n
k

))
and is called

multichoose.
▶ Which of these four numbers is the largest?
▶ Ordered with replacement largest, unordered without

replacement smallest.
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Stars and Bars 1
▶ Suppose you select k = 5 from n = 3 objects, unordered

with replacement. If we denote the objects by the numbers
1, 2 and 3, then we can denote our samples by for
example, [1,1,2,2,3], [1,1,1,1,1], [1,1,3,3,3]. (These
are called multisets.)

▶ Imagine a pill box with 3 compartments. Let [ be the end
walls, | the partitions (bars) and ∗ the pills. Then the
selections above can be described as [∗ ∗ | ∗ ∗|∗],
[∗ ∗ ∗ ∗ ∗||], [∗ ∗ || ∗ ∗∗].

▶ Now imagine a board with k + n − 1 = 7 holes, where each
hole should be filled with a star or a bar. Such a location is
determined by where you place the k stars (or the n − 1
bars).

▶
(

k + n − 1
k

)
=

(
k + n − 1

n − 1

)
. (Remember that

k + n − 1 − k = n − 1.)
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Stars and Bars 2

▶ Another way to prove this formula, is to assume that we are
choosing among the numbers {1, . . .n}, and observe that
an unordered sample with repetitions can be described as
a list of numbers

1 ≤ x1 ≤ x2 ≤ · · · ≤ xk ≤ n.

If we now set yi = xi + i − 1, we get a list of numbers

1 ≤ y1 < y2 < · · · < yk ≤ n + k − 1,

and the number of such lists is
(

n + k − 1
k

)
.



Painting Dice

▶ You want to paint k dice, and you have n different colors.
How many ways can you do this?

▶ Are the dice identical? Can two dice have the same color?
▶ Assume that the dice are identical and that two dice can

have the same color. Then the answer is
(

n + k − 1
k

)
.
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Tables

▶ There are 20 teams in the English Premier League. How
many games are there in a season? Use a table!

▶

▶ 20 · 20 − 20 = 380 = 20 · 19. Ordered sampling without
replacement.
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Two Samples with Table 1

▶ There are three girls and two boys in a class. You choose
two students. What is the probability that you choose two
girls?

▶ Discuss: Describe four different ways of choosing two
students, and determine the corresponding probabilities.
You may want to use this table.

G1 G2 G3 B1 B2
G1
G2
G3
B1
B2
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Two Samples with Table 2

▶
G1 G2 G3 B1 B2

G1
G2
G3
B1
B2

▶ Prize for the best at mathematics and a different prize for
the best at English.

Ordered with replacement, 9/25,
25 = 52. The whole table.

▶ Prize for the best at mathematics and an identical prize for
the best at English. Unordered with replacement, 6/15,
15 = (6 · 5)/(1 · 2). On or above the diagonal.

▶ First and second prizes for the two who are best at
mathematics. Ordered without replacement, 6/20,
20 = 5 · 4. Above or below the diagonal.

▶ Two identical prizes for the two who are best at
mathematics. Unordered without replacement, 3/10,
10 = (5 · 4)/(1 · 2). Above the diagonal.

▶ Discuss: What is wrong with one of these arguments?
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Two Samples with Table 3

▶ I explained it like once, but on my way home, I suddenly
realized that it was wrong! I had made the same mistake
that I had warned about in the beginning of my talk! (If you
think you understand probability, you don’t!)

▶ For unordered with replacement, we get a non-uniform
distribution, just like in the case of the two dice. We
therefore cannot use favorable/possible.
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Two Samples with Table 4

▶ To count the number of ways we can select two girls, it
matters whether the sampling is ordered or unordered, but
if we want to find the probability that we select two girls, it
does not matter role whether the sample is ordered or
unordered!

▶ Unordered sampling reduces the number of possible
outcomes, by merging the outcomes below the diagonal
with the outcomes above the diagonal, and doubling the
probability of these outcomes.

▶ So the probability of the simple event “choose girls 1 and
2” in the unordered model is equal to the probability of the
compound event in the ordered model that consists of the
union of the two simple events “choose girl 1 in round 1
and choose girl 2 in round 2” and “choose girl 2 in round 1
and choose girl 1 in round 2”.



