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Greatest Common Divisor

We denote the greatest common divisor (or greatest common
factor) of m, n € N by gcd(m, n) or simply (m, n). If (m,n) =1,
we say that m and n are relatively prime or coprime.

If we know the prime factorization of m = pf“ .- pZ and

n= pﬁ” .- p” then (m,n) = p{" - - p;” where ¢; = min(a;, b;).
Notice that some of the a;, b; and ¢; may be 0.

Ufortunately, factorization is computationally hard, so we need a
way to compute gcd without factoring.

This is given by the Euclidean Algorithm (ca 300 BCE).
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» The basic idea is the following Lemma:

Lemma
ged(m — kn, n) = gcd(m, n) for k,m, n € N.

» For example, we have

(54,24) = (54 —2-24,24) = (6,24)
= (6,24 —4-6) = (6,0) = 6.
» Note that since n- 0 = 0, any number is a divisor of 0, so
(n,0) = n.
» Since division is just repeated subtraction, we can at each step
replace (a, b), with a > b, by (mod(a, b), b), where mod(a, b)
denotes the remainder when dividing a by b.

» The Euclidean Algorithm consists simply in repeated application
of this idea until one number becomes 0, at which stage the
other number is the gcd.
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» Let us consider a nontrivial example where m = 41 - 51 = 2091
and n = 43 - 47 = 2021.

(2091, 2021)
— (2091 — 2021, 2021) = (70,2021)

— (70,2021 — 28 - 70) = (70,2021 — 1960) = (70,61)
(70 — 61,61) = (9, 61)

— (9,61 —6-9) =(9,7)

=(9-7,7)=(2,7)

—(2,7-3-2)=(2,1)

—(2-2-1,1)=(0,1) = 1.

» Notice the way the two nubers decrease. The smallest number
becomes the largest number, and then gets “divided away” to be
replaced by a new smallest number.
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» Let us now prove our Lemma.

» Proof: If d is a common divisor of m and n, then m = dmy and
n= dny so m— kn= d(my — kny) and d is also a common
divisor of m — kn and n.

» If d is a common divisor of m — kn and n, then m — kn = dl and
n=dny som=m—kn+ kn=d(/+ ny) so dis a common
divisor of m and n.

» Since the two pairs have the same common divisors, they also
have the same greatest common divisor. ]
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» We can also run the steps in the algorithm backwards. This
enables us to express the gcd as a linear combination of the two
numbers.

(7,5) = (2,5) = (2,1) = (0,1) = 1.
> 1=2-1=2-(5-22) =32-1.5=3(7-5)—1.5 = 3.7-4.5.

(21,15) = (6,15) = (6,3) = (0,3) = 3.
»3=6-3=6-(15-2-6)=3-6—1-15=
3(21 —15) —1-15=23-21 —4- 15,

» The Euclidean Algorithm will both give us the gcd and express
the gcd as a linear combination of the two numbers.



UiO ¢ University of Oslo

Greatest Common Divisor 6

» We will define, I(m, n), the ideal generated by m and n to be the
set of integral linear combinations of m and n,
{xm+yn|x,y € Z}.

» If d = (m, n), and we denote the set of integral multiples of d by
I(d), then we have I(m, n) C I(d), since a linear combination of
m and nis also a multiple of d.

» However, if we run the Euclidean Algorithm backwards, we see
that we can express d as a linear combination of m and n, and
that shows that /(d) C I(m, n), so these two sets are in fact
equal, and we have proved the following theorem.

» Theorem

For m, n € 7Z we have

{xm+yn|x,y € Z} = {zged(m,n) | z € Z}.
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Bézout’s Lemma

» This fact can be restated in a useful form known as Bézout’s
Lemma, named after Etienne Bézout (1730—1783).

Lemma (Bézout's Lemma)

Let c be the smallest positive number that can be written in the form
xm + yn. Then ¢ = gcd(m, n).

» This lemma gives an alternative characterization of the gcd. It is
a consequence of the previous Theorem, since c is the smallest
positive number on the left, and d is the smallest positive
number on the right.
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Proof of Bézout’s Lemma

» We will also give a direct proof.

» Proof: If we divide m by ¢, we subtract multiples of ¢ from m, but
since c is a linear combination of m and n, the remainder will
also be a linear combination of m and n.

» But since the remainder is less that ¢, and c is the smallest
positive number of this form, the remainder must be zero, so ¢
divides m.

» The same argument applies to n, so ¢ is a common divisor of m
and n.

