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Limits in high school mathematics

I To differentiate polynomials, you only need algebra to compute
limits.

I limx→0
sin(x)

x = 1.
I Definition of e.
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Definition of e
I Does sn =
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)n
converge?

I We want to use the fact that a bounded and increasing
sequence converges, but it is not clear that sn is either bounded
or increasing.

I The binomial formula shows that
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Definition of e 2

I The product is hard to analyze, since the number of factors
increase, while the factors themselves decrease. However, the
binomial formula converts sn to a sum of n terms.

I Since all the terms in the parenthesis are positive, we have now
written sn as a sum of n positive terms. When we go from sn to
sn+1, the first n terms do not change, and we simply add
another positive term. It is therefore clear that sn is increasing.



Definition of e 3
I Consider the series

∑∞
k=0

1
k! with partial sums
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I Since tn is obtained from sn by removing the parenthesis, and
all the terms in the parenthesis are less than 1, we see that
sn ≤ tn. Since going from tn to tn+1 just adds a positive term, we
see that tn is also increasing.

I Since
n! = 1 · 2 · 3 . . . n > 1 · 2 · 2 . . . 2 = 2n−1,

we have

sn < 1 + 1 +
1
2

+
1
22 + · · ·+ 1

2n−1 < 3.

I It follows that sn is bounded and increasing, so e exists and
e ≤ 3.

Continuity

I f : U → R is continuous at a ∈ U if limx→a f (x) = f (a) and
continuous on U if it is continuous at all points in U.

I Some people say that f is continuous if and only if we can draw
the graph of f without lifting the pen. However, f (x) = 1/x is
continuous on U = R− {0}.



Product rule

I

f (x + ∆x)g(x + ∆x)− f (x)g(x) = (f (x + ∆x)− f (x))g(x)

+ (g(x + ∆x)− g(x))f (x)

+ (f (x + ∆x)− f (x))(g(x + ∆x)− g(x))

Source of counterexamples

I

fn(x) =

{
xn sin(1/x) if x 6= 0,

0 if x = 0.

I f0 is not continuous, f1 limx→0 f1(x) = 1



Source of counterexamples 2

I

f (x) =

{
x2 sin(1/x) if x 6= 0,

0 if x = 0.

I

f ′(x) =

{
2x sin(1/x)− cos(1/x) if x 6= 0,

0 if x = 0.

Monotonicity

I Mean Value Theorem: Assume that f is differentiable on (a, b)
and continuous on [a, b]. Then there is c ∈ (a, b) such that

f (b)− f (a)

b − a
= f ′(c).

I f ′ > 0 on (a, b) =⇒ f is strictly increasing on (a, b).
I f ′ ≥ 0 on (a, b) =⇒ f is increasing on (a, b).
I f ′ ≥ 0 on (a, b) ⇐= f is increasing on (a, b).
I f (x) = x3 shows that f ′ ≥ 0 on (a, b) 6⇐= f is strictly

increasing on (a, b).



Extreme point 1

I If c is an extreme point and f ′(c) exists, then f ′(c) = 0.
I First Derivative Test: If f ′ exists around c, and f ′ changes sign at

c, then c is an extreme point.
I Second Derivative Test: If f ′(c) = 0 and f ′′(c) is positive

(negative), then c is a minimum (maximum).

Extreme point 2

I If f ′ changes sign at c, then c is an extreme point. The converse
is not always true.

I f (x) = x2(2 + sin(1/x)), f ′(x) = 4x + 2x sin(1/x)− cos(1/x).
I x2 + x2 sin(1/x)) has infinitely many zeros.
I If f ′ is positive on (a, b), then f is increasing on (a, b). But what

if we only know that f ′(c) > 0? Can we say that f is increasing
on an interval around c?

I f (x) = x + 2x2 sin(1/x), f ′(x) = 1 + 4x sin(1/x)− 2 cos(1/x)
is both positive and negative in every neighborhood of 0.



Point of inflection

I We say that c is a point of inflection if f has a tangent line at c
and f ′′ changes sign at c. (Some people only require that f
should be continuous at c.)

