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Greatest Common Divisor

I We denote the greatest common divisor (or greatest common
factor) of m, n ∈ N by gcd(m, n) or simply (m, n). If (m, n) = 1,
we say that m and n are relatively prime or coprime.

I If we know the prime factorization of m = pa1
1 · · · p

ar
r and

n = pb1
1 · · · p

br
r , then (m, n) = pc1

1 · · · p
cr
r where ci = min(ai , bi).

Notice that some of the ai , bi and ci may be 0.
I Ufortunately, factorization is computationally hard, so we need a

way to compute gcd without factoring.
I This is given by the Euclidean Algorithm (ca 300 BCE).
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I The basic idea is the following Lemma:

Lemma

gcd(m − kn, n) = gcd(m, n) for k ,m, n ∈ N.

I For example, we have

(54, 24) = (54− 2 · 24, 24) = (6, 24)

= (6, 24− 4 · 6) = (6, 0) = 6.

I Note that since n · 0 = 0, any number is a divisor of 0, so
(n, 0) = n.

I Since division is just repeated subtraction, we can at each step
replace (a, b), with a ≥ b, by (mod(a, b), b), where mod(a, b)
denotes the remainder when dividing a by b.

I The Euclidean Algorithm consists simply in repeated application
of this idea until one number becomes 0, at which stage the
other number is the gcd.
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I Let us consider a nontrivial example where m = 41 · 51 = 2091

and n = 43 · 47 = 2021.
I

(2091, 2021)

= (2091− 2021, 2021) = (70, 2021)

= (70, 2021− 28 · 70) = (70, 2021− 1960) = (70, 61)

= (70− 61, 61) = (9, 61)

= (9, 61− 6 · 9) = (9, 7)

= (9− 7, 7) = (2, 7)

= (2, 7− 3 · 2) = (2, 1)

= (2− 2 · 1, 1) = (0, 1) = 1.

I Notice the way the two nubers decrease. The smallest number
becomes the largest number, and then gets “divided away” to be
replaced by a new smallest number.
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I Let us now prove our Lemma.
I Proof: If d is a common divisor of m and n, then m = dm1 and

n = dn1 so m − kn = d(m1 − kn1) and d is also a common
divisor of m − kn and n.

I If d is a common divisor of m − kn and n, then m − kn = dl and
n = dn1 so m = m − kn + kn = d(l + n1) so d is a common
divisor of m and n.

I Since the two pairs have the same common divisors, they also
have the same greatest common divisor.
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I We can also run the steps in the algorithm backwards. This
enables us to express the gcd as a linear combination of the two
numbers.

(7, 5) = (2, 5) = (2, 1) = (0, 1) = 1.

I 1 = 2−1 = 2−(5−2·2) = 3·2−1·5 = 3(7−5)−1·5 = 3·7−4·5.
I

(21, 15) = (6, 15) = (6, 3) = (0, 3) = 3.

I 3 = 6− 3 = 6− (15− 2 · 6) = 3 · 6− 1 · 15 =
3(21− 15)− 1 · 15 = 3 · 21− 4 · 15.

I The Euclidean Algorithm will both give us the gcd and express
the gcd as a linear combination of the two numbers.



Greatest Common Divisor 6

I We will define, I(m, n), the ideal generated by m and n to be the
set of integral linear combinations of m and n,
{xm + yn | x , y ∈ Z}.

I If d = (m, n), and we denote the set of integral multiples of d by
I(d), then we have I(m, n) ⊆ I(d), since a linear combination of
m and n is also a multiple of d .

I However, if we run the Euclidean Algorithm backwards, we see
that we can express d as a linear combination of m and n, and
that shows that I(d) ⊆ I(m, n), so these two sets are in fact
equal, and we have proved the following theorem.

I Theorem

For m, n ∈ Z we have

{xm + yn | x , y ∈ Z} = {z gcd(m, n) | z ∈ Z}.

Bézout’s Lemma

I This fact can be restated in a useful form known as Bézout’s
Lemma, named after Étienne Bézout (1730–1783).

Lemma (Bézout’s Lemma)

Let c be the smallest positive number that can be written in the form
xm + yn. Then c = gcd(m, n).

I This lemma gives an alternative characterization of the gcd. It is
a consequence of the previous Theorem, since c is the smallest
positive number on the left, and d is the smallest positive
number on the right.



Proof of Bézout’s Lemma

I We will also give a direct proof.
I Proof: If we divide m by c, we subtract multiples of c from m, but

since c is a linear combination of m and n, the remainder will
also be a linear combination of m and n.

I But since the remainder is less that c, and c is the smallest
positive number of this form, the remainder must be zero, so c
divides m.

