
SOLUTIONS TO EXERCISES IN AN
INTRODUCTION TO CONVEXITY

ØYVIND RYAN ∗

JUNE 2020

∗ University of Oslo, Centre of Mathematics for ApplicatiP.O.Box 1053, Blindern,
0316 Oslo, Norway (geird@math.uio.no)





Contents

1 The basic concepts 1
2 Convex hulls and Carathéodory’s theorem 8
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Chapter 1

The basic concepts

Exercise 1.1. Let x1, x2, y1, y2 ∈ IRn and assume that x1 ≤ x2 and y1 ≤ y2.
Verify that the inequality x1+y1 ≤ x2+y2 also holds. Let now λÂ be a nonnegative
real number. Explain why λx1 ≤ λx2 holds. What happens if λis negative?

Solution: We have that x1 + y1 ≤ x2 + y1 ≤ x2 + y2, since adding the same
number to the both sides does not alter the inequality. If λ < 0 we obtain that
λx1 ≥ λx2, since multiplication with a negative number changes the direction of
the inequality.

Exercise 1.2. Think about the question in Exercise 1.1 again, now in light of
the properties explained in Example 1.2.1.

Solution: The exercise adds to the observation that IRn
+ is closed under addition

and multiplication with positive scalars, that these two operations also respect
the ordering in IRn

+ defined by x ≤ y ⇐⇒ xi ≤ yi for all i.

Exercise 1.3. Let a ∈ IRn
+ and assume that x ≤ y. Show that aTx ≤ aTy. What

happens if we do not require a to be nonnegative here?

Solution: If a ∈ IRn
+, since xi ≤ yi we have that aixi ≤ aiyi. We obtain that

aTx =
n∑
i=1

aixi ≤
n∑
i=1

aiyi = aTy,

and the result follows. If a has some negative components, the corresponding
inequality is reversed. If all entries of a are nonpositive, the sum inequality above
is also reversed.

Exercise 1.4. Show that every ball B(a, r) := {x ∈ IRn : ‖x− a‖ ≤ r} is convex
(where a ∈ IRn and r ≥ 0).

Solution: Assume that x ∈ B(a, r), y ∈ B(a, r), so that ‖x−a‖ ≤ r, y−a‖ ≤ r.
We have that

‖((1− λ)x+ λy)− a‖ = ‖(1− λ)(x− a) + λ(y − a)‖
≤ (1− λ)‖x− a‖+ λ‖y − a‖ ≤ (1− λ)r + λr = r,
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2 CHAPTER 1. THE BASIC CONCEPTS

so that also (1− λ)x+ λy ∈ B(a, r). It follows that B(a, r) is convex.

Exercise 1.5. Explain how you can write the LP problem max {cTx : Ax ≤ b}
in the form max {cTx : Ax = b, x ≥ O}.
Solution: Ax ≤ b is equivalent to solving Ax + z = b, z ≥ 0 for x and z. Now,
write x = x1 − x2 where x1, x2 ≥ 0. We have the system

A(x1 − x2) + z = Ax1 − Ax2 + z =
(
A −A I

)x1x2
z

 = b,

so that A is replaced with
(
A −A I

)
.

Exercise 1.6. Make a drawing of the standard simplices S1, S2Â and S3. Verify
that each unit vector ej lies in Sn (ej has a one in position j, all other components
are zero). Each x ∈ Sn may be written as a linear combination x =

∑n
j=1 λjej

where each λjÂ is nonnegative and
∑n

j=1 λj = 1. How? Can this be done in
several ways?

Solution: ej lies in Sn since its components sum to one. In x =
∑n

j=1 λjej,
we simply have that λj = xj (the j’th component of x). This decomposition is
unique, due to linear independence of the standard basis.

Exercise 1.7. Show that each convex cone is indeed a convex set.

Solution: Let C be a convex cone, and let x1 ∈ C, x2 ∈ C. Then (1−λ)x1+λx2 ∈
C for 0 ≤ λ ≤ 1, since λ, 1− λ ≥ 0. It follows that C also is a convex set.

Exercise 1.8. Let A ∈ IRm,n and consider the set C = {x ∈ IRn : Ax ≤ O}.
Prove that C is a convex cone.

Solution: Let x1, x2 ∈ C, and λ1, λ2 ≥ 0. Then we have that

A(λ1x1 + λ2x2) = λ1Ax1 + λ2Ax2 ≤ 0

since Axi ≤ 0. It follows that λ1x1 + λ2x2, so that C is a convex cone.

Exercise 1.9. Prove that C(x1, . . . , xt) is a convex cone.

Solution: Let y, z ∈ C(x1, . . . , xt), so that

y = a1x1 + . . .+ atxt z = b1x1 + . . .+ btxt,

where a1, b1, . . . , at, bt ≥ 0. Let λ1, λ2 ≥ 0. We have that

λ1y + λ2z = (λ1a1 + λ2b1)x1 + . . .+ (λ1at + λ2bt)xt,

where all λ1ai +λ2bi ≥ 0 (since all variables are ≥ 0). It follows that λ1y+λ2z ∈
C(x1, . . . , xt), so that C(x1, . . . , xt) is a convex cone.
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Exercise 1.10. Let S = {(x, y, z) : z ≥ x2 + y2} ⊂ IR3. Sketch the set and verify
that it is a convex set. Is SÂ a finitely generated cone?

Solution: Assume that a1 = (x1, y1, z1), a2 = (x2, y2, z2) are both in S, so that
z1 ≥ x21 + y21, z2 ≥ x22 + y22. Convexity of S is the same as showing, for 0 ≤ λ ≤ 1,
that

(1− λ)a1 + λa2 = ((1− λ)x1 + λx2, (1− λ)y1 + λy2, (1− λ)z1 + λz2) ∈ S,

i.e., that

((1− λ)x1 + λx2)
2 + ((1− λ)y1 + λy2)

2 ≤ (1− λ)z1 + λz2.