Two Samples with Table 4

▶ To count the number of ways we can select two girls, it
matters whether the sampling is ordered or unordered, but
if we want to find the probability that we select two girls, it
does not matter role whether the sample is ordered or
unordered!

▶ Unordered sampling reduces the number of possible
outcomes, by merging the outcomes below the diagonal
with the outcomes above the diagonal, and doubling the
probability of these outcomes.

▶ So the probability of the simple event “choose girls 1 and
2” in the unordered model is equal to the probability of the
compound event in the ordered model that consists of the
union of the two simple events “choose girl 1 in round 1
and choose girl 2 in round 2” and “choose girl 2 in round 1
and choose girl 1 in round 2”.



Two Samples with Table 4

▶ To count the number of ways we can select two girls, it
matters whether the sampling is ordered or unordered, but
if we want to find the probability that we select two girls, it
does not matter role whether the sample is ordered or
unordered!

▶ Unordered sampling reduces the number of possible
outcomes, by merging the outcomes below the diagonal
with the outcomes above the diagonal, and doubling the
probability of these outcomes.

▶ So the probability of the simple event “choose girls 1 and
2” in the unordered model is equal to the probability of the
compound event in the ordered model that consists of the
union of the two simple events “choose girl 1 in round 1
and choose girl 2 in round 2” and “choose girl 2 in round 1
and choose girl 1 in round 2”.



Two Samples with Table 5

▶ For unordered, the answer is therefore not 6/15. The 5
outcomes along the diagonal have a probability of 1/25
each, while the 10 over the diagonal have a probability of
2/25 each. The probability for two girls is therefore
3 · 1/25 + 3 · 2/25 = 9/25, which is the same as the
probability for ordered with replacement.

▶ If there is no replacement, there is nothing on the diagonal,
so we have uniform models, and the two answers, 6/20
and 3/10, are equal.

▶ This example shows that we must be humble in the face of
probability. But it is all the more fun when we understand it!
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Poker Hands 1
In poker, an ace can be high (14) or low (1), but
not both at the same time. Both A-2-3-4-5 and
10-J-Q-K-A are straights, while Q-K-A-2-3 is not.
However, the suits are not ranked, so 10-J-Q-K-A
in Spades and 10-J-Q-K-A in Hears are tied.

Straight flush A straight flush is determined by its
highest-ranking card. They go from 5 (A-2-3-4-5)
to A (10-J-Q-K-A) in each of the four suits.(

10
1

)(
4
1

)
= 40.

Four of a kind Any one of the thirteen ranks can form the four
of a kind by selecting all four of the suits in that
rank. The final card can have any one of the
twelve remaining ranks, and any suit.(

13
1

)(
4
4

)(
12
1

)(
4
1

)
= 624.
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Poker Hands 2

Full house A full house comprises a triple (three of a kind)
and a pair. The triple can be any one of the
thirteen ranks, and consists of three of the four
suits. The pair can be any one of the remaining
twelve ranks, and consists of two of the four suits.(

13
1

)(
4
3

)(
12
1

)(
4
2

)
= 3,744.

Flush The flush contains any five of the thirteen ranks,
all of which belong to one of the four suits, minus
the 40 straight flushes.(

13
5

)(
4
1

)
− 40 = 5,108.
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Poker Hands 3
Straight The straight consists of any one of the ten possible

sequences of five consecutive cards, from
5-4-3-2-A to A-K-Q-J-10. Each of these five cards
can have any one of the four suits. Finally, as with
the flush, the 40 straight flushes must be excluded.(

10
1

)(
4
1

)5

− 40 = 10,200.

Three of a kind Any of the thirteen ranks can form the three of
a kind, which can contain any three of the four
suits. The remaining two cards can have any two
of the remaining twelve ranks, and each can have
any of the four suits.(

13
1

)(
4
3

)(
12
2

)(
4
1

)2

= 54,912.
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Poker Hands 4

Two pair The pairs can have any two of the thirteen ranks,
and each pair can have two of the four suits. The
final card can have any one of the eleven
remaining ranks, and any suit.(

13
2

)(
4
2

)2(11
1

)(
4
1

)
= 123,552.

