

UiO : Universitetet i Oslo

Number Theory

Helmer Aslaksen
Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

Greatest Common Divisor

- We denote the greatest common divisor (or greatest common factor) of m and n by $\operatorname{gcd}(m, n)$ or simply (m, n). If $(m, n)=1$, we say that m and n are relatively prime or coprime.

Lemma
$\operatorname{gcd}(m-k n, n)=\operatorname{gcd}(m, n)$.

- Proof: If d is a common divisor of m and n, then $m=d m_{1}$ and $n=d n_{1}$ so $m-k n=d\left(m_{1}-k n_{1}\right)$ and d is also a common divisor of $m-k n$ and n. If d is a common divisor of $m-k n$ and n, then $m-k n=d l$ and $n=d n_{1}$ so $m=m-k n+k n=d\left(I+n_{1}\right)$ so d is a common divisor of m and n. Since the two pairs have the same common divisors, they also have the same greatest common divisor.
- We can therefore find the gcd by repeatedly subtracting the smaller number from the larger.

Greatest Common Divisor 2

$$
\begin{gathered}
\operatorname{gcd}(7,5)=\operatorname{gcd}(2,5)=\operatorname{gcd}(2,1)=1 . \\
1=2-1=2-(5-2 \cdot 2)=3 \cdot 2-1 \cdot 5=3(7-5)-1 \cdot 5=3 \cdot 7-4 \cdot 5 . \\
\operatorname{gcd}(21,15)=\operatorname{gcd}(6,15)=\operatorname{gcd}(6,3)=3 . \\
3=6-3=6-(15-2 \cdot 6)=3 \cdot 6-1 \cdot 15= \\
3(21-15)-1 \cdot 15=3 \cdot 21-4 \cdot 15
\end{gathered}
$$

Bézout's Lemma

- These two examples motivate Bézout's Lemma, named after Étienne Bézout (1730-1783)

Lemma (Bézout's Lemma)

Let d be the smallest positive number that can be written in the form $x m+y n$. Then $d=\operatorname{gcd}(m, n)$.

- We know that the linear combinations of m and n will be multiples of $\operatorname{gcd}(m, n)$. The Lemma says that the linear combination are exactly the multiples of $\operatorname{gcd}(m, n)$.

Bézout's Lemma 2

- Proof: If we divide m by d, we subtract multiples of d from m, so the remainder will be of the form $a m+b n$. But since the remainder is less that d, and d is the smallest positive number of this form, the remainder must be zero, so d divides m. The same argument applies to n, so d is a common divisor of m and n.
- Let c any common divisor of m and n. Then $m=c m_{1}$ and $n=c n_{1}$, so $d=x m+y n=c\left(x m_{1}+y n_{1}\right)$, so c must also be a divisor of d. Hence d is the greatest common divisor.

The Fundamental Theorem of Arithmetic

- $p>1$ is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)

For $n>1$ there is a unique expression

$$
n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are prime numbers and each $k_{i} \geq 1$.

- The reason why we do not want 1 to be a prime number, is to ensure uniqueness in this decomposition.

Proof of FTA

- Proof of existence: If n is prime, the theorem is true. If not, we can write $n=a b$, and consider a and b separately. In this way we get a product of smaller and smaller factors, but this process must stop, which it does when the factors are primes. This was proved by Euclid around 300 BCE.
- In order to prove uniqueness, we first need a property of prime numbers.

Proof of FTA 2

- We write $m \mid n$ if m divides n.

Lemma

Let p be a prime number. If $p \mid m n$, then $p \mid m$ or $p \mid n$.

- Proof: Assume that $p \nmid m$. Then $\exists x, y$ such that $x p+y m=1$.
- Then $x p n+y m n=n$, and it follows that $p \mid n$.
- This fails if p is not prime, since $6 \mid 3 \cdot 4$ without 6 dividing any of the factors.

Proof of FTA 3

- Proof of uniqueness: Suppose the decomposition is not unique. After cancelling common factors, we can then assume that

$$
p_{1} \cdots p_{k}=q_{1} \cdots q_{l}
$$

where $p_{i} \neq q_{j}$ for all i and j.

- It then follows from our lemma that p_{1} either divides q_{1}, which is impossible since we assumed that p_{1} is not equal to q_{1}, or p_{1} divides $q_{2} \cdots q_{l}$. Applying the lemma again, we eventually get a contradiction.

Least Common Multiple

- We denote the least common multiple of m and n by $\operatorname{Icm}(m, n)$.
- If $m=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ and $n=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$, then

$$
\operatorname{gcd}(m, n)=p_{1}^{\min \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\min \left(a_{k}, b_{k}\right)}
$$

and

$$
\operatorname{Icm}(m, n)=p_{1}^{\max \left(a_{1}, b_{1}\right)} \cdots p_{k}^{\max \left(a_{k}, b_{k}\right)}
$$

and since $\max (a, b)+\min (a, b)=a+b$, we have

$$
\operatorname{gcd}(m, n) \cdot \operatorname{lcm}(m, n)=m n .
$$

Modular Arithmetic

- We will say that $a \equiv b(\bmod n)$ or $\bar{a}=\bar{b}$ if n divides $a-b$, which we will denote by $n \mid(a-b)$.
- Let $\mathbb{Z}_{n}=\{\overline{0}, \ldots, \overline{n-1}\}$ be the set of congruence classes mod n.