» Let kK any common divisor of m and n. Then m = kmy and
n = kny, so ¢ = xm+ yn = k(xmy + yn;), so k must also be a
divisor of ¢. Hence c is the greatest common divisor. ]
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The Fundamental Theorem of Arithmetic

» p > 1is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)
For n > 1 there is a unique expression
n:pf1 ...p,lff7
where p1 < po < --- < p, are prime numbers and each k; > 1.

» The reason why we do not want 1 to be a prime number, is to
ensure uniqueness in this decomposition.
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Proof of FTA

» Proof of existence: If nis prime, the theorem is true. If not, we
can write n = ab, and consider a and b separately. In this way
we get a product of smaller and smaller factors, but this process
must stop, which it does when the factors are primes. This was
proved by Euclid around 300 BCE. O

» |n order to prove uniqueness, we first need a property of prime
numbers.
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Proof of FTA 2

» We write m|n if m divides n.

Lemma
Let p be a prime number, and m, n € N. If p|mn, then p|m or p|n.

» Proof: Assume that p/m. Then (p, m) = 1, so Jx, y such that
XxXp+ym=1.

» Then xpn + ymn = n, and since p|mn, it follows that p|n. O

» This fails if p is not prime, since 6|(3 - 4) without 6 dividing any
of the factors.
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» Proof of uniqueness: Suppose the decomposition is not unique.
After cancelling common factors, we can then assume that

P1--Pxk=0q---q

where p; # g; for all i and j.

» |t then follows from our lemma that p; either divides g¢, which is
impossible since we assumed that py is not equal to g4, or p4
divides @z - - - g;. Applying the lemma again, we eventually get a
contradiction. ]
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Least Common Multiple

» We denote the least common multiple of m and n by lcm(m, n).
> lfm=p¥...pand n=p - p, then

ged(m, n) = p;nin(a1,b1) N -,O,Tin(ak’bk)
and
lcm(m, n) = p;“ax(aubﬂ ) ,p;(naX(ak,bk)7

and since max(a, b) + min(a, b) = a + b, we have

ged(m, n) - lem(m, n) = mn,
mn

lcm(m, n) = ged(m. 1)’

» This shows that lcm(m, n) = mn precisely when gcd(m, n) = 1.
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Modular Arithmetic

» We will say that a= b (mod n) or 2 = bif ndivides a — b.

» LetZ,={0,...,n— 1} be the set of congruence classes mod
n.

» Let us compute the multiplication table for Zs.

0|12
0|l0(0]O0
110112
21021
UiO ¢ University of Oslo
Modular Arithmetic 2

» Let us compute the multiplication table for Zs.

0O|1,2 |34
000|000
1140123 |4
21101214 ]1]3
3103|142
410143 |2|1

» Notice that
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» We will call @ € Z, a unit if it has an inverse, i.e., thereis b € Z,
such thatab =1,
Lemma

ais a unitin Zn if and only if gcd(a, n) = 1.
>

(a,n) =1 <= db,csuchthat ba+ cn=1
< ba—1=-cn < ab=1. [

» It follows that if p is prime, then for any a € Z, with
1 <a<p-—1wehave (a,p) =1, and it follows that all @ # 0
are units in Z.
> If pis prime, then Z, is a field. That means that we can add and
multiply, and all non-zero elements have a multiplicative inverse.
» If ais invertible, then the equation ax = b has the solution
Xx=2a 'b.

UiO ¢ University of Oslo

Modular Arithmetic 3

» Let us compute the multiplication table for Zs.

0|1,12|3]4]5
0[/0[{0|0O]|O0O]|0O|O
1110(1]2|3|4|5
21102402 |4
3(/0[{3[{0|3]0|3
410(4(2|04|2
511054321

» Notice that 5 is the only unit, and that its row is a permutation of
the classes.

» Notice that {0, 3} and {0, 2, 4} are closed under addition and
multiplication.

» Since (n—1,n)=1and(n—1)i=—i=n—i (mod n), we
see that the last row in the multiplication table of Z, will always
be the classes in decreasing order.



UiO ¢ University of Oslo

Fermat’s Little Theorem

» Theorem (Fermat’s Little Theorem)

Let p be a prime number. If p fa, then a8*~1 =1 (mod p).

» Proof: Consider the set of nonzero congruence classes
{1,...,p— 1} andtheset {al,...,a(p— 1)}.

a-i=a-j (mod p)
a(i—j)=0 (mod p).