Pair The pair can have any one of the thirteen ranks,
and any two of the four suits. The remaining three
cards can have any three of the remaining twelve
ranks, and each can have any of the four suits.(

13
1

)(
4
2

)(
12
3

)(
4
1

)3

= 1,098,240.
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Poker Hands 5

High card High card is a hand that does not fall into one of
the above categories; i.e., the complement of the
union of all the above hands. The number of such
hands can be found by subtracting all the numbers
above from

(52
5

)
.

However, we can find the number directly, since a
high card hand is a hand without a pair that is not
a straight or a flush. So it contains five of the
thirteen ranks, discounting the ten possible
straights, and each card can have any of the four
suits, discounting the four possible flushes.[(

13
5

)
− 10

][(
4
1

)5

− 4

]
= 1,302,540.
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thirteen ranks, discounting the ten possible
straights, and each card can have any of the four
suits, discounting the four possible flushes.[(

13
5

)
− 10

][(
4
1

)5

− 4

]
= 1,302,540.



High Card 7 Paradox

A pair of Queens beats a pair of sevens. This is an
arbitrary, but logical convention, since both hands
are equally hard to get.

In the same way high card queen beats high card
seven.
This is however, not logical, since high card 7 is
much harder to get.
You must have five different values between 2 and
7, skipping 3, 4, 5 or 6, and not all of the same
color. (

4
3

)[(
4
1

)5

− 4

]
= 4,080.

This is the worst hand in poker, but “should” be
between full house and flush.
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Simpson’s Paradox in University Admission 1

▶ In 1973, Univ. of California Berkeley admitted 44% of
males and 35% of females who applied for graduate
school. This looked like a clear case of gender
discrimination.

▶ However, the data from the six largest departments gave a
different picture.

Department Male acceptance rate Female acceptance rate
A 62% 82%
B 63% 68%
C 37% 34%
D 33% 35%
E 28% 24%
F 6% 7%



Simpson’s Paradox in University Admission 1

▶ In 1973, Univ. of California Berkeley admitted 44% of
males and 35% of females who applied for graduate
school. This looked like a clear case of gender
discrimination.

▶ However, the data from the six largest departments gave a
different picture.

Department Male acceptance rate Female acceptance rate
A 62% 82%
B 63% 68%
C 37% 34%
D 33% 35%
E 28% 24%
F 6% 7%



Simpson’s Paradox in University Admission 2

▶ Here is a table with the number of applicants included.
Male Female

Applicants % Applicants %
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 373 6% 341 7%

▶ Many women apply to departments with low acceptance
rates, while many men apply to departments with high
acceptance rates.

▶ A trend appears in different groups of data but disappears
or reverses when these groups are combined.
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Simpson’s Paradox in Grades

▶ You are teaching a class with 20 regular students and 5
students with various types of learning disabilities. The
regular students score 80 out of 100 on a test, and the
other students score 50 out of 100. The class average is
74 out of 100.

▶ Your Principal is impressed, and next year she gives you
10 students with learning disabilities. This year the
average score among the regular students increase to 82
and the score for the other students increase to 52. You
are very happy, but your Principal is not. Why?

▶ The average score decreased to 70!
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Simpson’s Paradox in Salaries

▶ You have a sample of 20 male and 5 female engineers,
and 15 male and 10 female teachers. The average salaries
among the four groups are as follows.

Men Women
Engineers $ 80,000 $86,000
Teacher $40,000 $43,000
Average $62,857 $57,333



Boys and Girls 1

▶ Imagine a society that has a cultural preference for boys,
and suppose all families continue having babies until they
get a boy, at which time they stop. Suppose for simplicity
that you are not allowed to have more than 4 children.
(This last condition is actually not significant. We ignore
identical twins and other complications, and assume equal
and independent birthrates.)

▶ Discuss: In this society, will there be

1. More boys that girls?
2. More girls than boys?
3. Equally many boys and girls?
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Boys and Girls 2

▶ The simple answer is that the numbers must be equal.
Wanting boys does not make more boys. The only way you
can skew the numbers are through selective abortions or
killing baby girls.