I The same argument applies to n, so c is a common divisor of m
and n.

I Let k any common divisor of m and n. Then m = km1 and
n = kn1, so c = xm + yn = k(xm1 + yn1), so k must also be a
divisor of c. Hence c is the greatest common divisor.

The Fundamental Theorem of Arithmetic

I p > 1 is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)

For n > 1 there is a unique expression

n = pk1
1 · · · p

kr
r ,

where p1 < p2 < · · · < pr are prime numbers and each ki ≥ 1.

I The reason why we do not want 1 to be a prime number, is to
ensure uniqueness in this decomposition.



Proof of FTA

I Proof of existence: If n is prime, the theorem is true. If not, we
can write n = ab, and consider a and b separately. In this way
we get a product of smaller and smaller factors, but this process
must stop, which it does when the factors are primes. This was
proved by Euclid around 300 BCE.

I In order to prove uniqueness, we first need a property of prime
numbers.

Proof of FTA 2

I We write m|n if m divides n.

Lemma

Let p be a prime number, and m, n ∈ N. If p|mn, then p|m or p|n.

I Proof: Assume that p6 |m. Then (p,m) = 1, so ∃x , y such that
xp + ym = 1.

I Then xpn + ymn = n, and since p|mn, it follows that p|n.
I This fails if p is not prime, since 6|(3 · 4) without 6 dividing any

of the factors.
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I Proof of uniqueness: Suppose the decomposition is not unique.
After cancelling common factors, we can then assume that

p1 · · · pk = q1 · · · ql ,

where pi 6= qj for all i and j .
I It then follows from our lemma that p1 either divides q1, which is

impossible since we assumed that p1 is not equal to q1, or p1

divides q2 · · · ql . Applying the lemma again, we eventually get a
contradiction.

Least Common Multiple

I We denote the least common multiple of m and n by lcm(m, n).
I If m = pa1

1 · · · p
ak
k and n = pb1

1 · · · p
bk
k , then

gcd(m, n) = pmin(a1,b1)
1 · · · pmin(ak ,bk )

k

and
lcm(m, n) = pmax(a1,b1)

1 · · · pmax(ak ,bk )
k ,

and since max(a, b) + min(a, b) = a + b, we have

gcd(m, n) · lcm(m, n) = mn,

lcm(m, n) =
mn

gcd(m, n)
.

I This shows that lcm(m, n) = mn precisely when gcd(m, n) = 1.



Modular Arithmetic

I We will say that a ≡ b (mod n) or ā = b̄ if n divides a− b.
I Let Zn = {0̄, . . . , n − 1} be the set of congruence classes mod

n.
I Let us compute the multiplication table for Z3.

0 1 2

0 0 0 0
1 0 1 2
2 0 2 1
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I Let us compute the multiplication table for Z5.

0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

I Notice that

22
= 4, 23

= 3, 24
= 1,

32
= 4, 33

= 2, 34
= 1,

42
= 1, 43

= 4, 44
= 1.
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I We will call a ∈ Zn a unit if it has an inverse, i.e., there is b ∈ Zn

such that a b = 1.

Lemma

a is a unit in Zn if and only if gcd(a, n) = 1.

I

(a, n) = 1 ⇐⇒ ∃b, c such that ba + cn = 1

⇐⇒ ba− 1 = −cn ⇐⇒ a b = 1.

I It follows that if p is prime, then for any a ∈ Zp with
1 ≤ a ≤ p − 1 we have (a, p) = 1, and it follows that all a 6= 0
are units in Zp.

I If p is prime, then Zp is a field. That means that we can add and
multiply, and all non-zero elements have a multiplicative inverse.

I If a is invertible, then the equation a x = b has the solution
x = a−1b.

Modular Arithmetic 3
I Let us compute the multiplication table for Z6.

0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

I Notice that 5 is the only unit, and that its row is a permutation of
the classes.

I Notice that {0, 3} and {0, 2, 4} are closed under addition and
multiplication.

I Since (n − 1, n) = 1 and (n − 1)i ≡ −i ≡ n − i (mod n), we
see that the last row in the multiplication table of Zn will always
be the classes in decreasing order.



Fermat’s Little Theorem

I Theorem (Fermat’s Little Theorem)

Let p be a prime number. If p6 |a, then ap−1 ≡ 1 (mod p).

I Proof: Consider the set of nonzero congruence classes
{1̄, . . . , p − 1} and the set {ā1̄, . . . , ā(p − 1)}.

I

a · i ≡ a · j (mod p)

a(i − j) ≡ 0 (mod p).

Since p6 |a, this can only happen if i = j , so the two sets of
classes are the same.

