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What kind of topics will I cover?

I Some topics you can take straight to the classroom.
I Some topics will help you answer questions that you may be

asked once in a while by strong pupils.
I Some topics you will probably never discuss with any pupils, but

knowing it will help your own understanding of the topics.
I There should be a line of sight back towards school

mathematics.
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Arithmetic series

I Why is an arithmetic series called arithmetic?
I We define the arithmetic mean to be

AM(x , y) =
1
2
(x + y).

I In an arithmetic series, every term is the arithmetic mean of the
two surrounding terms.

1
2
(an+1 + an−1) =

1
2
(an + d + an − d) =

1
2

2an = an.

Geometric series

I Why is a geometric series called geometric?
I We define the geometric mean to be

GM(x , y) = (xy)1/2.

I In a geometric series (with positive terms), every term is the
geometric mean of the two surrounding terms.

I

(an+1an−1)
1/2 = [(anr)(an/r)]1/2 = (a2

n)
1/2 = an.



Harmonic series

I Why is the harmonic series,

∞∑
n=1

1
n
,

called harmonic?
I We define the harmonic mean to be

HM(x , y) =
2

1
x + 1

y

.

I In the harmonic series, every term is the harmonic mean of the
two surrounding terms.

I
2

1
1/(n+1) +

1
1/(n−1)

=
2

n + 1 + n − 1
=

2
2n

=
1
n
.

Confusing means — Simpson’s paradox

I In 1973 UC Berkeley admitted 44% of males and 35% of
females who applied to grad school. The tables show admission
data from the six largest departments.

Department Male acceptance rate Female acceptance rate

A 62% 82%

B 63% 68%

C 37% 34%

D 33% 35%

E 28% 24%

F 6% 7%

Department Male Female

Applicants % Applicants %

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 373 6% 341 7%



Confusing means — Simpson’s paradox 2

I You teach a class with 20 strong students and 5 weak students.
At the final exam, the strong students get an average of 80
points and the weak students get an average of 50.

I Your Principal is impressed that all the weak students passed,
and next year you get a class with 15 strong students and 10
weak students. This year the strong students increase their
average to 85, and the weak students increase their average to
55.

I You are quite proud of yourself, but the Principal calls you in and
is unhappy because the overall average has dropped from
(20 · 80 + 5 · 50)/25 = 74 to (15 · 85 + 10 · 55)/25 = 73.

I The arithmetic mean may look innocent, but can be devious.

What is the meaning of the geometric mean?

I Given a rectangle with sides x and y , we want to find a square
with the same area. What is the side of the square?

I z =
√

xy = GM(x , y).



What is the meaning of the harmonic mean?

I You drive to work during rush hour with an average speed of
30km/h. Going home you manage an average speed of 60km/h.
What was your average speed for the whole trip?

I Assume that the distance is d . Then your average speed was

2d
d/30 + d/60

=
2

1/30 + 1/60
=

2 · 60
2 + 1

= 40 = H(30, 60).

I The term harmonic is related to music theory.

The harmonic series diverges

I This was shown by Nicole Oresme around 1350.
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I This argument shows that

2k∑
n=1

1
n
> 1 +

k
2
,

and we see that the series diverges.



The AGH inequality

I

AM(a, b) > GM(a, b) > HM(a, b).

Proof of the AGH inequality

I (
a + b

2

)2

= G2 +

(
a− a + b

2

)2

(a + b)2

4
= G2 +

(a− b)2

4
(a + b)2 = 4G2 + (a− b)2

2ab = 4G2 − 2ab

G2 = ab

G =
√

ab = GM(a, b).



Proof of the AGH inequality 2

I

I By similar triangles A/G = G/H or G2 = AH. Hence

H =
G2

A
=

ab
a+b

2

=
2

a+b
ab

=
2

1
a + 1

b

= HM(a, b).

Maximum volume of a cut off box

I

I Consider a rectangle of height 1 and width L. We cut off
squares of side x in each corner and fold to get a box of volume

V (L, x) = x(L− 2x)(1− 2x).

I If we solve V ′(x) = 0 we get

x =
L + 1−

√
(L + 1)2 − 3L
6

.

I If we set L = 1, we get x =
1+1−
√

(1+1)2−3·1
6 = 2−

√
22−3
6 = 1

6 .



Maximum volume of a cut off box 2

I In that case the area of the base is (2/3)2 = 4/9, while the area
of the side wall equals 4 · 1/6 · 2/3 = 4/9.

I Is it a coincidence that these two areas are equal?
I Consider a convex, closed curve W , and let W (t) be the curve

obtained by pushing W inward along the normal line a distance
t . We can then “fold” up to get a box.

I Let A(t) be the area of the region inside W (t), let P(t) be the
perimeter of W (t) and let V (t) be the volume of the box.