We have that

((1− λ)x1 + λx2)
2 ≤ (1− λ)x21 + λx22

(since this can be reorganized to λ(1−λ)(x21+x22−2x1x2 = λ(1−λ)(x1−x2)2 ≥ 0.
Convexity of the function f(x) = x2 is really what is at play here. We will return
to this later), and similarly

((1− λ)y1 + λy2)
2 ≤ (1− λ)y21 + λy22.

It follows that

((1− λ)x1 + λx2)
2 + ((1− λ)y1 + λy2)

2

≤ (1− λ)x21 + λx22 + (1− λ)y21 + λy22
= (1− λ)(x21 + y21) + λ(x22 + y22) ≤ (1− λ)z1 + λz2,

and the result follows.

Exercise 1.11. Consider the linear system 0 ≤ xi ≤ 1 for i = 1, . . . , n and let
P Â denote the solution set. Explain how to solve a linear programming problem

max{cTx : x ∈ P}.

What if the linear system was ai ≤ xi ≤ biÂ for i = 1, . . . , n. Here we assume
ai ≤ biÂ for each i.

Solution: Since cTx =
∑n

i=1 cixi, we see that the maximum can be obtained by
maximizing each cixi separately. If ci ≥ 0 this maximum is 0. It follows that the
maximum is

∑
i|ci>0 ci.

Exercise 1.12. Is the union of two convex sets again convex?

Solution: No. Take for instance the union of the two intervals (−∞, 1) and
(1,∞).
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Exercise 1.13. Determine the sum A+B in each of the following cases:

(i) A = {(x, y) : x2 + y2 ≤ 1}, B = {(3, 4)};
(ii) A = {(x, y) : x2 + y2 ≤ 1}, B = [0, 1]× {0};
(iii) A = {(x, y) : x+ 2y = 5}, B = {(x, y) : x = y, 0 ≤ x ≤ 1};
(iv) A = [0, 1]× [1, 2], B = [0, 2]× [0, 2].

Solution:

(i): The disk with center (3, 4) and radius 1.

(ii): The left half of the disk with center (0, 0) and radius 1, combined with the
rectangle with corners (0, 1), (0,−1), (1, 1), (1,−1), combined with the disk with
center (1, 0) and radius 1.

(iii): We can write A =

(
5
0

)
+ y

(
−2
1

)
, and B = x

(
1
1

)
, 0 ≤ x ≤ 1. If we set

x = 1 we obtain the line(
5
0

)
+ y

(
−2
1

)
+

(
1
1

)
=

(
6
1

)
+ y

(
−2
1

)
It follows that A+B is the area between the parallel lines(

5
0

)
+ y

(
−2
1

)
and

(
6
1

)
+ y

(
−2
1

)
.

(iv): The rectangle with vertices (0, 1), (0, 4), (3, 1), (3, 4).

Exercise 1.14. (i) Prove that, for every λ ∈ IR and A,B ⊆ IRn, it holds that
λ(A+B) = λA+ λB.

(ii) Is it true that (λ + µ)A = λA + µA for every λ, µ ∈ IR and A ⊆ IRn? If
not, find a counterexample.

(iii) Show that, if λ, µ ≥ 0 and A ⊆ IRn is convex, then (λ+ µ)A = λA+ µA.

Solution:

(i): A general element in A + B is on the form a + b for a ∈ A, b ∈ B. Since
λ(a+ b) = λa+ λb ∈∈ λA+ λB, it follows that λ(A+B) ⊆ λA+ λB. The other
way follows in the same way.

(ii): If λ = −µ the set on the left consists of only the origin, while the set on the
right can be any set.

(iii): Let A be convex, and let a1, a2 ∈ A. Then

λa1 + µa2 = (λ+ µ)

(
λ

λ+ µ
a1 +

µ

λ+ µ
a2

)
∈ (λ+ µ)A
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since A is convex. It follows that λA + µB ⊆ (λ + µ)A. On the other hand, if
a ∈ A,

(λ+ µ)a = λa+ µa ∈ λA+ µA,

so that (λ+ µ)A ⊆ λA+ µA. It follows that (λ+ µ)A = λA+ µA.

Exercise 1.15. Show that if C1, . . . , Ct ⊆ IRnÂ are all convex sets, then C1 ∩
. . . ∩ CtÂ is convex. Do the same when all sets are affine (or linear subspaces,
or convex cones). In fact, a similar result for the intersection of any family of
convex sets. Explain this.

Solution: Assume that x, y ∈ C1 ∩ . . . ∩ Ct. Then, in particular x, y ∈ Ci. Since
Ci is convex, (1− λ)x+ λy ∈ Ci. But then also (1− λ)x+ λy ∈ C1 ∩ . . . ∩Ct, so
that C1 ∩ . . . ∩ Ct is also convex. Affine sets, linear subspaces and convex cones
are all convex, so the result for them also follows. Note that the proof applied
for any number of sets, regardless of cardinality, so the result also holds for any
number of sets.

Exercise 1.16. Consider a family (possibly infinite) of linear inequalities
aTi x ≤ bi, i ∈ I, and C be its solution set, i.e., C is the set of points satisfying
all the inequalities. Prove that C is a convex set.

Solution: Each set aTi x ≤ bi is convex (in fact affine). C is the intersection of all
these sets, so it is also convex, by the previous exercise.

Exercise 1.17. Consider the unit disc S = {(x1, x2) ∈ IR2 : x21 + x22 ≤ 1} in IR2.
Find a family of linear inequalities as in the previous problem with solution set
S.

