

UiO: University of Oslo

Number Theory

Helmer Aslaksen

Dept. of Teacher Education & Dept. of Mathematics
University of Oslo

helmer.aslaksen@gmail.com www.math.nus.edu.sg/aslaksen/

UiO: University of Oslo Greatest Common Divisor

- We denote the greatest common divisor (or greatest common factor) of $m, n \in \mathbb{N}$ by gcd(m, n) or simply (m, n). If (m, n) = 1, we say that m and n are relatively prime or coprime.
- If we know the prime factorization of $m = p_1^{a_1} \cdots p_r^{a_r}$ and $n = p_1^{b_1} \cdots p_r^{b_r}$, then $(m, n) = p_1^{c_1} \cdots p_r^{c_r}$ where $c_i = \min(a_i, b_i)$. Notice that some of the a_i , b_i and c_i may be 0.
- Ufortunately, factorization is computationally hard, so we need a way to compute gcd without factoring.
- ► This is given by the Euclidean Algorithm (ca 300 BCE).

Greatest Common Divisor 2

▶ The basic idea is the following Lemma:

Lemma

$$gcd(m-kn, n) = gcd(m, n)$$
 for $k, m, n \in \mathbb{N}$.

► For example, we have

$$(54,24) = (54-2\cdot 24,24) = (6,24)$$

= $(6,24-4\cdot 6) = (6,0) = 6.$

- Note that since $n \cdot 0 = 0$, any number is a divisor of 0, so (n,0) = n.
- Since division is just repeated subtraction, we can at each step replace (a, b), with $a \ge b$, by (mod(a, b), b), where mod(a, b) denotes the remainder when dividing a by b.
- ► The Euclidean Algorithm consists simply in repeated application of this idea until one number becomes 0, at which stage the other number is the gcd.

UiO: University of Oslo

Greatest Common Divisor 3

- Let us consider a nontrivial example where $m = 41 \cdot 51 = 2091$ and $n = 43 \cdot 47 = 2021$.

$$(2091, 2021)$$

$$= (2091 - 2021, 2021) = (70, 2021)$$

$$= (70, 2021 - 28 \cdot 70) = (70, 2021 - 1960) = (70, 61)$$

$$= (70 - 61, 61) = (9, 61)$$

$$= (9, 61 - 6 \cdot 9) = (9, 7)$$

$$= (9 - 7, 7) = (2, 7)$$

$$= (2, 7 - 3 \cdot 2) = (2, 1)$$

$$= (2 - 2 \cdot 1, 1) = (0, 1) = 1.$$

▶ Notice the way the two nubers decrease. The smallest number becomes the largest number, and then gets "divided away" to be replaced by a new smallest number.

Greatest Common Divisor 4

- Let us now prove our Lemma.
- ▶ Proof: If d is a common divisor of m and n, then $m = dm_1$ and $n = dn_1$ so $m kn = d(m_1 kn_1)$ and d is also a common divisor of m kn and n.
- If d is a common divisor of m kn and n, then m kn = dl and $n = dn_1$ so $m = m kn + kn = d(l + n_1)$ so d is a common divisor of m and n.
- Since the two pairs have the same common divisors, they also have the same greatest common divisor.

UiO: University of Oslo

Greatest Common Divisor 5

► We can also run the steps in the algorithm backwards. This enables us to express the gcd as a linear combination of the two numbers.

$$(7,5) = (2,5) = (2,1) = (0,1) = 1.$$

▶
$$1 = 2 - 1 = 2 - (5 - 2 \cdot 2) = 3 \cdot 2 - 1 \cdot 5 = 3(7 - 5) - 1 \cdot 5 = 3 \cdot 7 - 4 \cdot 5$$
.

$$(21,15) = (6,15) = (6,3) = (0,3) = 3.$$

▶
$$3 = 6 - 3 = 6 - (15 - 2 \cdot 6) = 3 \cdot 6 - 1 \cdot 15 =$$

 $3(21 - 15) - 1 \cdot 15 = 3 \cdot 21 - 4 \cdot 15.$

► The Euclidean Algorithm will both give us the gcd and express the gcd as a linear combination of the two numbers.

Greatest Common Divisor 6

- ▶ We will define, I(m, n), the ideal generated by m and n to be the set of integral linear combinations of m and n, $\{xm + yn \mid x, y \in \mathbb{Z}\}.$
- If d = (m, n), and we denote the set of integral multiples of d by I(d), then we have $I(m, n) \subseteq I(d)$, since a linear combination of m and n is also a multiple of d.
- However, if we run the Euclidean Algorithm backwards, we see that we can express d as a linear combination of m and n, and that shows that $I(d) \subseteq I(m, n)$, so these two sets are in fact equal, and we have proved the following theorem.

