

UiO: University of Oslo

Calculus and Counterexamples

Helmer Aslaksen
Dept. of Teacher Education \& Dept. of Mathematics
University of Oslo
helmer.aslaksen@gmail.com
www.math.nus.edu.sg/aslaksen/

UiO : University of Oslo
Limits in high school mathematics

- To differentiate polynomials, you only need algebra to compute limits.
- $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$.
- Definition of e.

Definition of e

- Does $s_{n}=\left(1+\frac{1}{n}\right)^{n}$ converge?
- We want to use the fact that a bounded and increasing sequence converges, but it is not clear that s_{n} is either bounded or increasing.
- The binomial formula shows that

$$
\begin{aligned}
s_{n}= & \left(1+\frac{1}{n}\right)^{n} \\
= & 1+n \frac{1}{n}+\frac{n(n-1)}{2!} \frac{1}{n^{2}}+\frac{n(n-1)(n-2)}{3!} \frac{1}{n^{3}} \\
& +\cdots+\frac{n(n-1)(n-2) \cdots 1}{n!} \frac{1}{n^{n}} \\
= & 1+\frac{1}{1!}+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \\
& +\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) .
\end{aligned}
$$

- The product is hard to analyze, since the number of factors increase, while the factors themselves decrease. However, the binomial formula converts s_{n} to a sum of n terms.
- Since all the terms in the parenthesis are positive, we have now written s_{n} as a sum of n positive terms. When we go from s_{n} to s_{n+1}, the first n terms do not change, and we simply add another positive term. It is therefore clear that s_{n} is increasing.
- Consider the series $\sum_{k=0}^{\infty} \frac{1}{k!}$ with partial sums

$$
t_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} .
$$

- Since t_{n} is obtained from s_{n} by removing the parenthesis, and all the terms in the parenthesis are less than 1, we see that $s_{n} \leq t_{n}$. Since going from t_{n} to t_{n+1} just adds a positive term, we see that t_{n} is also increasing.
- Since

$$
n!=1 \cdot 2 \cdot 3 \ldots n>1 \cdot 2 \cdot 2 \ldots 2=2^{n-1}
$$

we have

$$
s_{n}<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}<3
$$

- It follows that s_{n} is bounded and increasing, so e exists and $e \leq 3$.
- $f: U \rightarrow \mathbb{R}$ is continuous at $a \in U$ if $\lim _{x \rightarrow a} f(x)=f(a)$ and continuous on U if it is continuous at all points in U.
- Some people say that f is continuous if and only if we can draw the graph of f without lifting the pen. However, $f(x)=1 / x$ is continuous on $U=\mathbb{R}-\{0\}$.

Product rule

$$
\begin{gathered}
f(x+\Delta x) g(x+\Delta x)-f(x) g(x)=(f(x+\Delta x)-f(x)) g(x) \\
\quad+(g(x+\Delta x)-g(x)) f(x) \\
+(f(x+\Delta x)-f(x))(g(x+\Delta x)-g(x))
\end{gathered}
$$

$$
f_{n}(x)= \begin{cases}x^{n} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

- f_{0} is not continuous, $f_{1} \lim _{x \rightarrow 0} f_{1}(x)=1$

$$
\begin{gathered}
f(x)= \begin{cases}x^{2} \sin (1 / x) & \text { if } x \neq 0, \\
0 & \text { if } x=0,\end{cases} \\
f^{\prime}(x)= \begin{cases}2 x \sin (1 / x)-\cos (1 / x) & \text { if } x \neq 0, \\
0 & \text { if } x=0 .\end{cases}
\end{gathered}
$$

- Mean Value Theorem: Assume that f is differentiable on (a, b) and continuous on $[a, b]$. Then there is $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

- $f^{\prime}>0$ on $(a, b) \Longrightarrow f$ is strictly increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longrightarrow f$ is increasing on (a, b).
- $f^{\prime} \geq 0$ on $(a, b) \Longleftarrow f$ is increasing on (a, b).
- $f(x)=x^{3}$ shows that $f^{\prime} \geq 0$ on $(a, b) \nLeftarrow f$ is strictly increasing on (a, b).

Extreme point 1

- If c is an extreme point and $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.
- First Derivative Test: If f^{\prime} exists around c, and f^{\prime} changes sign at c, then c is an extreme point.
- Second Derivative Test: If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)$ is positive (negative), then c is a minimum (maximum).

Extreme point 2

- If f^{\prime} changes sign at c, then c is an extreme point. The converse is not always true.
- $f(x)=x^{2}(2+\sin (1 / x)), f^{\prime}(x)=4 x+2 x \sin (1 / x)-\cos (1 / x)$.
- $\left.x^{2}+x^{2} \sin (1 / x)\right)$ has infinitely many zeros.
- If f^{\prime} is positive on (a, b), then f is increasing on (a, b). But what if we only know that $f^{\prime}(c)>0$? Can we say that f is increasing on an interval around c ?
- $f(x)=x+2 x^{2} \sin (1 / x), f^{\prime}(x)=1+4 x \sin (1 / x)-2 \cos (1 / x)$ is both positive and negative in every neighborhood of 0 .
- We say that c is a point of inflection if f has a tangent line at c and $f^{\prime \prime}$ changes sign at c. (Some people only require that f should be continuous at c.)
- $f(x)=x^{3}$ has $f^{\prime}(0)=0$, but 0 is not an extremum, but a point of inflection.
- $f(x)=x^{3}+x$ shows that f^{\prime} does not have to be 0 at a point of inflection.
- $f(x)=x^{1 / 3}$ has a point of inflection at 0 , has a tangent line at 0 , but $f^{\prime}(0)$ and $f^{\prime \prime}(0)$ do not exist. (Vertical tangent line. Just bend a bit, and you get a point of inflection.)

$$
f(x)=\left\{\begin{array}{l}
x^{2} \text { if } x \geq 0 \\
-x^{2} \text { if } x<0
\end{array}\right.
$$

has a point of inflection at 0 , and $f^{\prime}(0)$ exists, but $f^{\prime \prime}(0)$ does not exist. (First derivatives match, so we get a tangent line, but second derivatives do not match.)