Solution: For any a ∈ S, use the linear inequality aTx ≤ 1. This describes a
plane with normal vector 1 which supports the unit disc at a. The intersection
of all these half planes thus contains the entire unit disc. If x is a point outside
the unit disc, then clearly the half plane obtained by setting a = x/‖x‖ does not
contain x, so that the intersection is exactly S.

Exercise 1.18. Is the unit ball B = {x ∈ IRn : ‖x‖2 ≤ 1} a polyhedron?

Solution: Assume that B equals the intersection of n sets on the form aTi x ≤ bi.
Clearly we can assume that none of the ai are parallel, that all ‖ai‖2 = 1, and
all bi = 1. The plane aTi x = 1 is a tangent plane to the unit ball at ai, and B is
contained in {x : aTi x ≤ bi}.

Let x be so that ‖x‖2 = 1, and so that x 6= ai for all i. Clearly aTi x < bi for
all i, since for each i x = ai is the unique point in B so that equality holds.
By continuity there exists a point x′ 6∈ B so that aTi x

′ < bi for all i. Thus, the
intersection of all those half planes must contain more than B. It follows that B
is not a polyhedron.
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Exercise 1.19. Show that the unit ball B∞ = {x ∈ IRn : ‖x‖∞ ≤ 1} is convex.
Here ‖x‖∞ = maxj |xj|Â is the max norm of x. Show that B∞ is a polyhedron.
Illustrate when n = 2.

Solution: It is straightforward to show that ‖ · ‖∞ is a norm. Convexity thus
follows from Exercise 1.4, since the proof therein applies for any norm. That B∞ is
a polyhedron follows from writing ‖x‖∞ ≤ 1 equivalently as {xi ≤ 1,−xi ≤ 1}ni=1.
For n = 2 we obtain the square with vertices (1, 1), (−1, 1), (1,−1), (−1,−1).

Exercise 1.20. Show that the unit ball B1 = {x ∈ IRn : ‖x‖1 ≤ 1} is convex.
Here ‖x‖1 =

∑n
j=1 |xj|Â is the absolute norm of x. Show that B1 is a polyhedron.

Illustrate when n = 2.

Solution: It is straightforward to show that ‖ · ‖1 is a norm. Convexity thus fol-
lows as above. That B1 is a polyhedron follows from writing ‖x‖1 =

∑n
j=1 |xj| ≤ 1

equivalently as
∑n

j=1±xj ≤ 1, where the signs traverse all possible 2n combina-
tions. For n = 2 there are four possible sign choices, leadin to the polyhedron
defined by x+ y ≤ 1, x− y ≤ 1, −x+ y ≤ 1, −x− y ≤ 1. This gives the square
with vertices (1, 0), (0, 1), (−1, 0), (0,−1).

Exercise 1.21. Prove Proposition 1.5.1.

Solution: Let x0 ∈ C (C is assumed nonempty), and let L = C − x0 = {x− x0 :
x ∈ C} (so that C = L+ x0). Assume that C is affine. For x ∈ C we have that

λ(x− x0) = λx+ (1− λ)x0 − x0 ∈ L,

since λx + (1 − λ)x0 ∈ C. If x1, x2 ∈ C and λ ∈ IR, it follows that we can write
x1 − x0 = (1− λ)(x3 − x0) and x2 = λ(x4 − x0) for some x3, x4 ∈ C. Thus

x1 − x0 + x2 − x0 = (1− λ)(x3 − x0) + λ(x4 − x0) = (1− λ)x3 + λx4 − x0 ∈ L,

since (1− λ)x3 + λx4 ∈ C. It follows that L is a vector space. From

C − x1 = (C − x0)− (x1 − x0)

it follows that C − x1 ⊆ C − x0 = L. It follows that this vector space is uniquely
defined (i.e., independent of the choice of x0).

Let now A be a matrix, and let C be the solution set of Ax = b. If Ax1 = b,
Ax2 = b, we get

A((1− λ)x1 + λx2) = (1− λ)Ax1 + λAx2 = (1− λ)b+ λb = b,

so that C is affine. The other way, if L is a linear subspace of IRn, and x0 ∈ IRn,
we can find a matrix A with null space L. If Ax0 = b, the solution set of Ax = b
is then the affine set C = L+ x0.
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Exercise 1.22. Let C Â be a nonempty affine set in IRn. Define L = C − C.
Show that L is a subspace and that C = L+ x0 for some vector x0.

Solution: From the previous exercise we can write C = L + x0 (so that L =
C − x0) for a unique subspace L (it does not depend on the choice of x0 ∈ C).

Let x1, x2 ∈ C, so that x1 = l1 + x0, x2 = l2 + x0 for some l1, l2 ∈ L. We get that

x1 − x2 = l1 − l2 ∈ L,

so that C − C ⊆ L. The other way, if l ∈ L, we can write l = x − x0 for some
x ∈ C, so that l ∈ C − C. Thus L ⊆ C − C, so that L = C − C.



Chapter 2

Convex hulls and Carathéodory’s theorem

Exercise 2.1. Illustrate some combinations (linear, convex, nonnegative) of two
vectors in IR2.

Exercise 2.2. Choose your favorite three points x1, x2, x3 in IR2, but make sure
that they do not all lie on the same line. Thus, the three points form the corners
of a triangle C. Describe those points that are convex combinations of two of the
three points. What about the interior of the triangle C, i.e., those points that lie
in C but not on the boundary (the three sides): can these points be written as
convex combinations of x1, x2Â and x3? If so, how?

Solution: Take for instance the three points x1 = (0, 1), x2 = (1, 1), x3 = (1, 0).
The convex combinations of two points lie on the line between those points.
Convex combinations of (0, 1) and (1, 1), as well as convex combinations of (1, 0)
and (1, 1), and convex combinations of (0, 1) and (1, 0), constitute the three edges
which together form the boundary. Clearly, the interior points lie on a line through
x1 and a point on the edge connecting x2 and x3. The latter can be written as
(1 − λ)x2 + λx3. An interior point is thus a convex combination of this and x1,
which can be written as

(1− µ)x1 + µ ((1− λ)x2 + λx3) = (1− µ)x1 + µ(1− λ)x2 + µλx3.