▶ Expected number of boys:
1 · 1/2 + 1 · 1/4 + 1 · 1/8 + 1 · 1/16 = 15/16,
Expected number of girls:
1 · 1/4 + 2 · 1/8 + 3 · 1/16 + 4 · 1/16 = 15/16.

children boys girls probability
1 1 0 1/2
2 1 1 1/4
3 1 2 1/8

1 3 1/16
4 0 4 1/16
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The Birthday Problem
▶ Suppose you have n people. How likely is it that at least

two people have the same birthday?

▶ Most probability questions involving an “at least” statement
is computing by using the formula

P(at least two occurrences) = 1 − P(no occurences), so
P(at least two common birthdays)
= 1 − P(no common birthdays).

▶ The probability of n different birthdays is:

365
366

364
366

· · · 366 − (n − 1)
366

=

(
1 − 1

366

)(
1 − 2

366

)
· · ·
(

1 − n − 1
366

)
.

When n = 23, this dips below 1/2.
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Benford’s Law

▶ Benford’s Law states that in “naturally occurring” sets of
numbers, the probability that the first digit is d is
log10(1 + 1/d).

digit 1 2 3 4 5 6 7 8 9
% 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

▶ Imagine a stock index that starts at 100. To get to a first
digit of 2, the index must increase to 200, a 100% increase.
Assume that the index goes up at a rate of about 10% a
year. That means that it would take seven years to go from
1 to 2 as a first digit.

▶ But suppose we start at 900. It then takes only a little more
than a year to reach 1,000 and a first digit a 1.
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Bertrand’s Circle Paradox 1

▶ In 1899, Joseph Bertrand introduced the following paradox.
Consider an equilateral triangle inscribed in a circle, and
choose a chord at random. What is the probability that the
chord is longer than a side of the triangle? Bertrand gave
three arguments, all apparently valid, yet yielding different
results.



Bertrand’s Circle Paradox 2

▶ Random endpoints: Choose two random points on the
circle and draw the chord joining them. We can rotate the
triangle so that a vertex coincides with one of the

endpoints of the chord.

▶ If the other endpoint lies on the arc between the other
vertexes, then the chord is longer than the side.

▶ The length of the arc is one third of the circumference, so
the probability that the chord is longer than the side is 1/3.
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Bertrand’s Circle Paradox 3
▶ Random radius: Choose a radius and a point on the radius

and construct the chord through the point perpendicular to
the radius. We can rotate the triangle so that a side is
perpendicular to the radius.

▶ The chord is longer than the side of the triangle if the point
is nearer the center of the circle than the point where the
side intersects the radius.

▶ The side of the triangle bisects the radius, so the
probability that the chord is longer than the side is 1/2.
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Bertrand’s Circle Paradox 4
▶ Random midpoint: Choose a point anywhere within the

circle and construct a chord with the point as its midpoint.

▶ The chord is longer than the side of the triangle if the point
is within a the inscribed circle of triangle, which has radius
1/2 the radius of the larger circle.

▶ The area of the inscribed circle is one fourth the area of
the circumscribed circle, so the probability that the chord is
longer than the side is 1/4.
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Bertrand’s Circle Paradox 5

▶ What is the right answer? In 1973, Edwin Jaynes argued
that random midpoint and 1/2 was the correct answer, but
this has since been disputed. For more details, please see
https://en.wikipedia.org/wiki/Bertrand_
paradox_(probability).

▶ The key point is that continuous probabilities are hard, and
depends on how you measure infinite sets.

https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
https://en.wikipedia.org/wiki/Bertrand_paradox_(probability)
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A Family of Paradoxes

▶ There is a family of paradoxes that all have similar
calculations.

▶ The Monty Hall Problem (Car and Goat),
▶ The Two-Child Paradox,
▶ Bertrand’s box paradox,
▶ Three Prisoners,
▶ Principle of Restricted Choice in Bridge.
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The Monty Hall Problem (Car and Goat)

▶ You are on a game show and you are faced with three
doors. Behind one of them is a car and you are asked to
pick a door, and you choose door 1. Before the host opens
it, she first opens another door, and you see that there is
nothing behind it. She then asks you if you are sure about
door 1, or if you want to switch your guess.