Point of inflection 3

1. If c is a point of inflection and $f^{\prime \prime}(c)$ exists, then $f^{\prime \prime}(c)=0$.
2. If c is a point of inflection, then c is an isolated extremum of f^{\prime}.
3. If c is a point of inflection, then the curve lies on different sides of the tangent line at c.

Point of inflection 4

- Proof of 3: We use MVT go get x_{1} between c and x with

$$
\frac{f(x)-f(c)}{x-c}=f^{\prime}\left(x_{1}\right)
$$

or

$$
f(x)=f(c)+f^{\prime}\left(x_{1}\right)(x-c)
$$

- We now use MVT again to get x_{2} between c and x_{1} with

$$
\frac{f^{\prime}\left(x_{1}\right)-f^{\prime}(c)}{x_{1}-c}=f^{\prime \prime}\left(x_{2}\right)
$$

or

$$
f^{\prime}\left(x_{1}\right)=f^{\prime}(c)+f^{\prime \prime}\left(x_{2}\right)\left(x_{1}-c\right)
$$

- Combining this, we get

$$
\begin{aligned}
f(x) & =f(c)+f^{\prime}\left(x_{1}\right)(x-c) \\
& =f(c)+f^{\prime}(c)(x-c)+f^{\prime \prime}\left(x_{2}\right)(x-c)\left(x_{1}-c\right)
\end{aligned}
$$

Point of inflection 5

- The tangent line to $f(x)$ at c is $t(x)=f(c)+f^{\prime}(c)(x-c)$, so the distance between f and the tangent is $f^{\prime}\left(x_{2}\right)(x-c)\left(x_{1}-c\right)$.
- Since $\left(x_{1}-c\right)$ and $\left(x_{1}-c\right)$ have the same sign, their product is positive. But $f^{\prime \prime}(x)$ changes sign at c , so $f(x)$ will lie on different sides of the tangent at c.

Point of inflection 6

- Converse to 1 is false: $f(x)=x^{4}$ has $f^{\prime \prime}(0)=0$, but $f^{\prime \prime}(x) \geq 0$.
- Converse to 2 is false: $f(x)=x^{3}+x^{4} \sin (1 / x)$ has

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x) \geq 0
\end{aligned}
$$

in a neighborhood of 0 , so 0 is an isolated minimum of $f^{\prime}(x)$. We have $f^{\prime \prime}(0)=0$, but
$f^{\prime \prime}(x)=6 x-\sin (1 / x)-6 x \cos (1 / x)+12 x^{2} \sin (1 / x)$ does not change sign.

Point of inflection 7

- We need to "integrate" the example $2 x^{2}+x^{2} \sin (1 / x)$. Since the derivative of $1 / x$ is $-1 / x^{2}$, we try

$$
\begin{aligned}
f(x) & =x^{3}+x^{4} \sin (1 / x) \\
f^{\prime}(x) & =3 x^{2}-x^{2} \cos (1 / x)+4 x^{3} \sin (1 / x) \\
& =x^{2}(3-\cos (1 / x)+4 x \sin (1 / x))
\end{aligned}
$$

- The first two terms give us the shape we want, and the last terms is so small that we can ignore it.

Point of inflection 8

- Converse to 3 is false:
$f(x)=2 x^{3}+x^{3} \sin (1 / x)=x^{3}(2+\sin (1 / x))$ lies below the tangent $(y=0)$ on one side and above the tangent on another, but $f^{\prime \prime}(x)=12 x+6 x \sin (1 / x)-4 \cos (1 / x)-(1 / x) \sin (1 / x)$ does not change sign, since when x is small, the last term will be oscillate wildly.
- The cubic terms gives the desired shape of the curve, and since the derivative of $1 / x$ is $-1 / x^{2}$, we will get a term of the form $(1 / x) \sin (1 / x)$ in $f^{\prime \prime}(x)$, which will make it oscillate wildly.

- Let f and g be continuous on an interval containing a, and assume f and g are differentiable on this interval with the possible exception of the point a. If $f(a)=g(a)=0$ and $g^{\prime}(x) \neq 0$ for all $x \neq a$, then

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longrightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
$$

for $L \in \mathbb{R} \cup \infty$.

- Assume f and g are differentiable on (a, b) and that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. If $\lim _{x \rightarrow a} g(x)=\infty$ (or $\left.-\infty\right)$, then

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longrightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L
$$

for $L \in \mathbb{R} \cup \infty$.

- L'Hôpital does not say that

$$
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L \Longleftarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L .
$$

- If $f(x)=x+\sin x$ and $g(x)=x$, then

$$
\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow \infty} \frac{1+\cos x}{1}
$$

does not exist, while

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty}\left(1+\frac{\sin x}{x}\right)=1
$$