Fermat's Little Theorem

- Theorem (Fermat's Little Theorem) If $p \nmid a$, then $a^{p-1} \equiv 1(\bmod p)$.
- Proof: Consider the set of nonzero congruence classes $\{\overline{1}, \ldots, \overline{p-1}\}$ and the set $\{\bar{a} \overline{1}, \ldots, \bar{a}(\overline{p-1})\}$.

$$
\begin{aligned}
a \cdot i & \equiv a \cdot j(\bmod p) \\
a(i-j) & \equiv 0(\bmod p) .
\end{aligned}
$$

Since $p \nmid a$, this can only happen if $i=j$, so the two sets of classes are the same.

Fermat's Little Theorem 2

- We multiply the elements of the two sets together and get

$$
\begin{aligned}
(a \cdot 1) \cdots(a \cdot(p-1)) & \equiv 1 \cdots(p-1)(\bmod p) \\
a^{p-1}(p-1)! & \equiv(p-1)!(\bmod p) \\
a^{p-1} & \equiv 1(\bmod p),
\end{aligned}
$$

since $(p-1)!\not \equiv 0(\bmod p)$.

Euler's ϕ function

- In 1763, Leonhard Euler (1707-1783) introduced the function

$$
\phi(n)=\text { Number of } 1 \leq k \leq n \text { with } \operatorname{gcd}(k, n)=1
$$

- We have $\phi(p)=p-1$.
- In general

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k}\left(1-\frac{1}{p}\right)
$$

since the only numbers less than or equal to p^{k} that are relatively prime to p^{k} are $x p$ for $1 \leq x \leq p^{k-1}$.

Euler's ϕ function 2

- We will prove that ϕ is multiplicative, meaning that

$$
(m, n)=1 \Longrightarrow \phi(m n)=\phi(m) \phi(n)
$$

- Consider $m=5$ and $n=7$. Then the numbers less than or equal to 35 that are not coprime with 35 are the 11 multiples of 5 and 7 less than or equal to 35 , i.e. $5,7,10,14,15,20,21,25$, 28, 30, 35.
- It follows that $\phi(35)=35-11=24=4 \cdot 6=\phi(5) \phi(7)$

Euler's ϕ function 3

- We will first need a lemma.

Lemma

Assume that $(a, b)=1$. Then

$$
(a, y)=1 \wedge(b, x)=1 \Longleftrightarrow(a x+b y \mid a b)=1
$$

- Proof: Suppose there is a $p>1$ such that $p \mid(a x+b y, a b)$. Then $p \mid a b$ and we know that $p \mid a$ or $p \mid b$. Assume that $p \mid a$. Then $p \mid y$, so $(a, y)>1$. Similarly if $p \mid b$.
- Suppose that $(b, x)>1$. Since $(b, x) \mid a x+b y$, we have $(a x+b y, a b)>1$. Similarly $(a, y)>1$ also implies $(a x+b y, a b)>1$.

Euler's Theorem

- Theorem (Euler's Theorem)

$$
\text { If }(a, n)=1 \text {, then } a^{\phi(n)} \equiv 1(\bmod n) .
$$

- The proof is similar to the proof of Fermat's Little Theorem, of which it is a generalization, since $\phi(p)=p-1$. Instead of considering the set of nonzero congruence classes, we consider the set $\left\{\overline{c_{1}}, \ldots, \overline{c_{\phi(n)}}\right\}$ of congruence classes corresponding to c with $(c, n)=1$.
- We will call $\bar{a} \in \mathbb{Z}_{n}$ a unit if it has an inverse, i.e., there is $\bar{b} \in \mathbb{Z}_{n}$ such that $a b \equiv 1(\bmod n)$.

Lemma

\bar{a} is a unit in \mathbb{Z}_{n} if and only if $(a, n)=1$.

- If $(a, n)=1$, we use Euler's Theorem and set $b=a^{\phi(n)-1}$. If a is a unit, we can find b and k such that $a b-1=k n$ or $a b-k n=1$, so $(a, n)=1$.

Order of an element

- If $a \in \mathbb{Z}_{n}$ is a unit, we will say that the order of a is the smallest positive number k such that $a^{k} \equiv 1(\bmod n)$.

Lemma

If $(a, n)=1$ and k is the order a, then $k \mid \phi(n)$.

- Proof: We know that $a^{\phi(n)} \equiv 1(\bmod n)$. Suppose that $\phi(n)=\mathbb{k}+r$, where $0 \leq r<k$. Then

$$
1 \equiv a^{\phi(n)} \equiv a^{1 k+r} \equiv\left(a^{k}\right)^{\prime} a^{r} \equiv a^{r} \quad(\bmod n)
$$

but since k is smallest positive number with $a^{k} \equiv 1(\bmod n)$, we must have $r=0$, so $k \mid \phi(n)$.