▶ Suppose you pick door 1 and that the host opens door 2.
The probability that the car is behind 1 is 1/3, so you are
probably wrong, but after the host opened door 2, you
know that if the car is not behind 1 (and it probably is not),
then it must be behind 3, so you should switch!

▶ We must assume that if the host has a choice, they open a
door at random. If the host usually opens door 2 when I
open door 1, then seeing that the host opened door 3,
would give me extra information.
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The Two-Child Paradox 1

▶ A man has two children. (We ignore identical twins and
other complications, and assume equal and independent
birthrates.) You know, in various ways, that he has at least
one boy. What is in each case the probability that both are
boys?

1. You know that the oldest child is a boy.
2. You know that at least one of the children is a boy.
3. You ask the man if at least one of the children is a boy and

he says yes.
4. You meet the man on the street with a boy. (I am assuming

that there is no bias, i.e., it is equally likely that you see the
boy as the girl if he has one of each.)

5. You ask the man if at least one of the children is a boy born
on a Tuesday and he says yes.

6. You meet the man on the street on a Tuesday with a boy
and are told he was born on a Tuesday.
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and are told he was born on a Tuesday.
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The Two-Child Paradox 2

▶ Question 1 is simple. If the oldest child is a boy, then the
probability that both are boys is 1/2.

▶ In fact, this is the case whenever you know that a “specific”
child is a boy. So the answer to Questions 4 and 6 is also
1/2, since in both cases you have picked a specific child.

▶ Question 2 is problematic, since we do not know what
“know” means.

▶ Questions 3 and 5 are more difficult, and we will look at
them carefully. The answers turn out to be quite surprising!
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The Two-Child Paradox 3
▶ Look at the sample space of all families with two children,

{(G,G), (G,B), (B,G), (B,B))}. (Note that I use ordered
pairs, to get a uniform probability model.)

▶ Suppose you sample families and ask if the family has at
least one boy. If so, it becomes part of the sample space. If
not, delete it. The sample space becomes
{(B,B), (B,G), (G,B)} with a uniform distribution, and the
probability of (B,B) is 1/3, which answers Question 3.

▶ Suppose you instead sample children from families with
two children and see if it is a boy. If so, it becomes part of
the sample space. If not, delete it. The sample space
becomes {(B,B), (B,G), (G,B)} but now there is no
uniform distribution, because (B,B) has twice the
probability as (B,G) and (G,B) for half of these families
have been deleted. So now the probability of (B,B) is
actually 1/2, which confirms our answer to Question 4.
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The Two-Child Paradox 4

▶ However, this argument gives geometric insight, which will
be useful later on.

▶
(B, B) (B,G)
(G,B) ����(G, G)
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The Two-Child Paradox 5

▶ We will now give a more general argument. Set
q = P(You say he has at least one boy | He has {G,B}).

▶ If you sample the family, that is, you ask the father or
otherwise have full information about the family, then q = 1.

▶ If you sample children, that is, you observe a boy, without
knowing anything about the other child, then q = 1/2. You
will miss half of the {G,B} families, because half the time
you see a girl.

▶ If there is a bias, like if the man spends more time with one
child, then q may be different from 1/2.
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The Two-Child Paradox 6
▶ We use Bayes’ formula.

P({G,B}) | At least one boy) =
P(At least one boy | {G,B})P({G,B})

P(At least one boy)
.

▶

P(At least one boy) =
P(At least one boy | {G,B})P({G,B})
+P(At least one boy | {G,G})P({G,G})
+P(At least one boy | {B,B})P({B,B}).

▶ P({G,B} | At least one boy) =
(q · 1/2)/(q · 1/2 + 1 · 1/4) = 2q/(1 + 2q).

▶ It follows that
P({B,B} | At least one boy) = 1−2q/(1+2q) = 1/(1+2q).

▶ q = 1/2 gives P = 1/2, and q = 1 gives P = 1/3.
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The Two-Child Paradox 7

▶ We can illustrate this by the following variation. Suppose
you know that I have either ten boys, or a boy and nine
girls. You see me with a boy. Is it then most likely that there
are nine boys or nine girls at home?