▶ Theorem

For $m, n \in \mathbb{Z}$ we have

$$\{xm + yn \mid x, y \in \mathbb{Z}\} = \{z \gcd(m, n) \mid z \in \mathbb{Z}\}.$$

UiO: University of Oslo Bézout's Lemma

► This fact can be restated in a useful form known as Bézout's Lemma, named after Étienne Bézout (1730–1783).

Lemma (Bézout's Lemma)

Let c be the smallest positive number that can be written in the form xm + yn. Then $c = \gcd(m, n)$.

► This lemma gives an alternative characterization of the gcd. It is a consequence of the previous Theorem, since *c* is the smallest positive number on the left, and *d* is the smallest positive number on the right.

UiO : University of Oslo

Proof of Bézout's Lemma

- We will also give a direct proof.
- ▶ Proof: If we divide *m* by *c*, we subtract multiples of *c* from *m*, but since *c* is a linear combination of *m* and *n*, the remainder will also be a linear combination of *m* and *n*.
- ▶ But since the remainder is less that c, and c is the smallest positive number of this form, the remainder must be zero, so c divides m.
- ► The same argument applies to *n*, so *c* is a common divisor of *m* and *n*.
- Let k any common divisor of m and n. Then $m = km_1$ and $n = kn_1$, so $c = xm + yn = k(xm_1 + yn_1)$, so k must also be a divisor of c. Hence c is the greatest common divisor.

UiO: University of Oslo

The Fundamental Theorem of Arithmetic

ho > 1 is prime number if its only factors are 1 and p.

Theorem (The Fundamental Theorem of Arithmetic)

For n > 1 there is a unique expression

$$n=p_1^{k_1}\cdots p_r^{k_r},$$

where $p_1 < p_2 < \cdots < p_r$ are prime numbers and each $k_i \ge 1$.

► The reason why we do not want 1 to be a prime number, is to ensure uniqueness in this decomposition.

UiO: University of Oslo Proof of FTA

- Proof of existence: If *n* is prime, the theorem is true. If not, we can write *n* = *ab*, and consider *a* and *b* separately. In this way we get a product of smaller and smaller factors, but this process must stop, which it does when the factors are primes. This was proved by Euclid around 300 BCE. □
- In order to prove uniqueness, we first need a property of prime numbers.

UiO: University of Oslo Proof of FTA 2

▶ We write m|n if m divides n.

Lemma

Let p be a prime number, and $m, n \in \mathbb{N}$. If p|mn, then p|m or p|n.

- ▶ Proof: Assume that $p \not| m$. Then (p, m) = 1, so $\exists x, y$ such that xp + ym = 1.
- ▶ Then xpn + ymn = n, and since p|mn, it follows that p|n.
- ► This fails if p is not prime, since $6|(3 \cdot 4)$ without 6 dividing any of the factors.

► Proof of uniqueness: Suppose the decomposition is not unique. After cancelling common factors, we can then assume that

$$p_1 \cdots p_k = q_1 \cdots q_l$$

where $p_i \neq q_i$ for all i and j.

It then follows from our lemma that p_1 either divides q_1 , which is impossible since we assumed that p_1 is not equal to q_1 , or p_1 divides $q_2 \cdots q_l$. Applying the lemma again, we eventually get a contradiction.

UiO: University of Oslo

Least Common Multiple

- ▶ We denote the least common multiple of m and n by lcm(m, n).
- If $m = p_1^{a_1} \cdots p_k^{a_k}$ and $n = p_1^{b_1} \cdots p_k^{b_k}$, then

$$\gcd(m,n)=p_1^{\min(a_1,b_1)}\cdots p_k^{\min(a_k,b_k)}$$

and

$$\operatorname{lcm}(m,n) = p_1^{\max(a_1,b_1)} \cdots p_k^{\max(a_k,b_k)},$$

and since max(a, b) + min(a, b) = a + b, we have

$$\gcd(m, n) \cdot \operatorname{lcm}(m, n) = mn,$$
 $\operatorname{lcm}(m, n) = \frac{mn}{\gcd(m, n)}.$

▶ This shows that lcm(m, n) = mn precisely when gcd(m, n) = 1.