Since p Ja, this can only happen if i = j, so the two sets of
classes are the same.
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Fermat’s Little Theorem 2

» We multiply the elements of the two sets together and get

(a-1)---(a-(p=1)=1---(p—1) (mod p)
& '(p—1)!'=(p—1)! (mod p)
@ '=1 (mod p),

since (p — 1)! Z 0 (mod p).
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» We can also write this as a” = a (mod p). In this form, the
statement is also true for a = kp. For small values we can see
this directly.

» & — a= a(a— 1) is always divisible by 2, since in the product
of two consecutive integers, one the the factors must be even.

» Similarly, 8 —a=a(a® — 1) = (a+ 1)a(a— 1) is always
divisible by 3, since in the product of three consecutive integers,
one the the factors must be divisible by 3.
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Euler’s ¢ function

» In 1763, Leonhard Euler (1707—1783) defined ¢(n) to be the
number of integers k with 1 < k < nand gcd(k, n) = 1.

» We have ¢(p) = p — 1 for any prime number p.
» In general

p(pf) =p* —pf 1 =p~ (1 - 15) ,

since the only numbers less than or equal to p* that are not
relatively prime to p* are xp for 1 < x < p¥—1.
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» We will prove that ¢ is multiplicative, meaning that
(m,n) =1 = ¢(mn) = ¢(m)¢(n).

» Consider m =5 and n = 7. Then the numbers less than or
equal to 35 that are not coprime with 35 are the 11 multiples of

5 and 7 less than or equal to 35, i.e. 5, 7, 10, 14, 15, 20, 21, 25,

28, 30, 35.
> |t follows that ¢(35) =35 —11 =24 =4-6 = ¢(5)¢(7)
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Euler’s ¢ function 3

» We will first need a lemma.

Lemma
Assume that (m,n) = 1. Then

ged(m,y) =1 Aged(n,x) =1 < gecd(mx + ny,mn) = 1.

» Proof (optional): Suppose there is a p > 1 such that
p|(mx + ny, mn). Then p|mn and we know that p|m or p|n.
Assume that p|m. Then ply, so (m, y) > 1. Similarly if p|n.

» Suppose that (n, x) > 1. Since (n, x)|mx + ny, we have
(mx + ny, mn) > 1. Similarly (m, y) > 1 also implies
(mx + ny, mn) > 1.
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» We can now easily prove the theorem.

Theorem

ged(m,n) =1 = ¢(mn) = p(m)¢(n).

» Proof (optional): Suppose that x ranges through the ¢(n)
numbers coprime to n and y ranges through the ¢(m) numbers
coprime to m. Then mx + ny ranges through the ¢(m)¢(n)
numbers coprime to mn, which equals ¢(mn). O]

> It now follows that if n = p?' - - - pg¥, then

o(n) = o(py" - PgF) = d(pT") - - - P(PF)

(3] 1-3) -l (-3)

pln
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Euler's Theorem

» We can generalize Fermat’s Little Theorem as follows.

Theorem (Euler’s Theorem)

Ifgcd(a, n) = 1, then a?(") =1 (mod n).

» Proof: Similar to the proof of Fermat'’s Little Theorem, of which it
is a generalization, since ¢(p) = p — 1.
» Instead of considering the set of nonzero congruence classes,

we consider the set {Cy, . .., Cy(n) } Of congruence classes
corresponding to ¢ with (¢, n) = 1. N
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» Forn=>5,wegetthat $(5) =4and2 =3 =4 =1, but
notice that 4° = 1, too.

» For n = 6, we get that $(6) = 2 and 5° = 1.

» Forn=8,wegetthat $(8) =4and3" =5* =7 =T, but

notice that 3° = 52 = 72 — 1, too.
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Order of an element

» If a € Z, is a unit, we will say that the order of a is the smallest
positive number k such that &€ = 1 (mod n).

Lemma
Ifgcd(a, n) = 1 and k is the order a, then k|¢(n).

> Proof: We know that a*(") =1 (mod n). Suppose that
o(n) = Ik + r, where 0 < r < k. Then

1=2a%" =% = (&) a =a (mod n),

but since k is smallest positive number with &€ =1 (mod n),
we must have r = 0, so k|¢p(n). O]

» In Zs, the orders of 2 and 3 are ¢(5) = 4, but the order of 4 is 2.
» In Zg, the order of 5 is ¢(6) = 2.
> In Zg, the orders of 3,5 and 7 are 2 = ¢(8)/2.