▶ If I have nine girls, you will probably see me with one of the
girls, so if you see me with a boy, it is probably one of the
ten boys.
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The Two-Child Paradox 8

▶ We will now consider the case of the boy born on a
Tuesday, or in general, a boy satisfying a condition with
probability p. We will denote a boy that satisfies our
condition by B+ or B− otherwise.

(B+, B+) (B+, B-) (B+,G)
p2/4 p/4 − p2/4 p/4
(B-, B+) ����(B-, B-) ����(B-,G)
p/4 − p2/4 1/4 − p/2 + p2/4 1/4 − p/4
(G,B+) ����(G, B-) ����(G, G)
p/4 1/4 − p/4 1/4



The Two-Child Paradox 9
▶ It follows from the table that the probability of two boys is

p/2 − p2/4
p/2 − p2/4 + p/2

=
p − 2
p − 4

.

▶ Notice that if p = 1, i.e., we do not get any new
information, then the probability is 1/3, just as if we were
just told that he had at least one boy. However, if p is close
to 0, i.e., it is a rare condition that gives us a lot of
information, then the probability is close to 1/2.

▶ Geometrically, we observe that the sum of the first two
cells in the first column equals the last cell, and same for
the first row. However, the probability is less than 1/2
because the top-left cell cannot be counted twice.

▶ If you have two boys, it is more likely that you will have a
B+ boy, and conversely if you have a B+ boy, it is more
likely that it is because you have two boys.
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Bertrand’s Box Paradox 1

▶ I have three cards, one that is black on both sides, one that
is white on both sides, and one that is black on one side
and white on the other. Discuss:

1. I show you one card and you see a black side. What is the
probability that the other side it black, too?

2. I select a card, and tell you that it has at least one black
side. What is the probability that it has two black sides?
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Bertrand’s Box Paradox 2

▶ There are two ways you can see a black side. Either
because I picked the BB card, or because I picked the BW
card, and then showed you the B side. However, if I picked
the BW card, I would half the time end up showing you the
W side, so if you see a black side, it will 2/3 of the time be
because it is the BB card.

▶ However, in the second card, I will tell you that the card
has at least one black side both if it is the BB or the BW
card, so the probability that it is the BB card is 1/2.
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Three Prisoners 1

▶ There are three prisoners on death row, A, B and C. The
Governor has decided to pardon one of them. You are the
Warden, and you know who will be pardoned. A asks you if
you give the name of one of the two others who will be
hanged.

▶ You think about it, and say that B will be hanged. A is now
happy, believing that the probability that they will be
pardoned has increased from 1/3 to 1/2. Discuss: Is this
right?
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Three Prisoners 2

▶ I C is pardoned, then the Warden does not have a choice,
and must say that B will be hanged. However, if it is you
who will be pardoned, then the Warden has a choice. Half
the time they will say that B will be hanged and half the
time that C will be hanged.

▶ So if you are told that B will be hanged, it will 2/3 of the
time be because C is pardoned, and only 1/3 of the time
because you are pardoned.

▶ Again we are assuming that if the Warden has a choice,
then they will choose randomly. If they have a bias towards
choosing B rather than C when they have a choice, i.e.,
when you are pardoned, then the computations are more
complicated.
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Principle of Restricted Choice in Bridge 1

▶ You play a notrump contract as South and you have
♠8 7 5 4 while your “dummy” partner, whose cards are
face down on the table and visible to all, has ♠A J 10 9 6.
So you know that West and East have ♠K Q 3 2. How are
these cards split between E and W?
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Principle of Restricted Choice in Bridge 2

▶

Split Probability Hands

Prob.
of
each
hand

2 − 2
(

4
2

)(
22
11

)
/

(
26
13

)
= 40.7% 6 6.8%

3 − 1 2
(

4
1

)(
22
12

)
/

(
26
13

)
= 49.7% 8 6.2%

4 − 0 2
(

4
0

)(
22
13

)
/

(
26
13

)
= 9.6% 2 4.8%
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Principle of Restricted Choice in Bridge 3

▶ You now play a small spade, and W plays ♠2. You hope
that W has the K and the Q, so you play ♠6 from the
dummy. However, E takes the trick with ♠K. You later on
win another trick, and play another small spade, and W
plays ♠3. Where is the queen?