I I claim that A′(t) = −P(t).

Maximum volume of a cut off box 3

I We have A′(t) = limh→0
A(t+h)−A(t)

h , and we can interpret
A(t + h)− A(t) as the negative of the area of a “ring” of
thickness h. Since the area of the ring will have area
approximately equal to P(t)t , we get that

A′(t) = lim
h→0

A(t + h)− A(t)
h

≈ lim
h→0

−P(t)h
h

= −P(t).

I We have V (t) = A(t)t , so
V ′(t) = A′(t)t + A(t) = −P(t)t + A(t) = 0 precisely when the
area of the base equals the area of the wall.



Source of counterexamples

I

fn(x) =

{
xn sin(1/x) if x 6= 0,

0 if x = 0.

I Note that

lim
x→∞

x sin(1/x) = lim
x→∞

sin(1/x)
1/x

= lim
y→0

sin(y)
y

= 1.

sin(1/x)

I

f0(x) =

{
sin(1/x) if x 6= 0,

0 if x = 0.

I f0 is not continuous at x = 0, since limx→0 f0(x) does not exist.



x sin(1/x)

I

f1(x) =

{
x sin(1/x) if x 6= 0,

0 if x = 0.

I Remember that limx→∞ f1(x) = 1.

x sin(1/x) part 2

I f1 is continuous, since it is squeezed by ±x , but

lim
x→0

f1(x)− f1(0)
x − 0

= lim
x→0

x sin(1/x)− 0
x − 0

= lim
x→0

sin(1/x),

does not exist, so f1 is not differentiable at x = 0.



x2 sin(1/x)
I

f2(x) =

{
x2 sin(1/x) if x 6= 0,

0 if x = 0.

.
I Setting y = 1/x and using L’Hôpital’s rule, we get

lim
x→∞

(x2 sin(1/x)− x) = lim
y→0

(
sin y
y2 −

1
y
) =

lim
y→0

sin y − y
y2 = lim

y→0

cos y − 1
2y

= lim
y→0

− sin y
2

= 0.

I f2 is differentiable, since it is squeezed by ±x2.

x2 sin(1/x) part 2

I

f ′2(0) = lim
x→0

x2 sin(1/x)− 0
x − 0

= lim
x→0

x sin(1/x) = 0.

However, for x 6= 0 we have f ′2(x) = 2x sin(1/x)− cos(1/x),
and

lim
x→0

f ′2(x) = lim
x→0

(2x sin(1/x)− cos(1/x))

does not exist.
I So f2 is differentiable, but not continuously differentiable!
I This is the mother of all counterexamples!



Monotonicity
I Mean Value Theorem: Assume that f is differentiable on (a, b)

and continuous on [a, b]. Then there is c ∈ (a, b) such that

f (b)− f (a)
b − a

= f ′(c).

.

Monotonicity 2

I f is increasing if x < y =⇒ f (x) ≤ f (y).
I f is strictly increasing if x < y =⇒ f (x) < f (y).
I Assume that f ′ > 0 on (a, b). Given a < x < y < b, we can

find c ∈ (x , y) such that f (y)− f (x) = f ′(c)(y − x) > 0. It
follows that

I f ′ > 0 on (a, b) =⇒ f is strictly increasing on (a, b).
I f ′ ≥ 0 on (a, b) =⇒ f is increasing on (a, b).

I If f is increasing, then f ′(x) = limh→0
f (x+h)−f (x)

h ≥ 0. It follows
that

I f ′ ≥ 0 on (a, b) ⇐= f is increasing on (a, b).
I f (x) = x3 shows that f ′ > 0 on (a, b) 6⇐= f is strictly

increasing on (a, b).
I Limits do not preserve strict inequalities.



Extreme point

I Assume that c is a minimum point and that f ′(c) exists.
Consider f ′(c) = limh→0

f (c+h)−f (c)
h . If h is positive, the fraction

is positive, and if h is negative, the fraction is negative. Since
the limit exists, it must be zero.

I Assume that f ′ exists around c, and f ′(x) is positive for x > c
and negative for x < c. If x > c, then there is a d between c
and x such that f (x)− f (c) = f ′(d)(x − c) > 0. If x < c, then
there is a d between x and c such that
f (c)− f (x) = f ′(d)(c − x) < 0. It follows that c is a minimum
point.

I However, the converse is not always true.

Extreme point 2

I We start with a parabola and add x2 sin(1/x) to create an
oscillating parabola.

I Since x2 + x2 sin(1/x)) has infinitely many zeros, we instead
start with 2x2 and use f (x) = x2(2 + sin(1/x)), which satisfies
x2 ≥ f (x) ≥ 3x2.

.



