

UiO: University of Oslo

Solid Geometry

Helmer Aslaksen
Dept. of Teacher Education \& Dept. of Mathematics University of Oslo
helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

UiO : University of Oslo
Parametric equations 1

- We use two types of equations in solid geometry: Parametric equations and Cartesian (or coordinate) equations.

Parametric equations 1

- We use two types of equations in solid geometry: Parametric equations and Cartesian (or coordinate) equations.
- A parametric equation of a line in \mathbb{R}^{n} is of the form $\vec{X}=\vec{P}+t \vec{V}$, where $\vec{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is an arbitrary point on the line, \vec{P} is a given point on the line, and \vec{V} is a direction vector of the line.

Parametric equations 1

- We use two types of equations in solid geometry: Parametric equations and Cartesian (or coordinate) equations.
- A parametric equation of a line in \mathbb{R}^{n} is of the form $\vec{X}=\vec{P}+t \vec{V}$, where $\vec{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is an arbitrary point on the line, \vec{P} is a given point on the line, and \vec{V} is a direction vector of the line.
- A parametric equation of a plane in \mathbb{R}^{n} is of the form $\vec{X}=\vec{P}+s \vec{U}+t \vec{V}$, where $\vec{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ is an arbitrary point on the plane, \vec{P} is a given point on the line, and \vec{U} and \vec{V} are spanning vectors of the plane.

UiO : University of Oslo
Parametric equations 2

UiO : University of Oslo

Parametric equations 2

- Notice that we only need one equation to describe either of these objects. However, if we write the equations componentwise, we will get n equations. For example, we can write the equation for a line in \mathbb{R}^{3} as

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+t\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

or as

$$
\begin{aligned}
& x=p_{1}+t v_{1} \\
& y=p_{2}+t v_{2} \\
& z=p_{3}+t v_{3}
\end{aligned}
$$

Cartesian equations 1

UiO : University of Oslo
 Cartesian equations 1

- When we use parametric equations, the dimension of the ambient space is clear from the size of the vectors. The equation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+t\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

is a line in \mathbb{R}^{2}, while the equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+t\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

is a line in \mathbb{R}^{3}.

UiO : University of Oslo

Cartesian equations 1

- When we use parametric equations, the dimension of the ambient space is clear from the size of the vectors. The equation

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]+t\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

is a line in \mathbb{R}^{2}, while the equation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right]+t\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

is a line in \mathbb{R}^{3}.

- However, the Cartesian equation $x=0$ is a point if we are in \mathbb{R}, the y-axis if we are in \mathbb{R}^{2} and the y - z plane if we are in \mathbb{R}^{3}. So you need to know both the equation and the ambient space.

UiO : University of Oslo

Cartesian equations 2

- The Cartesian equation for a line in \mathbb{R}^{2} is of the form $a x+b y+c=0$.

UiO : University of Oslo

Cartesian equations 2

- The Cartesian equation for a line in \mathbb{R}^{2} is of the form $a x+b y+c=0$.
- We start with two degrees of freedom in \mathbb{R}^{2}, so with one restriction, we get an object of dimension 1 and codimension 1. The codimension of an object is the dimension of the ambient space minus the dimension of the object.

UiO: University of Oslo

Cartesian equations 2

- The Cartesian equation for a line in \mathbb{R}^{2} is of the form $a x+b y+c=0$.
- We start with two degrees of freedom in \mathbb{R}^{2}, so with one restriction, we get an object of dimension 1 and codimension 1. The codimension of an object is the dimension of the ambient space minus the dimension of the object.
- However, the corresponding equation in \mathbb{R}^{3}, $a x+b y+c z+d=0$, gives us an object in \mathbb{R}^{3} of codimension 1 (since we have one equation), namely a plane.