UiO: University of Oslo Modular Arithmetic

- ▶ We will say that $a \equiv b \pmod{n}$ or $\bar{a} = \bar{b}$ if n divides a b.
- Let $\mathbb{Z}_n = \{\overline{0}, \dots, \overline{n-1}\}$ be the set of congruence classes mod n.
- ▶ Let us compute the multiplication table for \mathbb{Z}_3 .

	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

UiO: University of Oslo Modular Arithmetic 2

▶ Let us compute the multiplication table for \mathbb{Z}_5 .

	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

Notice that

$$\overline{2}^2 = \overline{4}, \quad \overline{2}^3 = \overline{3}, \quad \overline{2}^4 = \overline{1},$$
 $\overline{3}^2 = \overline{4}, \quad \overline{3}^3 = \overline{2}, \quad \overline{3}^4 = \overline{1},$
 $\overline{4}^2 = \overline{1}, \quad \overline{4}^3 = \overline{4}, \quad \overline{4}^4 = \overline{1}.$

Modular Arithmetic 3

▶ We will call $\overline{a} \in \mathbb{Z}_n$ a unit if it has an inverse, i.e., there is $\overline{b} \in \mathbb{Z}_n$ such that $\overline{a}\overline{b} = \overline{1}$.

Lemma

 \overline{a} is a unit in \mathbb{Z}_n if and only if gcd(a, n) = 1.

$$(a, n) = 1 \iff \exists b, c \text{ such that } ba + cn = 1$$

 $\iff ba - 1 = -cn \iff \overline{a}\overline{b} = \overline{1}.$

- It follows that if p is prime, then for any $\overline{a} \in \mathbb{Z}_p$ with $1 \le a \le p-1$ we have (a,p)=1, and it follows that all $\overline{a} \ne \overline{0}$ are units in \mathbb{Z}_p .
- ▶ If p is prime, then \mathbb{Z}_p is a field. That means that we can add and multiply, and all non-zero elements have a multiplicative inverse.
- If a is invertible, then the equation $\overline{a}\overline{x} = \overline{b}$ has the solution $\overline{x} = \overline{a}^{-1}\overline{b}$.

UiO: University of Oslo

Modular Arithmetic 3

▶ Let us compute the multiplication table for \mathbb{Z}_6 .

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

- Notice that $\overline{5}$ is the only unit, and that its row is a permutation of the classes.
- Notice that $\{\overline{0},\overline{3}\}$ and $\{\overline{0},\overline{2},\overline{4}\}$ are closed under addition and multiplication.
- Since (n-1,n)=1 and $(n-1)i\equiv -i\equiv n-i\pmod n$, we see that the last row in the multiplication table of \mathbb{Z}_n will always be the classes in decreasing order.

► Theorem (Fermat's Little Theorem)

Let p be a prime number. If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

▶ Proof: Consider the set of nonzero congruence classes $\{\bar{1}, \dots, \overline{p-1}\}$ and the set $\{\bar{a}\bar{1}, \dots, \bar{a}(\overline{p-1})\}$.

$$a \cdot i \equiv a \cdot j \pmod{p}$$

 $a(i-j) \equiv 0 \pmod{p}$.

Since $p \not| a$, this can only happen if $\bar{i} = \bar{j}$, so the two sets of classes are the same.

UiO: University of Oslo

Fermat's Little Theorem 2

▶ We multiply the elements of the two sets together and get

$$(a \cdot 1) \cdots (a \cdot (p-1)) \equiv 1 \cdots (p-1) \pmod{p}$$
$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$
$$a^{p-1} \equiv 1 \pmod{p},$$

since
$$(p-1)! \not\equiv 0 \pmod{p}$$
.

- ▶ We can also write this as $a^p \equiv a \pmod{p}$. In this form, the statement is also true for a = kp. For small values we can see this directly.
- ▶ $a^2 a = a(a 1)$ is always divisible by 2, since in the product of two consecutive integers, one the factors must be even.
- Similarly, $a^3 a = a(a^2 1) = (a + 1)a(a 1)$ is always divisible by 3, since in the product of three consecutive integers, one the factors must be divisible by 3.

UiO: University of Oslo Euler's ϕ function

- ▶ In 1763, Leonhard Euler (1707–1783) defined $\phi(n)$ to be the number of integers k with $1 \le k \le n$ and gcd(k, n) = 1.
- ▶ We have $\phi(p) = p 1$ for any prime number p.
- In general

$$\phi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right),\,$$

since the only numbers less than or equal to p^k that are not relatively prime to p^k are xp for $1 \le x \le p^{k-1}$.