This is a convex combination of the three points, since the coefficients sum to
1− µ+ µ(1− λ+ λ) = 1.

Exercise 2.3. Show that conv(S) is convex for all S ⊆ IRn. (Hint: look at two
convex combinations

∑
j λjxjÂ and

∑
j µjyj, and note that both these points may

be written as a convex combination of the same set of vectors.)

Solution: Let x =
∑t

j=1 λjxjÂ and y =
∑s

j=1 µjyj be convex combinations of
points in S. By taking the union of the points xj and yj, both x and y can be
written as convex combinations of the same set of points {zj}rj=1 (some of the

8
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coefficients may now be zero). We obtain

(1− λ)x+ λy = (1− λ)

(
r∑
j=1

λjzj

)
+ λ

(
r∑
j=1

µjzj

)

=
r∑
j=1

((1− λ)λj + λµj)zj.

Clearly the coefficients (1− λ)λj + λµj sum to one, so that this is also a convex
combination of points in S. It follows that conv(S) is convex.

Exercise 2.4. Give an example of two distinct sets S and T having the same
convex hull. It makes sense to look for a smallest possible subset S0Â of a set S
such that S = conv(S0). We study this question later.

Solution: We can set S = {−1, 0, 1}, and T = {−1, 1}. Both have [−1, 1] as
convex hull.

Exercise 2.5. Prove that if S ⊆ T , then conv(S) ⊆ conv(T ).

Solution: This follows from the fact that a convex combination of points in S
then also is a convex combination of points in T .

Exercise 2.6. If SÂ is convex, then conv(S) = S. Show this!

Solution: This is a compulsory exercise.

Exercise 2.7. Let S = {x ∈ IR2 : ‖x‖2 = 1}, this is the unit circle in IR2.
Determine conv(S) and cone(S).

Solution: conv(S) must contain any point inside the unit circle. This can be seen
if you take any line through this point. This line will intersect the unit circle at
two points, so that the point is a convex combination of two points on the unit
circle. Therefore D ⊆ conv(S), where D = {x ∈ IR2 : ‖x‖2 ≤ 1}. Since conv(S)
is the smallest convex set that contains S and since D is convex and contains S,
we obtain that conv(S) ⊆ D. It follows that conv(S) = D.

If x ∈ IR2 6= 0 then x = ‖x‖2u with u = x/‖x‖2 ∈ S. It follows that u ∈ cone(S),
so that conv(S) = IR2.

Exercise 2.8. Does affine independence imply linear independence? Does linear
independence imply affine independence? Prove or disprove!

Solution: Linear independence (of the columns of A) is the same as

Ax = 0⇒ x = 0.

Affine independence (of the columns of A) is the same as(
A

1 · · · 1

)
x = 0⇒ x = 0,
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i.e., it is the same as linear independence of the columns of A with a last compo-
nent with a one added. Clearly then linear independence implies affine indepen-
dence (since equality in the first n components already implies that the coefficients
must be zero). Affine idependence does not imply linear independence, however:

If A has n rows,

(
A

1 · · · 1

)
can have rank n+1, but A can have rank at most n. In

particular, there can be n + 1 linearly independent column vectors in

(
A

1 · · · 1

)
,

but only n in A.

Exercise 2.9. Let x1, . . . , xt ∈ IRn be affinely independent and let w ∈ IRn. Show
that x1 + w, . . . , xt + w are also affinely independent.

Solution: ∑
i

λi(xi + w) = 0 and
∑
i

λi = 0

is equivalent to ∑
i

λixi = 0 and
∑
i

λi = 0

since
∑

i λiw = 0 when
∑

i λi = 0. The result follows.

Exercise 2.10. Let LÂ be a linear subspace of dimension (in the usual linear
algebra sense) t. Check that this coincides with our new definition of dimension
above. (Hint: add O to a “suitable” set of vectors).

Solution: Let x1, . . . , xt be a basis for L. {0, x1, . . . , xt} are affinely independent
since x1−0, . . . , xt−0 are linearly independent. Therefore the affine dimension of
L is ≥ t. If the affine dimension of L was larger than t, we could find at least t+2
affinely independent points x1, . . . , xt+2 in L, so that x2 − x1, . . . , xt+2 − x1 are
linearly independent. There are t+ 1 vectors here, all in L, so that the dimension
of L is ≥ t+ 1. This is a contradiction. It follows that the affine dimension equals
the dimension.

Exercise 2.11. Prove the last statements in the previous paragraph.

Solution: With A being the set of all
∑t

j=1 λjxi with
∑t

j=1 λj = 1, we have that

(1− λ)
∑
j

λjxj + λ
∑
j

µjxj =
∑
j

(1− λ)λj + λµj)xj ∈ A,

since the coefficients sum to one (by expansion we can clearly assume the same
base set xj for the two linear combinations). It follows that A is affine. Choosing
λj = 0, the other zero, we see that x1, . . . , xd+1 are in A. Then A must in partic-
ular contain all the convex combinations of these points. Since conv(C) = C, A
contains C. Any affine set that contains C must also contain these, so this is the
smallest one.
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Exercise 2.12. Construct a set which is neither open nor closed.

Solution: An example is the half-open interval A = [0, 1).

Exercise 2.13. Show that xk → x if and only if xkj → xj for j = 1, . . . , n. Thus,
convergence of a point sequence simply means that all the component sequences
are convergent.

Solution: If xk → x we can find an N so that ‖xk − x‖2 ≤ ε for k ≥ N . But
since |xkj − xj| ≤ ‖xr − x‖2, it follows that also |xkj − xj| ≤ ε for r ≥ N , so that
xkj → xj for j = 1, . . . , n.

