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Greatest Common Divisor

I We denote the greatest common divisor (or greatest common
factor) of m and n by gcd(m, n) or simply (m, n). If (m, n) = 1,
we say that m and n are relatively prime or coprime.

Lemma

gcd(m − kn, n) = gcd(m, n).

I Proof: If d is a common divisor of m and n, then m = dm1 and
n = dn1 so m − kn = d(m1 − kn1) and d is also a common
divisor of m − kn and n. If d is a common divisor of m − kn and
n, then m − kn = dl and n = dn1 so
m = m − kn + kn = d(l + n1) so d is a common divisor of m
and n. Since the two pairs have the same common divisors,
they also have the same greatest common divisor.

I We can therefore find the gcd by repeatedly subtracting the
smaller number from the larger.



Greatest Common Divisor 2

I

gcd(7, 5) = gcd(2, 5) = gcd(2, 1) = 1.

I 1 = 2−1 = 2−(5−2·2) = 3·2−1·5 = 3(7−5)−1·5 = 3·7−4·5.
I

gcd(21, 15) = gcd(6, 15) = gcd(6, 3) = 3.

I 3 = 6− 3 = 6− (15− 2 · 6) = 3 · 6− 1 · 15 =
3(21− 15)− 1 · 15 = 3 · 21− 4 · 15.



Bézout’s Lemma

I These two examples motivate Bézout’s Lemma, named after
Étienne Bézout (1730–1783)

Lemma (Bézout’s Lemma)

Let d be the smallest positive number that can be written in the form
xm + yn. Then d = gcd(m, n).

I We know that the linear combinations of m and n will be
multiples of gcd(m, n). The Lemma says that the linear
combination are exactly the multiples of gcd(m, n).



Bézout’s Lemma 2

I Proof: If we divide m by d , we subtract multiples of d from m, so
the remainder will be of the form am + bn. But since the
remainder is less that d , and d is the smallest positive number
of this form, the remainder must be zero, so d divides m. The
same argument applies to n, so d is a common divisor of m and
n.

I Let c any common divisor of m and n. Then m = cm1 and
n = cn1, so d = xm + yn = c(xm1 + yn1), so c must also be a
divisor of d . Hence d is the greatest common divisor.



The Fundamental Theorem of Arithmetic

I p > 1 is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)

For n > 1 there is a unique expression

n = pk1
1 · · · p

kr
r ,

where p1 < p2 < · · · < pr are prime numbers and each ki ≥ 1.

I The reason why we do not want 1 to be a prime number, is to
ensure uniqueness in this decomposition.



Proof of FTA

I Proof of existence: If n is prime, the theorem is true. If not, we
can write n = ab, and consider a and b separately. In this way
we get a product of smaller and smaller factors, but this process
must stop, which it does when the factors are primes. This was
proved by Euclid around 300 BCE.

I In order to prove uniqueness, we first need a property of prime
numbers.



Proof of FTA 2

I We write m|n if m divides n.

Lemma

Let p be a prime number. If p|mn, then p|m or p|n.

I Proof: Assume that p6 |m. Then ∃x , y such that xp + ym = 1.
I Then xpn + ymn = n, and it follows that p|n.
I This fails if p is not prime, since 6|3 · 4 without 6 dividing any of

the factors.



Proof of FTA 3

I Proof of uniqueness: Suppose the decomposition is not unique.
After cancelling common factors, we can then assume that

p1 · · · pk = q1 · · · ql ,

where pi 6= qj for all i and j .
I It then follows from our lemma that p1 either divides q1, which is

impossible since we assumed that p1 is not equal to q1, or p1

divides q2 · · · ql . Applying the lemma again, we eventually get a
contradiction.



Least Common Multiple

I We denote the least common multiple of m and n by lcm(m, n).
I If m = pa1

1 · · · p
ak
k and n = pb1

1 · · · p
bk
k , then

gcd(m, n) = pmin(a1,b1)
1 · · · pmin(ak ,bk )

k

and
lcm(m, n) = pmax(a1,b1)

1 · · · pmax(ak ,bk )
k ,

and since max(a, b) + min(a, b) = a + b, we have

gcd(m, n) · lcm(m, n) = mn.



