

UiO : Universitetet i Oslo

Calculus and Counterexamples

Helmer Aslaksen

Institutt for lærerutdanning og skoleforskning/Matematisk institutt Universitetet i Oslo
helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

Source of counterexamples

$$
\begin{gathered}
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases} \\
f^{\prime}(x)= \begin{cases}2 x \sin (1 / x)-\cos (1 / x) & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{gathered}
$$

Monotonicity

- Mean Value Theorem: Assume that f is differentiable on (a, b) and continuous on $[a, b]$. Then there is $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longleftarrow f$ is increasing on (a, b).
- $f(x)=x^{3}$ shows that $f^{\prime} \geq 0$ on $(a, b) \nLeftarrow f$ is strictly increasing on (a, b).

Extreme point 1

- If c is an extreme point and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
- First Derivative Test: If f^{\prime} exists around c, and f^{\prime} changes sign at c, then c is an extreme point.
- Second Derivative Test: If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ is positive (negative), then c is a minimum (maximum).

Extreme point 2

- If f^{\prime} changes sign at c, then c is an extreme point. The converse is not always true.
- $f(x)=x^{2}(2+\sin (1 / x))$, $f^{\prime}(x)=4 x+2 x \sin (1 / x)-\cos (1 / x)$.
- $\left.x^{2}+x^{2} \sin (1 / x)\right)$ has infinitely many zeros.
- If f^{\prime} is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f^{\prime}(c)>0$? Can we say that f is increasing on an interval around c ?
- $f(x)=x+2 x^{2} \sin (1 / x)$,
$f^{\prime}(x)=1+4 x \sin (1 / x)-2 \cos (1 / x)$ is both positive and negative in every neighborhood of 0 .

Point of inflection

- We say that c is a point of inflection if $f^{\prime \prime}$ changes sign at c and f has a tangent line at c.
- $f(x)=x^{1 / 3}$ shows that $f^{\prime \prime}(c)$ need not exist.
- If c is a point of inflection and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.
- If c is a point of inflection, then the curve lies on different sides of the tangent line at c.
- If c is a point of inflection, then c is an isolated extremum of f^{\prime}.

Point of inflection 2

- $f(x)=2 x^{3}+x^{3} \sin (1 / x)$ below the tangent $(y=0)$ on one side and above the tangent on another, but $f^{\prime \prime}=12 x+6 x \sin (1 / x)-4 \cos (1 / x)-1 / x \sin (1 / x)$ does not have fixed sign.
- $f(x)=x^{3}+x^{4} \sin (1 / x)$, $f^{\prime}(x)=3 x^{2}-x^{2} \cos (I / x)+4 x \sin (I / x) . f^{\prime}$ has an isolated minimum, but
$f^{\prime \prime}(x)=6 x-\sin (I / x)-6 x \cos (I / x)+12 x^{2} \sin (I / x)$ does not have fixed sign on either side of 0 .
- $x^{4} \sin (1 / x) f^{\prime}(c)=f^{\prime \prime}(c)=0$, but neither extremum nor point of inflection.

L'Hôpital's Rule

- Let f and g be continuous on an interval containing a, and assume f and g are differentiable on this interval with the possible exception of the point a. If $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ for all $x \neq a$, then

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longrightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
$$

for $L \in \mathbb{R} \cup \infty$.

- Assume f and g are differentiable on (a, b) and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. If $\lim _{x \rightarrow a} g(x)=\infty$ (or $\left.-\infty\right)$, then

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longrightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
$$

for $L \in \mathbb{R} \cup \infty$.

L'Hôpital's Rule 2

- L'Hôpital does not say that

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longleftarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
$$

- If $f(x)=x+\sin x$ and $g(x)=x$, then

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{1+\cos x}{1}
$$

does not exist, while

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty}\left(1+\frac{\sin x}{x}\right)=1
$$