The other way, if xkj → xj for j = 1, . . . , n, we can find an N so that |xkj − xj| ≤
ε/
√
n for all k ≥ N and j = 1, . . . , n. But then, for k ≥ N ,

‖xk − x‖2 =

√√√√ n∑
j=1

|xkj − xj|2 ≤

√√√√ n∑
j=1

ε2/n = ε,

so that xk → x. The result follows.

Exercise 2.14. Show that every simplex cone is closed.

Solution: Let X be the matrix with columns xj (which define the simplex cone).

x is in the simplex cone if and only if it can be written on the form
∑k

j=1 λjxj
for some λj ≥ 0, i.e., x = Xλ (λ is the column vector with components λi).

Since the xj are linearly independent, X has linearly independent columns. As-
sume that XTXx = 0. This implies that Xx is in the null space of XT , which is
orthogonal to the range of X. This implies that Xx = 0, so that x = 0 by linear
independence of the columns of X. It follows that XTX is invertible, so that we
can define X† := (XTX)−1XT .

Myltiplying x = Xλ with X† on each side we obtain that λ = X†x. The simplex
cone can now be written as the inverse image of the closed set λ : λj ≥ 0} under
the continuous map f(x) = X†x. It follows that the simplex cone is closed.

Exercise 2.15. Prove that x ∈ bd(S) if and only if each ball with center x
intersects both S and the complement of S.

Solution: If x ∈ bd(S) is the same as x ∈ cl(S) and x 6∈ int(S). x 6∈ int(S) is the
same as any ball with center x intersects the complement of S. x ∈ cl(S) is the
same as any ball intersects S. The result follows.

Exercise 2.16. Consider again the set C = {(x1, x2, 0) ∈ IR3 : x21 + x22 ≤ 1}.
Verify that

(i) C is closed,
(ii) dim(C) = 2,

(iii) int(C) = ∅,
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(iv) bd(C) = C,
(v) rint(C) = {(x1, x2, 0) ∈ IR3 : x21 + x22 < 1} and

(vi) rbd(C) = {(x1, x2, 0) ∈ IR3 : x21 + x22 = 1}.
Solution:

(i): Assume that xk → x, and that xk ∈ C. Since all x2k + y2k ≤ 1, then also
x2 +y2 ≤ 1. Since all zk = 0, then also z = 0. It follows that x ∈ C also. It follows
that C is closed.

(ii): It is possible to find only 3 affinely independent points in C, sinde the third
component is always zero. The dimension is thus ≤ 2. To see that the dimension
is exactly 3, choose for instance the three points (0, 0, 0), (1, 0, 0), and (0, 1, 0).

(iii): Any ball around a point in C will contain points with nonzero third compo-
nent, so that no ball can be entirely contained in C. It follows that int(C) = ∅.

(iv): bd(C) = cl(C) \ int(C) = C \ ∅ = C.

(v): Clearly aff(C) is the entire xy-plane.

If x21 + x22 < 1, then in IR2 we can find a ball Bo((x1, x2), r) contained in
Bo((0, 0), 1). We then obtain

Bo(x, r) ∩ aff(C) = {(z1, z2, 0) ∈ IR3 : (z1 − x1)2 + (z2 − x22) < r}
= (Bo((x1, x2, r), 0) ⊆ C,

This shows that {(x1, x2, 0) ∈ IR3 : x21 + x22 < 1} ⊆ rint(C).

If x21 +x2 = 1, any ball around such a point contains points suct that z21 +z22 > 1,
so that for such points we can’t have Bo(x, r) ∩ aff(C) ⊆ C.

(vi):

rbd(C) = cl(C) \ rint(C)) = C \ {(x1, x2, 0) ∈ IR3 : x21 + x22 < 1}
= {(x1, x2, 0) ∈ IR3 : x21 + x22 = 1}.

Exercise 2.17. Show that every polytope in IRn is bounded. (Hint: use the prop-
erties of the norm: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ and ‖λx‖ = λ‖x‖ when λ ≥ 0).

Solution: Let C = conv(x1, . . . , xt), ann let x =
∑t

j=1 λjxj with the λj nonneg-
ative and summing to 1. Using the triangle inequality we obtain

‖x‖ = ‖
t∑

j=1

λjxj‖ ≤
t∑

j=1

λj‖xj‖ ≤
t

max
j=1
‖xj‖

t∑
j=1

λj =
t

max
j=1
‖xj‖.

This proves that the polytope is bounded.
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Exercise 2.18. Consider the standard simplex St. Show that it is compact, i.e.,
closed and bounded.

Solution: Since a simplex is in particular polytope, it is bounded because of the
previous exercise. It is closed since it is the inverse of the closed set {1} under
the mapping f(x) = x1 + . . .+ xn restricted to the first “quadrant”.

Exercise 2.19. Give an example of a convex cone which is not closed.

Solution:
S = {(0, 0)} ∪ {x ∈ IR2 : x1, x2 > 0}.

Exercise 2.20. Let S ⊆ IRn and let W be the set of all convex combinations of
points in S. Prove that W is convex.

Solution: See exercise 2.3.

Exercise 2.21. Prove the second statement of Proposition 2.1.1.

Solution: Assume that C is a convex cone. By definition and induction it must
contain all nonnegative combinations of its points.

Assume that C contains all nonnegative combinations of its points. That it is a
convex cone follows by restricting this to any two points.

Exercise 2.22. Give a geometrical interpretation of the induction step in the
proof of Proposition 2.1.1.

Exercise 2.23. Let S = {(0, 0), (1, 0), (0, 1)}. Show that conv(S) = {(x1, x2) ∈
IR2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}.
Solution: A convex combination λ1a1 + λ2a2 + λ3a3 can be written as (λ2, λ1),
and the only requiremnet on the λ1, λ2 is that they are nonnegative and summing
to something less than 1. This shows that the stated set coincides with the set of
convex combinations.