I f (x) = x3 has f ′(0) = 0, but 0 is not an extremum, but a point of
inflection.

I f (x) = x3 + x shows that f ′ does not have to be 0 at a point of
inflection.

Point of inflection 2

I f (x) = x1/3 has a point of inflection at 0, has a tangent line at 0,
but f ′(0) and f ′′(0) do not exist. (Vertical tangent line. Just bend
a bit, and you get a point of inflection.)

I

f (x) =

{
x2 if x ≥ 0,

−x2 if x < 0,

has a point of inflection at 0, and f ′(0) exists, but f ′′(0) does not
exist. (First derivatives match, so we get a tangent line, but
second derivatives do not match.)



Point of inflection 3

1. If c is a point of inflection and f ′′(c) exists, then f ′′(c) = 0.

2. If c is a point of inflection, then c is an isolated extremum of f ′.

3. If c is a point of inflection, then the curve lies on different sides
of the tangent line at c.

Point of inflection 4
I Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)

x − c
= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

I We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)

x1 − c
= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

I Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)

= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 5

I The tangent line to f (x) at c is t(x) = f (c) + f ′(c)(x − c), so
the distance between f and the tangent is f ′(x2)(x − c)(x1 − c).

I Since (x1 − c) and (x1 − c) have the same sign, their product is
positive. But f ′′(x) changes sign at c, so f (x) will lie on different
sides of the tangent at c.

Point of inflection 6
I Converse to 1 is false: f (x) = x4 has f ′′(0) = 0, but f ′′(x) ≥ 0.
I Converse to 2 is false: f (x) = x3 + x4 sin(1/x) has

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3− cos(1/x) + 4x sin(1/x) ≥ 0

in a neighborhood of 0, so 0 is an isolated minimum of f ′(x). We
have f ′′(0) = 0, but
f ′′(x) = 6x − sin(1/x)− 6x cos(1/x) + 12x2 sin(1/x) does not
change sign.

I



Point of inflection 7

I We need to “integrate” the example 2x2 + x2 sin(1/x). Since
the derivative of 1/x is −1/x2, we try

f (x) = x3 + x4 sin(1/x),

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3− cos(1/x) + 4x sin(1/x)).

I The first two terms give us the shape we want, and the last
terms is so small that we can ignore it.

Point of inflection 8
I Converse to 3 is false:

f (x) = 2x3 + x3 sin(1/x) = x3(2 + sin(1/x)) lies below the
tangent (y = 0) on one side and above the tangent on another,
but f ′′(x) = 12x + 6x sin(1/x)− 4 cos(1/x)− (1/x) sin(1/x)
does not change sign, since when x is small, the last term will
be oscillate wildly.

I The cubic terms gives the desired shape of the curve, and since
the derivative of 1/x is −1/x2, we will get a term of the form
(1/x) sin(1/x) in f ′′(x), which will make it oscillate wildly.

I



L’Hôpital’s Rule

I Let f and g be continuous on an interval containing a, and
assume f and g are differentiable on this interval with the
possible exception of the point a. If f (a) = g(a) = 0 and
g′(x) 6= 0 for all x 6= a, then

lim
x→a

f ′(x)

g′(x)
= L =⇒ lim

x→a

f (x)

g(x)
= L,

for L ∈ R ∪∞.
I Assume f and g are differentiable on (a, b) and that g′(x) 6= 0

for all x ∈ (a, b). If limx→a g(x) =∞ (or −∞), then

lim
x→a

f ′(x)

g′(x)
= L =⇒ lim

x→a

f (x)

g(x)
= L,

for L ∈ R ∪∞.

L’Hôpital’s Rule 2

I L’Hôpital does not say that

lim
x→a

f ′(x)

g′(x)
= L ⇐= lim

x→a

f (x)

g(x)
= L.

I If f (x) = x + sin x and g(x) = x , then

lim
x→∞

f ′(x)

g′(x)
= lim

x→∞

1 + cos x
1

does not exist, while

lim
x→∞

f (x)

g(x)
= lim

x→∞

(
1 +

sin x
x

)
= 1.