Extreme point 3

I f obviously has a minimum at x = 0, but it is easy to see that f ′

is both positive and negative arbitrarily close to x = 0.
I We have f ′(x) = 4x + 2x sin(1/x)− cos(1/x), and if x is close

to zero, the first two terms will be close to zero, too, while the
last term will oscillate between 1 and −1.

Increasing

I If f ′ is positive on (a, b), then f is increasing on (a, b). But what
if we only know that f ′(c) > 0? Can we say that f is increasing
on an interval around c?

I We start with a straight line and add x2 sin(1/x) to create an
oscillating line. It turns out that it will be easer if we add
2x2 sin(1/x), so we set f (x) = x + 2x2 sin(1/x).

I Then f ′(x) = 1 + 4x sin(1/x)− 2 cos(1/x), and when x is
close to zero, then will oscillate between 3 and −1, so f ′ will be
both positive and negative in every neighborhood of 0.

.



Point of inflection

I We say that c is a point of inflection if f has a tangent line at c
and f ′′ changes sign at c. (Some people only require that f
should be continuous at c.)

I Let us consider some examples.
I f (x) = x3 has f ′(0) = 0, but 0 is not an extremum, but a point of

inflection.
I f (x) = x3 + x shows that f ′ does not have to be 0 at a point of

inflection.

Point of inflection 2
I f (x) = x1/3 has a point of inflection at 0, has a tangent line at 0,

but f ′(0) and f ′′(0) do not exist. (Vertical tangent line. Just bend
a bit, and both derivatives will exist.)

I

f (x) =

{
x2 if x ≥ 0,

−x2 if x < 0

has a point of inflection at 0, and f ′(0) exists, but f ′′(0) does not
exist. (First derivatives match, so we get a tangent line, but
second derivatives do not match.)

I

f (x) =

{
x2 + x if x ≥ 0,

−x2 − 2x if x < 0

does not have a tangent line at 0, since the first derivatives do
not match. However, the second derivative changes sign at 0. Is
this a point of inflection? I have chosen to not include this, but
some people do.



Point of inflection 3

1. If c is a point of inflection and f ′′(c) exists, then f ′′(c) = 0.

2. If c is a point of inflection, then c is an isolated extremum of f ′.

3. If c is a point of inflection, then the curve lies on different sides
of the tangent line at c.

Point of inflection 4
I Proof of 3: We use MVT go get x1 between c and x with

f (x)− f (c)
x − c

= f ′(x1),

or
f (x) = f (c) + f ′(x1)(x − c).

I We now use MVT again to get x2 between c and x1 with

f ′(x1)− f ′(c)
x1 − c

= f ′′(x2),

or
f ′(x1) = f ′(c) + f ′′(x2)(x1 − c).

I Combining this, we get

f (x) = f (c) + f ′(x1)(x − c)

= f (c) + f ′(c)(x − c) + f ′′(x2)(x − c)(x1 − c).



Point of inflection 5

I The tangent line to f (x) at c is t(x) = f (c) + f ′(c)(x − c), so
the distance between f and the tangent is f ′(x2)(x − c)(x1 − c).

I Since (x1 − c) and (x1 − c) have the same sign, their product is
positive. But f ′′(x) changes sign at c, so f (x) will lie on different
sides of the tangent at c.

Point of inflection 6
I Converse to 1 is false: f (x) = x4 has f ′′(0) = 0, but f ′′(x) ≥ 0.
I Converse to 2 is false: f (x) = x3 + x4 sin(1/x) has

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3− cos(1/x) + 4x sin(1/x) ≥ 0

in a neighborhood of 0, so 0 is an isolated minimum of f ′(x). We
have f ′′(0) = 0, but
f ′′(x) = 6x − sin(1/x)− 6x cos(1/x) + 12x2 sin(1/x) does not
change sign.

I



Point of inflection 7

I We need to “integrate” the example 2x2 + x2 sin(1/x). Since
the derivative of 1/x is −1/x2, we try

f (x) = x3 + x4 sin(1/x),

f ′(x) = 3x2 − x2 cos(1/x) + 4x3 sin(1/x)

= x2(3− cos(1/x) + 4x sin(1/x)).

I The first two terms give us the shape we want, and the last
terms is so small that we can ignore it.

Point of inflection 8
I Converse to 3 is false:

f (x) = 2x3 + x3 sin(1/x) = x3(2 + sin(1/x)) lies below the
tangent (y = 0) on one side and above the tangent on another,
but f ′′(x) = 12x + 6x sin(1/x)− 4 cos(1/x)− (1/x) sin(1/x)
does not change sign, since when x is small, the last term will
be oscillate wildly.

I The cubic terms gives the desired shape of the curve, and since
the derivative of 1/x is −1/x2, we will get a term of the form
(1/x) sin(1/x) in f ′′(x), which will make it oscillate wildly.

I