Exercise 2.24. Let S consist of the points (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). Show that conv(S) = {(x1, x2, x3) ∈ IR3 :
0 ≤ xi ≤ 1 for i = 1, 2, 3}. Also determine conv(S \ {(1, 1, 1)} as the solution set
of a system of linear inequalities. Illustrate all these cases geometrically.

Solution: Any convex combination of values between 0 and 1 lies between 0 and
1. Since the coordinates of all the points lie between 0 and 1, conv(S) must consist
of points with coordinates between 0 and 1 as well, i.e., conv(S) ⊆ {(x1, x2, x3) ∈
IR3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3}. The other way, since the points constitute all
vertices of the unit cube, conv(S) will contain all the edges of the unit cube (by
taking convex combinations of adjacent vertices). By taking convex combinations
of edges which on different sides of a face, we see that all faces of the cube are also
contained in conv(S). By taking convex combinations of different faces we obtain
the entire cube, so that {(x1, x2, x3) ∈ IR3 : 0 ≤ xi ≤ 1 for i = 1, 2, 3} ⊆ conv(S).
Equality now follows.
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Now, let us exclude the point (1, 1, 1). In all remaining seven points the coor-
dinates sum to ≤ 2, so that this applies to conv(S \ (1, 1, 1)) as well, which
is thus contained in x1 + x2 + x3 ≤ 2. Consider the polyhedron described by
0 ≤ x1, x2, x3 ≤ 1, and x1 + x2 + x3 ≤ 2. It is easily verified that the vertices of
this set is S \ (1, 1, 1). Since the polyhedron is bounded, and since the vertcies
equal the extreme points (see Chapter 4), it follows that conv(S \ (1, 1, 1)) equals
this polyhedron.

Exercise 2.25. Let A,B ⊆ IRn. Prove that conv(A + B) = conv(A) + conv(B).
Hint: it is useful to consider the sum

∑
j,k λjµk(aj + bk) where aj ∈ A, bk ∈ B

and λj ≥ 0, µk ≥ 0Â and
∑

j λj = 1 and
∑

k µk = 1.

Solution: We have that∑
j,k

λjµk(aj + bk) = (
∑
j

λj)(
∑
k

µkbk) + (
∑
k

µk)(
∑
j

λjaj) =
∑
k

µkbk +
∑
j

λjaj.

The right hand side is a general element in conv(A) + conv(B). Since the left
hand side is a convex combination of elements in A+B, it follows that conv(A)+
conv(B) ⊆ conv(A + B). The other way, conv(A) + conv(B) is clearly convex
(the sum of two convex sets is always convex), so that it equals its convex hull.
Therefore

conv(A+B) ⊆ conv(conv(A) + conv(B)) = conv(A) + conv(B),

and the result follows.

Exercise 2.26. When S ⊂ IRnÂ is a finite set, say S = {x1, . . . , xt}, then we
have

conv(S) = {
t∑

j=1

λjxj : λj ≥ 0 for each j,
∑
j

λj = 1}.

Thus, every point in conv(S) is a convex combination of the points x1, . . . , xt.
What happens if, instead, SÂ has an infinite number of elements? Then it may not
be possible to give a fixed, finite subset S0 of SÂ such that every point in conv(S)
is a convex combination of elements in S0. Give an example which illustrates this.

Solution: Let S be the integers. Clearly conv(S) = IR, but, for any finite subset
S0, conv(S0) = [min(S0),max(S0)]. This means that we can’t use any finite subset
to describe conv(S).

Exercise 2.27. Let x0 ∈ IRnÂ and let C ⊆ IRn be a convex set. Show that

conv(C ∪ {x0}) = {(1− λ)x0 + λx : x ∈ C, λ ∈ [0, 1]}.
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Solution: By definition it is clear that

{(1− λ)x0 + λx : x ∈ C, λ ∈ [0, 1]} ⊆ conv(C ∪ {x0}).

The other way, a general element in conv(C ∪ {x0}) can be written as

(1− λ)x0 +
n∑
i=1

λixi,

where xi ∈ C and
∑n

i=1 λi = λ. We rewrite this as

(1− λ)x0 + λ
n∑
i=1

λi
λ
xi = (1− λ)x0 + λx,

where x =
∑n

i=1
λi
λ
xi ∈ C since C is convex. It follows that

conv(C ∪ {x0}) ⊆ {(1− λ)x0 + λx : x ∈ C, λ ∈ [0, 1]}.

The result follows.

Exercise 2.28. Prove Proposition 2.2.2.

Solution: Let W be the intersection of all convex cones containing S. If T is
a convex cone containing S, then clearly T also contains cone(S) by definition.
It follows xthat cone(S) ⊆ W . The other way, cone(S) is also a convex cone
containing S, so that W ⊆ cone(S). Thus W = cone(S), and the result follows.

Exercise 2.29. Confer Exercise 2.9. Give an example showing that a similar
property for linear independence does not hold. Hint: consider the vectors (1, 0)
and (0, 1) and choose some w.

Solution: Set x1 = (1, 0), x2 = (0, 1), and w = −x1. Then x1 and x2 are linearly
independent, but x1 + w and x2 + w are not, since x1 + w = 0.

Exercise 2.30. If x =
∑t

j=1 λjxjÂ and
∑t

j=1 λj = 1 we say that x is an affine

combination of x1, . . . , xt. Show that x1, . . . , xtÂ are affinely independent if and
only if none of these vectors may be written as an affine combination of the
remaining ones.

