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Why is 0.999 . . . = 1?

I We will write 1/3 = 0.333 . . . as 0.3 and call 3 the repetend.
I We can multiply by 3 and get

1 = 3 · 1/3 = 3 · 0.3 = 0.9.

I We can also write

x = 0.9

10x = 9.9

9x = 9

x = 1
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Why is 0.999 . . . = 1? 2

I Since
∑∞

k=0 xk = 1/(1− x) for |x | < 1, we have

0.9 = 9(0.1 + 0.01 + 0.001 + · · · ) = 9(0.1 + 0.12 + 0.13 + · · · )

= 9
∞∑

k=1

0.1k = 9 · 0.1
∞∑

k=0

0.1k = 0.9
1

1− 0.1
=

0.9
0.9

= 1.

Why is 0.999 . . . = 1? 3

I Finally, we can argue that they have to be equal, since if they
were not equal, we could find some number between them.
However, there is no way to put any number between them.

I In general, we claim that

a.a1a2 . . . an = a.a1a2 . . . (an − 1)9, (1)

where ai ∈ {0, . . . , 9}, an 6= 0 and a ∈ Z. For instance

3.14 = 3.139 and − 3.14 = −3.139.



Why is 0.999 . . . = 1? 4
I a.a1a2 . . . (an − 1)9

= a.a1a2 . . . (an − 1) + 9
∞∑

k=n+1

0.1k

= a.a1a2 . . . (an − 1) + 9 · 0.1n+1
∞∑

k=0

0.1k

= a.a1a2 . . . (an − 1) + 9 · 0.1n+1 1
1− 0.1

= a.a1a2 . . . (an − 1) + 0.1n+1 9
0.9

= a.a1a2 . . . (an − 1) + 0.1n+1 · 10

= a.a1a2 . . . (an − 1) + 0.1n

= a.a1a2 . . . (an − 1) + 0.

n−1︷ ︸︸ ︷
0 . . . 0 1

= a.a1a2 . . . (an − 1 + 1) = a.a1a2 . . . an.

Why is 0.999 . . . = 1? 5

I We see that every finite decimal expansion can also be written
as an infinite decimal expansion. There is only exception,
namely 0.

I One way to understand why 0 is exceptional is because for
positive numbers, the infinite expansion “looks” smaller, wile for
negative numbers, the infinite expansion “looks” bigger. So it is
not surprising that 0 is a singular case.



Decimal Expansion

I Theorem

A number is rational if and only if the decimal expansion is finite or
repeating.

I Proof: We will for simplicty assume that 0 < x < 1. ⇐= :
Assume that x has a finite decimal expansion. Then

x = 0.a1a2...an =
a1a2...an

10n ,

which is a fraction of integers.

Decimal Expansion 2

I Assume that x has a periodic decimal expansion. We can find a
number s so that the decimal expansion of 10sx starts repeating
right after the decimal point. Then

10sx = a.a1...ar

(10r − 1)10sx = (10r − 1)a + a1 . . . ar

x =
(10r − 1)a + a1 . . . ar

(10r − 1)10s

which is rational.



Decimal Expansion 3

I Alternatively, we can use infinite series, and write

10sx = a.a1...ar = a +
∞∑

k=1

a1 . . . ar 10−rk

= a +
a1...ar

10r

∞∑
k=0

10−rk

= a +
a1...ar

10r

(
1

1− 10−r

)
=

(10r − 1)a + a1...ar

10r − 1
,

which is rational.
I =⇒ : If x = m

n the division will either terminate, or we will get
repeating remainders after at most n − 1 steps.

Decimal Expansion 4
I As an example, consider 1/7.

1 : 7 = 0.142857 . . .
−0

1 0 remainder 1
−7

3 0 remainder 3
−2 8

2 0 remainder 2
−1 4

6 0 remainder 6
−5 6

4 0 remainder 4
−3 5

50 remainder 5
−49

1 remainder 1



Decimal Expansion 5

I Euler’s Theorem says that if (n, 10) = 1, then 10φ(n) ≡ 1
(mod n), which is the same as saying that n|(10φ(n) − 1), i.e., n
divides a “9-block” of length φ(n).

I From the decimal expansion of 1/7, we see that

(106 − 1)1/7 = 142857.142857 . . .− 0.142857 = 142857,

so that 999999 = 7 · 142857. This shows that 7 divides a
“9-block”, 106 − 1, of length equal to the period of 1/7 and that
(106 − 1)/7 is the repetend. Since φ(7) = 6, this agrees with
Euler’s Theorem.

Types of Rational Decimal Expansion
I Consider

m
n

where 0 < m < n and (m, n) = 1.

