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Greatest Common Divisor

» We denote the greatest common divisor (or greatest common
factor) of m and n by gcd(m, n) or simply (m, n). If (m, n) = 1,
we say that m and n are relatively prime or coprime.

Lemma
gcd(m — kn, n) = ged(m, n).

» Proof: If d is a common divisor of m and n, then m = dm; and
n=dny so m— kn = d(my — kny) and d is also a common
divisor of m — kn and n. If d is a common divisor of m — kn and
n,then m — kn = dl and n = dny so
m = m — kn+ kn = d(/+ ny) so d is a common divisor of m
and n. Since the two pairs have the same common divisors,
they also have the same greatest common divisor.

» We can therefore find the gcd by repeatedly subtracting the
smaller number from the larger.
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Greatest Common Divisor 2

ged(7,5) = ged(2,5) = ged(2,1) = 1.
» 1=2-1=2-(5-22) =32—1.5 = 3(7—5)—1.5 = 3.7—4.5.
»
gcd(21,15) = ged(6, 15) = ged(6,3) = 3.
»3=6-3=6—(15—2-6)=3-6—1-15=
3(21 —15) —1-15=3-21 — 4 15.
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Bézout’s Lemma

» These two examples motivate Bézout's Lemma, named after
Etienne Bézout (1730-1783)

Lemma (Bézout’s Lemma)

Let d be the smallest positive number that can be written in the form
xm -+ yn. Then d = ged(m, n).

» We know that the linear combinations of m and n will be
multiples of ged(m, n). The Lemma says that the linear
combination are exactly the multiples of gcd(m, n).
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Bézout’s Lemma 2

» Proof: If we divide m by d, we subtract multiples of d from m, so
the remainder will be of the form am + bn. But since the
remainder is less that d, and d is the smallest positive number
of this form, the remainder must be zero, so d divides m. The
same argument applies to n, so d is a common divisor of m and
n.

» Let ¢ any common divisor of m and n. Then m = ¢cm; and
n = cny, so d = xm—+ yn = c¢(xmy + yny), so ¢ must also be a
divisor of d. Hence d is the greatest common divisor.
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The Fundamental Theorem of Arithmetic

» p > 1is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)
For n > 1 there is a unique expression
n=plt - pf,
where p1 < po < --- < pr are prime numbers and each ki > 1.

» The reason why we do not want 1 to be a prime number, is to
ensure uniqueness in this decomposition.
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Proof of FTA

» Proof of existence: If nis prime, the theorem is true. If not, we
can write n = ab, and consider a and b separately. In this way
we get a product of smaller and smaller factors, but this process
must stop, which it does when the factors are primes. This was
proved by Euclid around 300 BCE.

» In order to prove uniqueness, we first need a property of prime
numbers.
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Proof of FTA 2

» We write m|nif mdivides n.

Lemma
Let p be a prime number. If plmn, then p|m or p|n.

» Proof: Assume that p fm. Then 3x, y such that xp + ym = 1.

» Then xpn + ymn = n, and it follows that p|n.

» This fails if p is not prime, since 6|3 - 4 without 6 dividing any of
the factors.
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Proof of FTA 3

» Proof of uniqueness: Suppose the decomposition is not unique.
After cancelling common factors, we can then assume that

Pi- Pk =Qq1---q,

where p; # gj for all i and j.

» It then follows from our lemma that p; either divides g1, which is
impossible since we assumed that py is not equal to g1, or py
divides @o - - - g;- Applying the lemma again, we eventually get a
contradiction.
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Least Common Multiple

» We denote the least common multiple of m and n by lcm(m, n).
> lfm=p®...p%andn=p .. pX, then

ng(m7 n) _ p:nin(a1,b1) . 'plr(nin(ahbk)
and . b
ICm(m7 n) e p:nax(a17 1) . plr:ax(ak, k)7

and since max(a, b) + min(a, b) = a+ b, we have

ged(m, n) - lem(m, n) = mn.
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Modular Arithmetic

» We will say that a= b (mod n) or @ = b if n divides a — b,
which we will denote by n|(a — b).

» LetZ,={0,...,n— 1} be the set of congruence classes mod
n.
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Fermat’s Little Theorem

» Theorem (Fermat’s Little Theorem)
IfpJa, then 2~ =1 (mod p).

» Proof: Consider the set of nonzero congruence classes
{1,...,p—1}andthe set {at,...,a(p—1)}.

a-i=a-j (mod p)
a(i—j)=0 (mod p).

Since p fa, this can only happen if i = j, so the two sets of
classes are the same.
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Fermat’s Little Theorem 2

» We multiply the elements of the two sets together and get

(@a-1)---(a-(p=1))=1---(p—1) (mod p)
@ (p—1)!=(p—1)! (mod p)
a7 '=1 (mod p),

since (p — 1)! # 0 (mod p).
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Euler’s ¢ function

» In 1763, Leonhard Euler (1707-1783) introduced the function
@(n) = Number of 1 < k < nwith gcd(k, n) = 1.

» We have ¢(p) = p — 1.
» In general

KY _ pk _ pk—1 _ ok _1>
p(P)=p —p p<1 b))

since the only numbers less than or equal to p* that are
relatively prime to p* are xp for 1 < x < p*='.
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Euler’s ¢ function 2

» We will prove that ¢ is multiplicative, meaning that
(m,n) =1 = ¢(mn) = ¢(m)p(n).

» Consider m = 5 and n = 7. Then the numbers less than or
equal to 35 that are not coprime with 35 are the 11 multiples of
5 and 7 less than or equal to 35, i.e. 5, 7, 10, 14, 15, 20, 21, 25,
28, 30, 35.

> It follows that ¢(35) =35 — 11 =24 =4 -6 = ¢(5)p(7)
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Euler’s ¢ function 3

» We will first need a lemma.

Lemma
Assume that (a,b) = 1. Then

(a,y) =1A(b,x) =1 < (ax + by|ab) = 1.

» Proof: Suppose there is a p > 1 such that p|(ax + by, ab).
Then p|ab and we know that p|a or p|b. Assume that p|a. Then

ply, so (a,y) > 1. Similarly if p|b.

» Suppose that (b, x) > 1. Since (b, x)|ax + by, we have
(ax + by, ab) > 1. Similarly (a,y) > 1 also implies
(ax + by, ab) > 1.
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Euler’s Theorem

» Theorem (Euler's Theorem)
If(a,n) =1, then a®(" =1 (mod n).

» The proof is similar to the proof of Fermat’s Little Theorem, of
which it is a generalization, since ¢(p) = p — 1. Instead of
considering the set of nonzero congruence classes, we consider
the set {Cv, ..., Cy(n)} Of congruence classes corresponding to
c with (¢, n) = 1.

» We will call @ € Z, a unit if it has an inverse, i.e., there is b € Z,
such that ab =1 (mod n).

Lemma
ais aunitinZn if and only if (a,n) = 1.
» If (a,n) = 1, we use Euler's Theorem and set b = a®(W " If

is a unit, we can find b and k such that ab — 1 = knor
ab—kn=1,so (a,n)=1.
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Order of an element

» If a € Z, is a unit, we will say that the order of a is the smallest
positive number k such that 8¢ = 1 (mod n).

Lemma
If (a,n) = 1 and k is the order a, then k|¢(n).

» Proof: We know that a?(") = 1 (mod n). Suppose that
o(n) = Ik 4+ r,where 0 < r < k. Then

1=2a%" =g = (d)a =a (mod n),

but since k is smallest positive number with & = 1 (mod n),
we must have r = 0, so k|¢(n).
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