▶ Either W had ♠Q 3 2 and E had ♠K or W had ♠ 3 2 and E
had ♠KQ. In the first case, E did not have a choice, and
had to play the king. In the second case, E had a choice
between playing the King or the Queen, and chose to play
the King, since the King and the Queen are equivalent.

▶ The previous table shows that the 2-2 split is marginally
more likely than the 3-1 split, but the main point is that the
Principle of Restricted Choice says that E probably did not
have a choice.
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Principle of Restricted Choice in Bridge 4

▶ Let q = P(E plays K | E has KQ). Then

P(E has KQ | E plays K) =
P(E plays K | E has KQ)P(E has KQ)

P(E plays K)
.

▶ Now

P(E plays K) = P(E plays K | E has KQ)P(E has KQ)

+ P(E plays K | E has K)P(E has K)
= q · 0.068 + 0.062,

so we get

P(E has KQ | E plays K) =
q · 0.068

q · 0.068 + 0.062
≈ q

q + 1
.
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Principle of Restricted Choice in Bridge 5

▶ So if q = 1/2, then

P(E has KQ | E plays K) ≈ 1/2
1/2 + 1

=
1/2
3/2

=
1
3
.
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Two Aces Paradox 1

▶ I have two decks of cards. I give two cards to Alice from
one, and two cards to Bob from the other. Alice says that
she has at least one ace, and Bob says that he has the ace
of spades.

▶ Discuss: Are they both equally likely to have two aces?
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Two Aces Paradox 2

▶ The probability that Alice has two aces given that she has
at least one ace is P(2 aces | At least one ace) =
P(2 aces)/P(At least one ace).

▶ There are
(52

2

)
possible hands consisting of two cards,(4

2

)
= 6 of them consists of two aces and 4 · 48 consists of

exactly one ace. This gives

6/
(52

2

)
(6 + 4 · 48)/

(52
2

) = 6/(6 + 4 · 48) = 6/198 = 1/33 ≈ 0.03.

(Note how the fraction of probabilities is the same as the
fraction of frequencies, since I expand with the number of
possible outcomes.)
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Two Aces Paradox 3

▶ For Bob I get P(2 aces | Ace of spades) =
P(Ace of spades and another ace)/P(Ace of spades).
Since 3 of them consist of ace of spades and one more
ace, and 51 of them consist of ace of spades and one
more card, this becomes 3/51 ≈ 0.06.

▶ The point here is that there are only about a quarter as
many hands that contain the ace of spades as there are
hands that contain at least one ace, while there are exactly
half as many hands that contain the ace of spades and
another ace as there are hands that contains two arbitrary
aces. It is therefore about twice as likely that you have two
aces if I know you have the ace of spades than if I only
know that you have an unspecified ace.
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Two Aces Paradox 4

▶ Another way to think of it is that if you have two aces, you
have two chances of having the Ace of Spades. That
means that most of the time you have the Ace of Spades, it
will be because you have aces.

▶ Specifying the suit is a more restrictive condition on hands
with one ace than on hands with two aces.
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History of Probability

▶ Is history of mathematics useful for teachers and students?

▶ Yes, if you choose the right themes.
▶ The early history of probability is a very good theme.
▶ Both Luca Pacioli (ca. 1447–1517) (Summa de

arithmetica, geometria, proportioni et proportionalita,
Summary of arithmetic, geometry, proportions and
proportionality, 1494) and Gerolamo Cardano
(1501—1576) (Liber de ludo aleae, The Book on Games of
Chance, ca. 1564) solved simple problems in probability,
but when they tried to solve more difficult problems, it often
went wrong.
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History of Probability 2

▶ In 1654, Antoine Gombaud, Chevalier de Méré asked
Blaise Pascal (1623–1662) two questions. The problems
had been discussed by Pacioli and Cardano, but they were
finally solved by Pascal in an exchange of letters with
Pierre de Fermat (1601-1665), and this is considered the
beginning of the study of probability.