Solution: Affine independence of x1, . . . , xt is the same as independent columns

in

(
X

1 · · · 1

)
. That xi can be written as an affine combination of the remaining

ones means that column i in

(
X

1 · · · 1

)
can be written as a linear combinations

of the other columns. The result now follows from the fact that, a set of vectors
is linearly independent if and only if none of the vectors can be written as a
non-trivial linear combination of the others.
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Exercise 2.31. Prove that x1, . . . , xt ∈ IRnÂ are affinely independent if and only
if the vectors (x1, 1), . . . , (xt, 1) ∈ IRn+1 are linearly independent.

Solution See Exercise 2.8.

Exercise 2.32. Prove Proposition 2.3.2.

Solution: Asume that x =
∑t

j=1 λjxj where
∑
λj = 1. Then(

X
1 · · · 1

)
λ =

(
x
1

)
.

The convex hull consist of the vectors x for which this has a solution. Affine
independence means that the left hand side columns are linearly independent,
which implies that the solution λ is unique when it exist. This in turn implies
that x has a unique representation.

Exercise 2.33. Prove that cl(A1∪ . . .∪At) = cl(A1)∪ . . .∪cl(At) holds whenever
A1, . . . , At ⊆ IRn.

Solution: cl(A1) ∪ . . . ∪ cl(At) is a closed set containing A1 ∪ . . . ∪ At. Since
cl(A1 ∪ . . . ∪ At) is the smallest such set, it follows that

cl(A1 ∪ . . . ∪ At) ⊆ cl(A1) ∪ . . . ∪ cl(At).

The other way, since Ai ⊆ A1 ∪ . . .∪At, cl(Ai) ⊆ cl(A1 ∪ . . .∪At) (since a closed
set S containing A1 ∪ · · · ∪ At also must contain Ai). But then also

cl(A1) ∪ . . . ∪ cl(At) ⊆ cl(A1 ∪ . . . ∪ At),

and the result follows.

Exercise 2.34. Prove that every bounded point sequence in IRn has a convergent
subsequence.

Solution: Since any subsequence of a convergent sequence also is convergent, it
is enough to prove the result for n = 1. Due to boundedness there exists an M
so that |xi| ≤M for all i. Partition the interval [−M,M ] into two parts of equal
length. One of these parts must contain an infinite number of the xi. Choose the
first xi1 taking value in this part, and split the new interval in 2 again. Pick an
xi2 from the new interval, and split in two again, and so on. The new sequence y
defined as yn = xin is clearly a Cauchy sequence, so that it is convergent.

Exercise 2.35. Find an infinite set of closed intervals whose union is the open
interval 〈0, 1〉. This proves that the union of an infinite set of closed intervals
may not be a closed set.

Solution: We have that (0, 1) = ∪∞n=3[1/n, 1− 1/n].

Exercise 2.36. Let SÂ be a bounded set in IRn. Prove that cl(S)Â is compact.
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Solution: Sine cl(S) is closed, we only have to prove that cl(S) is bounded.
Since S is bounded, we can find a (closed) ball B(0, r) so that S ⊆ B(0, r). Since
B(0, r) is a closed set containing S, it follows that cl(S) ⊆ B(0, r). Since B(0, r)
is bounded, so is cl(S).

Exercise 2.37. Let S ⊆ IRn. Show that either int(S) = rint(S) or int(S) = ∅.
Solution: We know that we can write aff(S) = L+x0, where L is a vector space,
and where x0 can be chosen to be any x0 ∈ aff(S) (in particular we can choose
any x0 ∈ S). If L has dimension n, aff(S) = IRn. In this case clearly the relative
interior equals the interior (their definitions coincide).

Assume now that L has dimension m < n. Let x0, . . . xm be a maximum number
of affinely independent points in S (i.e., the xi − x0 are linearly independent).
Find a vector x 6= 0 so that x− x0 can not be written as a linear combination of
the {xi−x0}mi=1. I claim that, for any choice of λi, x0+

∑m
i=1 λi(xi−x0)+ε(x−x0)

can not be in aff(S). Otherwise we would have that

x0 +
m∑
i=1

λi(xi − x0) + ε(x− x0) = x0 +
m∑
i=1

µi(xi − x0)

for some µi (since x0 +
∑m

i=1 µi(xi − x0) describes a general element in aff(S)).
From this one could write x− x0 as a linear combination of the xi − x0, which is
a contradiction. It follows that int(aff(S)) = ∅ (since ε was arbitrary). But then
also int(S) = ∅.
Exercise 2.38. Prove Theorem 2.4.3 Hint: To prove that rint(C) is convex, use
Theorem 2.4.2. Concerning int(C), use Exercise 2.37. Finally, to show that cl(C)
is convex, let x, y ∈ cl(C) and consider two point sequences that converge to x and
y, respectively. Then look at a convex combination of xÂ and yÂ and construct
a suitable sequence!

Solution: This is a compulsory exercise.

Exercise 2.39. Prove Theorem 2.5.2.

Solution: Since x ∈ cone(S) there are nonnegative numbers λ1, . . . , λtÂ and
vectors x1, . . . , xt ∈ S such that x =

∑
j λjxj. In fact, we may assume that

each λj is positive, otherwise we could omit some xj from the representation. If

x1, . . . , xtÂ are linearly independent, we are done, so assume that they are not.
Then there are numbers µ1, . . . , µt not all zero such that

∑t
j=1 µjxj = O. Since

the µjs are not all zero, pick a nonzero one, say µ1 6= 0. We now multiply the
equation

∑
j µjxj = O by a number α and subtract the resulting equation from

the equation x =
∑

j λjxj. This gives

x =
∑
j

(λj − αµj)xj.
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Note that, for small α, this is still a nonnegative linear combination, and when
α = 0 it is just the original representation of x. But now we gradually increase
or decrease αÂ from zero until one of the coefficients λj − αµj becomes zero,

say this happens for α = α0. Recall here that each λjÂ is positive and that

µ1 6= 0. Then each coefficient λj − α0µjÂ is nonnegative and at least one of

them is zero. But this means that we have found a new representation of xÂ as a
nonnegative combination of t− 1 vectors from S. Clearly, this reduction process
may be continued until we have xÂ written as a nonnegative combination of,
say, m linearly independent points in S. Finally, there are at most n linearly
independent points in IRn, so m ≤ n.