Terminating 0.d1 . . . dt
m

2u5v
, t = max(u, v)

Mt

10t
=

d1 . . . dt

10t

Simple-
periodic

0.d1 . . . dr
m
n
, (n, 10) = 1

Ms

10r − 1
=

d1 . . . dr

10r − 1

Delayed-
periodic

0.d1 . . . dt dt+1 . . . dt+r
m

n1n2
, n1 = 2u5v ,

(n2, 10) = 1,
t = max(u, v) > 1,
n2 > 1.

Md

10t(10r − 1)

I Since Md < 10t(10r − 1), we can divide by (10r − 1) to get a quotient with at
most t digits.

Md = (10r − 1)d1 . . . dt + dt+1 . . . dt+r = 10r d1 . . . dt + dt+1 . . . dt+r − d1 . . . dt

= d1 . . . dt+r − d1 . . . dt , and

Md

10t(10r − 1)
=

d1 . . . dt

10t
+

dt+1 . . . dt+r

10t(10r − 1)
,

which shows how to convert between Md and the di .



Types of Rational Decimal Expansion 2

I In the finite case, there might be initial zeros in d1 . . . dt , but
there are no terminal zeros, since we assume that dt is the last
nonzero digit. That means that d1 . . . dt id not divisible by 10, so
we can cancel some 2s or some 5s, but not both. We therefore
have t = max(u, v).

I In the delayed-periodic case, we have
Md = d1 . . . dt+r − d1 . . . dt . In order for Md to be divisible by
10, we must have dt = dt+r , but in that case we could instead
make dt part of the repend, i.e., 0.d1 . . . dt−1dt . . . dt+r−1.

Types of Rational Decimal Expansion 3
I Proof: m/n is terminating if and only if

m/n =
m

2u5v =
Mt

10t .

I m/n is simple-periodic if and only if we can cancel the decimals
by shifting one period, i.e.

(10r − 1)m/n = Ms.

I m/n is delayed-periodic if and only if we can cancel the
decimals by shifting one period and moving the period t places,
i.e

10t(10r − 1)m/n = Md .

I Notice that there may be initial 0’s in the di ’s.
I

0.062 = 62/999, 0.062 = 62/(10 · 99) = 62/990.

I Notice that the fractions in the last column need not be reduced.



Types of Rational Decimal Expansion 4

I In the simple-periodic case, the repetend is simply m(10r − 1)/n, but in the
delayed-periodic case, we must divide m10t(10r − 1)/n by 10r − 1 to
separate the finite and repeating parts. However, it is easier to divide m10t/n1

by n2 to keep the numbers smaller, as the following examples show.

I

1
6
=

1
2 · 3

=
5

10 · 3
=

1 · 3 + 2
10 · 3

=
1
10

+
2

10 · 3
= 0.16,

1
6
=

1
2 · 3

=
5 · 3
10 · 9

=
15

10 · 9
=

1 · 9 + 6
10 · 9

=
1
10

+
6

10 · 9
= 0.16.

I

1
24

=
1

23 · 3
=

53

103 · 3
=

125
103 · 3

=
41 · 3 + 2

103 · 3
=

41
103

+
2

103 · 3
= 0.0416,

1
24

=
1

23 · 3
=

53 · 3
103 · 9

=
375

103 · 9
=

41 · 9 + 6
103 · 9

=
41
103

+
6

103 · 9
= 0.0416.

Types of Rational Decimal Expansion 5

I Notice that 106 − 1 = 33 · 7 · 11 · 13 · 37 = 76923 · 13 = 142857 · 7.

1
26

=
1

2 · 13
=

5 · 76923
10 · (106 − 1)

=
384615

10 · (106 − 1)
= 0.0384615.

I

1
28

=
1

22 · 7
=

25
102 · 7

=
3 · 7 + 4
102 · 7

=
3

102
+

4
102 · 7

= 0.03571428,

1
28

=
1

22 · 7
=

25 · 142857
102 · (106 − 1)

=
3 · (106 − 1) + 571428

102 · (106 − 1)

=
3

102
+

571428
102 · (106 − 1)

= 0.03571428.

I Notice how the type of the decimal expansion of m/n and the size of r and t
only depends on n.



Cyclic Numbers (Optional)

I Consider the following decimal expansions

1/7 = 0.142857

2/7 = 0.285714

3/7 = 0.428571

4/7 = 0.571428

5/7 = 0.714285

6/7 = 0.857142

I Notice how the digits of the repetends are cyclic permutations of
each other, and that they are obtained by multiplying 142857.

Multiple Cycles (Optional)
I Sometimes the numbers m/n break into several cycles. For example,

the multiples of 1/13 can be divided into two sets:

1/13 = 0.076923
10/13 = 0.769230
9/13 = 0.692307
12/13 = 0.923076
3/13 = 0.230769
4/13 = 0.307692

where each repetend is a cyclic re-arrangement of 076923 and

2/13 = 0.153846
7/13 = 0.538461
5/13 = 0.384615
11/13 = 0.846153
6/13 = 0.461538
8/13 = 0.615384

where each repetend is a cyclic re-arrangement of 153846.