▶ Is it true that the probability of getting at least one six in
four rolls with one dice is over 50 percent, but that the
probability of getting two sixes at least once in 24 rolls with
two dice is less than 50 percent?
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Chevalier de Méré’s First Problem - Double Sixes

▶ Cardano thought he had already solved Chevalier de
Méré’s first problem. Since the probability of getting a six is
1/6, Cardano thought he would get a six every sixth time
he rolled the dice. Therefore, there is a 50 % chance of
getting a six on three throws according to Cardano.

▶ Since the probability of getting two sixes on a roll of two
dice is 1/36, he thought that he would get two sixes every
36 times he rolled two dice. Therefore, there is a 50 %
chance of getting two sixes on 18 throws according to
Cardano.
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Chevalier de Méré’s First Problem - Double Sixes 2

▶ Chevalier de Méré thought that Cardano was wrong, and
that you had to roll four times with one dice to be able to
bet on getting at least one six.

▶ This is correct, since the probability of not getting any sixes
in four throws is (5/6)4 ≈ 0,48, while (5/6)3 ≈ 0,58.

▶ If you roll two dice, there are now 36 possible outcomes,
and Chevalier de Méré thought he could use the same ratio
(4/6) as when rolling one dice, and that you could therefore
expect to get at least a pair of sixes in 36 · 4/6 = 24 roll.

▶ This is wrong since (35/36)24 ≈ 0,51, while
(35/36)25 ≈ 0,49.
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Chevalier de Méré’s Second Problem - The Problem of
Points

▶ Two people play a game that consists of a series of rounds,
and in each round they have an equal chance of winning.
The winner is the one who has first won six rounds. How
should the pot be divided if the game is interrupted when
player A has won five rounds and player B has won two?

▶ Luca Pacioli thought we should look at how many games
each had won. He thought that A should get 5/7 of the pot.

▶ This solution was criticized in 1556 by Niccolo Tartaglia
(who solved the cubic equation). He looked at a game that
was interrupted after only one round. Is it fair that A gets
the whole pot because they lead 1-0?
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Chevalier de Méré’s Second Problem - The Problem of
Points 2

▶ Tartaglia said that if A leads by three points, which is half
the number needed to win, then A should get half of B’s
bet, so A gets 3/4 and B 1/4 of the pot.

▶ Is it reasonable for 5-2 and 3-0 to be treated equally?
▶ Cardano understood that you have to look at how many

games the players need to win, not how many they have
won. He tried to make an inductive argument, but did not
succeed.
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Chevalier de Méré’s Second Problem - The Problem of
Points 3

▶ Pascal assumes that the score is 5-4 and that the pot is 80.
If A wins the next round, A has won, but if B wins the
round, they are tied.

▶ It is therefore reasonable that the pot is divided in two, that
A gets one half, and that they share the other half equally.
So A gets 60 and B gets 20.

▶ Now assume that the score is 5-3. Again we divide the pot
into two equal parts. If A wins the next round, A wins the
game, and if B wins the next round, the score is 5-4. But
that is the case we looked at above! We therefore divide
the pot into two equal parts, A gets one part, and the other
part is divided 3 to 1.

▶ Pascal then provides a complete solution involving
Pascal’s triangle and induction proof.
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Chevalier de Méré’s Second Problem - The Problem of
Points 4 (Optional)

▶ Assume that A needs to win r rounds and that B needs to
win s rounds. Set n = r + s − 1, and assume we are
playing n rounds. Then one, and only one player will have
won. A should then have

∑s−1
k=0

(n
k

)
/2n of the pot, and B

should have
∑n

k=s
(n

k

)
/2n.

▶ Assume that r = 1 and s = 2. Then the outcomes will be
(A,A), (A,B), (B,A) and (B,B). A should have
(1 + 2)/4 = 3/4 and B should have 1/4.

▶ I could have said that the outcomes were (A), (B,A) and
(B,B), but then the sample space would not have been
uniform.
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Chevalier de Méré’s Second Problem - The Problem of
Points 5 (Optional)

▶ If r = 2 and s = 5, A must have((
6
0

)
+

(
6
1

)
+

(
6
2

)
+

(
6
3

)
+

(
6
4

))/
26

and B shall have ((
6
5

)
+

(
6
6

))/
26.