Uio: University of Osio

Cartesian equations 2

- The Cartesian equation for a line in \mathbb{R}^{2} is of the form $a x+b y+c=0$.
- We start with two degrees of freedom in \mathbb{R}^{2}, so with one restriction, we get an object of dimension 1 and codimension 1. The codimension of an object is the dimension of the ambient space minus the dimension of the object.
- However, the corresponding equation in \mathbb{R}^{3}, $a x+b y+c z+d=0$, gives us an object in \mathbb{R}^{3} of codimension 1 (since we have one equation), namely a plane.
- So how do we get the Cartesian equation of a line in \mathbb{R}^{3} ?

Uio: University of Osio

Cartesian equations 2

- The Cartesian equation for a line in \mathbb{R}^{2} is of the form $a x+b y+c=0$.
- We start with two degrees of freedom in \mathbb{R}^{2}, so with one restriction, we get an object of dimension 1 and codimension 1. The codimension of an object is the dimension of the ambient space minus the dimension of the object.
- However, the corresponding equation in \mathbb{R}^{3}, $a x+b y+c z+d=0$, gives us an object in \mathbb{R}^{3} of codimension 1 (since we have one equation), namely a plane.
- So how do we get the Cartesian equation of a line in \mathbb{R}^{3} ?
- A line in \mathbb{R}^{3} can be written as the intersection of two planes (in infinitely many ways). So the Cartesian equation of a line in \mathbb{R}^{3} will be of the form

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{aligned}
$$

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- Notice that parametric equations build objects by adding more spanning vectors, but still just using one equation. If we wanted to describe a 4-dimensional plane in \mathbb{R}^{6}, the parametric equation would be of the form

$$
\vec{X}=\vec{P}+t_{1} \vec{V}_{1}+\cdots+t_{4} \vec{V}_{4}
$$

Comparing Parametric and Cartesian equations

- Notice that parametric equations build objects by adding more spanning vectors, but still just using one equation. If we wanted to describe a 4-dimensional plane in \mathbb{R}^{6}, the parametric equation would be of the form

$$
\vec{X}=\vec{P}+t_{1} \vec{V}_{1}+\cdots+t_{4} \vec{V}_{4}
$$

- However, the Cartesian description would be a system of two equations, since the codimension is 2.

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?
- Why is it easier to describe a line in \mathbb{R}^{2} than a line in \mathbb{R}^{3} using Cartesian equation?

Comparing Parametric and Cartesian equations

- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?
- Why is it easier to describe a line in \mathbb{R}^{2} than a line in \mathbb{R}^{3} using Cartesian equation?
- Write down the formula for a plane through a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $n=(a, b, c)$.

Comparing Parametric and Cartesian equations

- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?
- Why is it easier to describe a line in \mathbb{R}^{2} than a line in \mathbb{R}^{3} using Cartesian equation?
- Write down the formula for a plane through a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $n=(a, b, c)$.
- How do we compute the angle between a line and a plane?

Comparing Parametric and Cartesian equations

- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?
- Why is it easier to describe a line in \mathbb{R}^{2} than a line in \mathbb{R}^{3} using Cartesian equation?
- Write down the formula for a plane through a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $n=(a, b, c)$.
- How do we compute the angle between a line and a plane?
- How do we compute the angle between two planes?
- Explain the painter vs sculptor analogy for the difference between parametric and Cartesian equations.
- What is codimension?
- Why is it easier to describe a line in \mathbb{R}^{2} than a line in \mathbb{R}^{3} using Cartesian equation?
- Write down the formula for a plane through a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $n=(a, b, c)$.
- How do we compute the angle between a line and a plane?
- How do we compute the angle between two planes?
- How do go between parametric and Cartesian equations for planes?

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- What are skew lines (vindskeive linjer)?

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- What are skew lines (vindskeive linjer)?
- How do go between parametric and Cartesian equations for lines in \mathbb{R}^{2} ?

UiO : University of Oslo
 Comparing Parametric and Cartesian equations

- What are skew lines (vindskeive linjer)?
- How do go between parametric and Cartesian equations for lines in \mathbb{R}^{2} ?
- How do go between parametric and Cartesian equations for lines in \mathbb{R}^{3} ?