I The first set corresponds to remainders of 1, 3, 4, 9, 10, 12, while the
second set corresponds to remainders of 2, 5, 6, 7, 8, 11.



Period of Periodic Decimals

I We see from
(10r − 1)m = Mn

that there is a repeating block of length r if and only if 10r ≡ 1
(mod n).

I This block could itself consist of repeating parts, but if define the
period of a periodic decimal to be the length of the minimal
repeating block, i.e. the repetend, then the period is equal to the
order of 10 mod n.

I We know from Euler’s Theorem that if (n, 10), then n divides
10φ(n) − 1, so the period divides φ(n).

Factoring 10n − 1
I To find denominators with short periods, we use the following

table. The period of 1/p is the r for which p first appears as a
factor in 10r − 1. Notice how 3, 11 and 13 appear earlier that
given by Euler’s Theorem, while 7 first appears in 106 − 1.

101 − 1 = 32

102 − 1 = 32 · 11
103 − 1 = 33 · 37
104 − 1 = 32 · 11 · 101
105 − 1 = 32 · 41 · 271
106 − 1 = 33 · 7 · 11 · 13 · 37
107 − 1 = 32 · 239 · 4649
108 − 1 = 32 · 11 · 73 · 101 · 137
109 − 1 = 34 · 37 · 333667
1010 − 1 = 32 · 11 · 41 · 271 · 9091
1011 − 1 = 32 · 21649 · 513239
1012 − 1 = 33 · 7 · 11 · 13 · 37 · 101 · 9901



Summary of 1/n

I t is the length of the terminating part and r is the length of the repetend in the decimal expansion of 1/n.

1/n t r φ(n) 1/n t r φ(n)
1/2 = 0.5 1 1/22 = 0.045 1 2 10
1/3 = 0.3 1 2 1/23 = 0.0434782608695652173913 22 22
1/4 = 0.25 2 1/24 = 0.0416 3 1 8
1/5 = 0.2 1 1/25 = 0.04 2
1/6 = 0.16 1 1 2 1/26 = 0.0384615 1 6 12
1/7 = 0.142857 6 6 1/27 = 0.037 3 18
1/8 = 0.125 3 1/28 = 0.03571428 2 6 12
1/9 = 0.1 1 6 1/29 = 0.0344827586206896551724137931 28 28
1/10 = 0.1 1 1/30 = 0.03 1 1 8
1/11 = 0.09 2 10 1/31 = 0.032258064516129 15 30
1/12 = 0.083 2 1 4 1/32 = 0.03125 5
1/13 = 0.076923 6 12 1/33 = 0.03 2 20
1/14 = 0.0714285 1 6 6 1/34 = 0.02941176470588235 1 16 16
1/15 = 0.06 1 1 8 1/35 = 0.0285714 1 6 24
1/16 = 0.0625 4 1/36 = 0.027 2 1 12
1/17 = 0.0588235294117647 16 16 1/37 = 0.027 3 36
1/18 = 0.05 1 1 6 1/38 = 0.0263157894736842105 1 18 18
1/19 = 0.052631578947368421 18 18 1/39 = 0.025641 6 24
1/20 = 0.05 2 1/40 = 0.025 3
1/21 = 0.047619 6 12 1/41 = 0.02439 5 40

I What can you say about 1/27 and 1/37? Why?

I 103 − 1 = 33 · 37.

Primes with Given Period
I Primes p with repeating decimal expansions of period r in 1/p.

Period Primes
1 3
2 11
3 37
4 101
5 41, 271
6 7, 13
7 239, 4649
8 73, 137
9 333667
10 9091
11 21649, 513239
12 9901
13 53, 79, 265371653
14 909091
15 31, 2906161
16 17, 5882353
17 2071723, 5363222357
18 19, 52579
19 1111111111111111111
20 3541, 27961

I Notice how 7, 17 and 19 have maximal periods, p − 1. Gauss conjectured in
1801 that there are infinitely many primes with maximal periods, but this has
not been proved.



Periods of Inverse Primes

I Here are the periods of 1/p for all primes less than 101 except
for 2 and 5.

p r p r p r
3 1 31 15 67 33
7 6 37 3 71 35
11 2 41 5 73 8
13 6 43 21 79 13
17 16 47 46 83 41
19 18 53 13 89 44
23 22 59 58 97 96
29 28 61 60 101 4

Periods of 1/n (Optional)

I If n = pk , the period is a divisor of φ(pk) = (p − 1)pk−1, but
there is no simple formula.

I If n = n1n2 where (n1, n2) = 1, then it can be shown that the
period of 1/n is the least common multiple of the periods of
1/n1 and 1/n2.