Euler's ϕ function 2

 \blacktriangleright We will prove that ϕ is multiplicative, meaning that

$$(m, n) = 1 \implies \phi(mn) = \phi(m)\phi(n).$$

- Consider m = 5 and n = 7. Then the numbers less than or equal to 35 that are not coprime with 35 are the 11 multiples of 5 and 7 less than or equal to 35, i.e. 5, 7, 10, 14, 15, 20, 21, 25, 28, 30, 35.
- ▶ It follows that $\phi(35) = 35 11 = 24 = 4 \cdot 6 = \phi(5)\phi(7)$

UiO : University of Oslo Euler's ϕ function 3

▶ We will first need a lemma.

Lemma

Assume that (m, n) = 1. Then

$$gcd(m, y) = 1 \land gcd(n, x) = 1 \iff gcd(mx + ny, mn) = 1.$$

- ▶ Proof (optional): Suppose there is a p > 1 such that p|(mx + ny, mn). Then p|mn and we know that p|m or p|n. Assume that p|m. Then p|y, so (m, y) > 1. Similarly if p|n.
- Suppose that (n, x) > 1. Since (n, x)|mx + ny, we have (mx + ny, mn) > 1. Similarly (m, y) > 1 also implies (mx + ny, mn) > 1.

Euler's ϕ function 4

▶ We can now easily prove the theorem.

Theorem

$$gcd(m, n) = 1 \implies \phi(mn) = \phi(m)\phi(n).$$

- Proof (optional): Suppose that x ranges through the $\phi(n)$ numbers coprime to n and y ranges through the $\phi(m)$ numbers coprime to m. Then mx + ny ranges through the $\phi(m)\phi(n)$ numbers coprime to mn, which equals $\phi(mn)$.
- lt now follows that if $n = p_1^{a_1} \cdots p_k^{a_k}$, then

$$\phi(n) = \phi(p_1^{a_1} \cdots p_k^{a_k}) = \phi(p_1^{a_1}) \cdots \phi(p_k^{a_k})$$

$$= p_1^{a_1} \left(1 - \frac{1}{p_1}\right) \cdots p_k^{a_k} \left(1 - \frac{1}{p_k}\right) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right).$$

UiO: University of Oslo Euler's Theorem

▶ We can generalize Fermat's Little Theorem as follows.

Theorem (Euler's Theorem)

If
$$gcd(a, n) = 1$$
, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

- ▶ Proof: Similar to the proof of Fermat's Little Theorem, of which it is a generalization, since $\phi(p) = p 1$.
- ▶ Instead of considering the set of nonzero congruence classes, we consider the set $\{\overline{c_1},\ldots,\overline{c_{\phi(n)}}\}$ of congruence classes corresponding to c with (c,n)=1.

UiO: University of Oslo Euler's Theorem 2

- For n = 5, we get that $\phi(5) = 4$ and $\overline{2}^4 = \overline{3}^4 = \overline{4}^4 = \overline{1}$, but notice that $\overline{4}^2 = \overline{1}$, too.
- For n = 6, we get that $\phi(6) = 2$ and $\overline{5}^2 = \overline{1}$.
- For n=8, we get that $\phi(8)=4$ and $\overline{3}^4=\overline{5}^4=\overline{7}^4=\overline{1}$, but notice that $\overline{3}^2=\overline{5}^2=\overline{7}^2=\overline{1}$, too.

UiO: University of Oslo

Order of an element

▶ If $\overline{a} \in \mathbb{Z}_n$ is a unit, we will say that the *order* of a is the smallest positive number k such that $a^k \equiv 1 \pmod{n}$.

Lemma

If gcd(a, n) = 1 and k is the order a, then $k | \phi(n)$.

▶ Proof: We know that $a^{\phi(n)} \equiv 1 \pmod{n}$. Suppose that $\phi(n) = lk + r$, where $0 \le r < k$. Then

$$1 \equiv a^{\phi(n)} \equiv a^{lk+r} \equiv (a^k)^l a^r \equiv a^r \pmod{n},$$

but since k is smallest positive number with $a^k \equiv 1 \pmod{n}$, we must have r = 0, so $k | \phi(n)$.

- ▶ In \mathbb{Z}_5 , the orders of $\overline{2}$ and $\overline{3}$ are $\phi(5) = 4$, but the order of $\overline{4}$ is 2.
- ▶ In \mathbb{Z}_6 , the order of $\overline{5}$ is $\phi(6) = 2$.
- ▶ In \mathbb{Z}_8 , the orders of $\overline{3}$, $\overline{5}$ and $\overline{7}$ are $2 = \phi(8)/2$.