Fermat’s Little Theorem 2

I We multiply the elements of the two sets together and get

(a · 1) · · · (a · (p − 1)) ≡ 1 · · · (p − 1) (mod p)

ap−1(p − 1)! ≡ (p − 1)! (mod p)

ap−1 ≡ 1 (mod p),

since (p − 1)! 6≡ 0 (mod p).
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I We can also write this as ap ≡ a (mod p). In this form, the
statement is also true for a = kp. For small values we can see
this directly.

I a2 − a = a(a− 1) is always divisible by 2, since in the product
of two consecutive integers, one the the factors must be even.

I Similarly, a3 − a = a(a2 − 1) = (a + 1)a(a− 1) is always
divisible by 3, since in the product of three consecutive integers,
one the the factors must be divisible by 3.

Euler’s φ function

I In 1763, Leonhard Euler (1707–1783) defined φ(n) to be the
number of integers k with 1 ≤ k ≤ n and gcd(k , n) = 1.

I We have φ(p) = p − 1 for any prime number p.
I In general

φ(pk ) = pk − pk−1 = pk
(

1− 1
p

)
,

since the only numbers less than or equal to pk that are not
relatively prime to pk are xp for 1 ≤ x ≤ pk−1.
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I We will prove that φ is multiplicative, meaning that

(m, n) = 1 =⇒ φ(mn) = φ(m)φ(n).

I Consider m = 5 and n = 7. Then the numbers less than or
equal to 35 that are not coprime with 35 are the 11 multiples of
5 and 7 less than or equal to 35, i.e. 5, 7, 10, 14, 15, 20, 21, 25,
28, 30, 35.

I It follows that φ(35) = 35− 11 = 24 = 4 · 6 = φ(5)φ(7)

Euler’s φ function 3

I We will first need a lemma.

Lemma

Assume that (m, n) = 1. Then

gcd(m, y) = 1 ∧ gcd(n, x) = 1 ⇐⇒ gcd(mx + ny ,mn) = 1.

I Proof (optional): Suppose there is a p > 1 such that
p|(mx + ny ,mn). Then p|mn and we know that p|m or p|n.
Assume that p|m. Then p|y , so (m, y) > 1. Similarly if p|n.

I Suppose that (n, x) > 1. Since (n, x)|mx + ny , we have
(mx + ny ,mn) > 1. Similarly (m, y) > 1 also implies
(mx + ny ,mn) > 1.
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I We can now easily prove the theorem.

Theorem

gcd(m, n) = 1 =⇒ φ(mn) = φ(m)φ(n).

I Proof (optional): Suppose that x ranges through the φ(n)
numbers coprime to n and y ranges through the φ(m) numbers
coprime to m. Then mx + ny ranges through the φ(m)φ(n)
numbers coprime to mn, which equals φ(mn).

I It now follows that if n = pa1
1 · · · p

ak
k , then

φ(n) = φ(pa1
1 · · · p

ak
k ) = φ(pa1

1 ) · · ·φ(pak
k )

= pa1
1

(
1− 1

p1

)
· · · pak

k

(
1− 1

pk

)
= n

∏
p|n

(
1− 1

p

)
.

Euler’s Theorem

I We can generalize Fermat’s Little Theorem as follows.

Theorem (Euler’s Theorem)

If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

I Proof: Similar to the proof of Fermat’s Little Theorem, of which it
is a generalization, since φ(p) = p − 1.

I Instead of considering the set of nonzero congruence classes,
we consider the set {c1, . . . , cφ(n)} of congruence classes
corresponding to c with (c, n) = 1.
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I For n = 5, we get that φ(5) = 4 and 24
= 34

= 44
= 1, but

notice that 42
= 1, too.

I For n = 6, we get that φ(6) = 2 and 52
= 1.

I For n = 8, we get that φ(8) = 4 and 34
= 54

= 74
= 1, but

notice that 32
= 52

= 72
= 1, too.

Order of an element

I If a ∈ Zn is a unit, we will say that the order of a is the smallest
positive number k such that ak ≡ 1 (mod n).

Lemma

If gcd(a, n) = 1 and k is the order a, then k |φ(n).

I Proof: We know that aφ(n) ≡ 1 (mod n). Suppose that
φ(n) = lk + r , where 0 ≤ r < k . Then

1 ≡ aφ(n) ≡ alk+r ≡ (ak )lar ≡ ar (mod n),

but since k is smallest positive number with ak ≡ 1 (mod n),
we must have r = 0, so k |φ(n).

I In Z5, the orders of 2 and 3 are φ(5) = 4, but the order of 4 is 2.
I In Z6, the order of 5 is φ(6) = 2.
I In Z8, the orders of 3, 5 and 7 are 2 = φ(8)/2.