Modular Arithmetic

I We will say that a ≡ b (mod n) or ā = b̄ if n divides a− b,
which we will denote by n|(a− b).

I Let Zn = {0̄, . . . , n − 1} be the set of congruence classes mod
n.



Fermat’s Little Theorem

I Theorem (Fermat’s Little Theorem)

If p6 |a, then ap−1 ≡ 1 (mod p).

I Proof: Consider the set of nonzero congruence classes
{1̄, . . . , p − 1} and the set {ā1̄, . . . , ā(p − 1)}.

I

a · i ≡ a · j (mod p)

a(i − j) ≡ 0 (mod p).

Since p6 |a, this can only happen if i = j , so the two sets of
classes are the same.



Fermat’s Little Theorem 2

I We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! 6≡ 0 (mod p).



Euler’s φ function

I In 1763, Leonhard Euler (1707–1783) introduced the function

φ(n) = Number of 1 ≤ k ≤ n with gcd(k , n) = 1.

I We have φ(p) = p − 1.
I In general

φ(pk ) = pk − pk−1 = pk
(

1− 1
p

)
,

since the only numbers less than or equal to pk that are
relatively prime to pk are xp for 1 ≤ x ≤ pk−1.



Euler’s φ function 2

I We will prove that φ is multiplicative, meaning that

(m, n) = 1 =⇒ φ(mn) = φ(m)φ(n).

I Consider m = 5 and n = 7. Then the numbers less than or
equal to 35 that are not coprime with 35 are the 11 multiples of
5 and 7 less than or equal to 35, i.e. 5, 7, 10, 14, 15, 20, 21, 25,
28, 30, 35.

I It follows that φ(35) = 35− 11 = 24 = 4 · 6 = φ(5)φ(7)



Euler’s φ function 3

I We will first need a lemma.

Lemma

Assume that (a, b) = 1. Then

(a, y) = 1 ∧ (b, x) = 1 ⇐⇒ (ax + by |ab) = 1.

I Proof: Suppose there is a p > 1 such that p|(ax + by , ab).
Then p|ab and we know that p|a or p|b. Assume that p|a. Then
p|y , so (a, y) > 1. Similarly if p|b.

I Suppose that (b, x) > 1. Since (b, x)|ax + by , we have
(ax + by , ab) > 1. Similarly (a, y) > 1 also implies
(ax + by , ab) > 1.



Euler’s Theorem
I Theorem (Euler’s Theorem)

If (a, n) = 1, then aφ(n) ≡ 1 (mod n).

I The proof is similar to the proof of Fermat’s Little Theorem, of
which it is a generalization, since φ(p) = p − 1. Instead of
considering the set of nonzero congruence classes, we consider
the set {c1, . . . , cφ(n)} of congruence classes corresponding to
c with (c, n) = 1.

I We will call a ∈ Zn a unit if it has an inverse, i.e., there is b ∈ Zn

such that ab ≡ 1 (mod n).

Lemma

a is a unit in Zn if and only if (a, n) = 1.

I If (a, n) = 1, we use Euler’s Theorem and set b = aφ(n)−1. If a
is a unit, we can find b and k such that ab − 1 = kn or
ab − kn = 1, so (a, n) = 1.



Order of an element

I If a ∈ Zn is a unit, we will say that the order of a is the smallest
positive number k such that ak ≡ 1 (mod n).

Lemma

If (a, n) = 1 and k is the order a, then k |φ(n).

I Proof: We know that aφ(n) ≡ 1 (mod n). Suppose that
φ(n) = lk + r , where 0 ≤ r < k . Then

1 ≡ aφ(n) ≡ alk+r ≡ (ak )lar ≡ ar (mod n),

but since k is smallest positive number with ak ≡ 1 (mod n),
we must have r = 0, so k |φ(n).
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