Alternative proof for Theorem 2.4.2

To me it is not completely clear that y ∈ aff(C) (third last line in the proof),
so I have put together a more constructive proof, which I think is clearer. The
following prerequisite for the new proof is useful (see page 8 in Rockafellar’s book
on convex analysis): Let {b0, . . . , bm} and {c0, . . . , cm} be two sets of points in IRn,
both affinely independent. Let A be an invertible linear transformation from IRn

to itself so that A(bi− b0) = ci− c0 for i = 1, . . . ,m (such a linear transformation
exists due to linear independence of the bi−b0, ci−c0). The affine transformation
T defined by Tx = Ax + c0 − Ab0 satisfies Tbi = ci for i = 0, . . . ,m. For i = 0
this is immediate. For i ≥ 1 we obtain

Tbi = Abi+ c0−Ab0 = A(bi− b0) +Ab0 + c0−Ab0 = ci− c0 +Ab0 + c0−Ab0 = ci.

Clearly this affine transformation is unique if m = n (its extension to the affine
hull of the vectors is also unique). Since T is invertible it preserves open and
closed sets, and also affine hulls (since the line through x and y is sent to the
line between Tx and Ty). It follows that T also preserves relative interior. Now,
let {c0, c1, . . . , cm} = {0, e1, . . . , em}. T then embeds a convex set of dimension m
into IRm, where IRm is obtained from IRn by setting the mast n−m coordinates
to 0. Also, the aff(S) can clearly be identified with IRm as a subset of IRn in the
same way.

Now for the proof itself, which also can be found on page 45 in Rockafellar’s book:
Since we can assume that the last n−m coordinates are zero, we can assume that
we are in IRm, that the relative interior equals the interior, and that the affine
hull equals the entire IRm.

Let w = (1−λ)x1 +λx2 with x ∈ rint(C) = int(C), y ∈ cl(C). Let B be the unit
ball of IRm. We need to show that (1−λ)x1 +λx2 + εB ⊆ C for some ε > 0. Since



19

x2 ∈ C + εB for every ε (since x2 ∈ cl(C)), we obtain

(1− λ)x1 + λx2 + εB ⊆ (1− λ)x1 + λ(C + εB) + εB

= (1− λ)x1 + λC + λεB + εB

= (1− λ)

(
x1 + ε

1 + λ

1− λ
B

)
+ λC,

where the equality between the first and second line results from Exercise 1.14(i),
and the equality between the second and third line results from convexity of B
combined with (iii) in the same exercise. For ε sufficiently small we have that
x1 + ε1+λ

1−λB ⊆ C, so that the above is in (1− λ)C + λC ⊆ C, due to convexity. It
follows that (1−λ)x1+λx2+εB ⊆ C, so that (1−λ)x1+λx2 ∈ int(C) = rint(C).
The proof follows.

Note that this proof simplifies in the sense that the case x2 ∈ C needs not be
handled separately first.



Chapter 3

Projection and separation

Exercise 3.1. Give an example where the nearest point is unique, and one where
it is not. Find a point xÂ and a set S such that every point of SÂ is a nearest
point to x!

Solution: Let S be the unit disk in IR2, and let x = (2, 0). Then clearly s = (1, 0)
is the unique nearest point.

Let S be the unit circle in IR2, and let x = (0, 0). Then there is no unique nearest
point, since every point in S has the same distance to x, so that every point in
S is a nearest point.

Exercise 3.2. Let a ∈ IRn\{O} and x0 ∈ IRn. Then there is a unique hyperplane
H that contains x0Â and has normal vector a. Verify this and find the value of
the constant α (see above).

Solution: The hyperplane is aTx = aTx0. This hyperplane is unique since any
other value of α will exclude x0 from the set.

Exercise 3.3. Give an example of two disjoint sets SÂ and T Â that cannot be
separated by a hyperplane.

Solution: Let S be the circle in IR2 consisting of points with modulus 1, T the
circle in IR2 consisting of points with modulus 2.

Exercise 3.4. In view of the previous remark, what about the separation of S
and a point p 6∈ aff(S)? Is there an easy way to find a separating hyperplane?

Solution:

Exercise 3.5. Let C ⊆ IRn be convex. Recall that if a point x0 ∈ C satisfies ( 3.2)
for any y ∈ C, then x0 is the (unique) nearest point to xÂ in C. Now, let C be
the unit ball in IRn and let x ∈ IRnÂ satisfy ‖x‖ > 1. Find the nearest point to x
in C. What if ‖x‖ ≤ 1?

Solution: If ‖x‖ > 1 then clearly x0 = x/‖x‖ is the nearest point. If x ≤ 1 then
x itself is the nearest point.

20
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Exercise 3.6. Let L be a line in IRn. Find the nearest point in L to a point x ∈
IRn. Use your result to find the nearest point on the line L = {(x, y) : x+3y = 5}
to the point (1, 2).

Solution: This is a compulsory exercise.

Exercise 3.7. Let H be a hyperplane in IRn. Find the nearest point in H to a
point x ∈ IRn. In particular, find the nearest point to each of the points (0, 0, 0)
and (1, 2, 2) in the hyperplane H = {(x1, x2, x3) : x1 + x2 + x3 = 1}.
Solution: A general hyperplane in IRn can be written on the form x0 +L, where
L is an n− 1-dimensional space. Let a span the orthogonal complement of L. We
subtract x0 and compute the projection to obtain

x− x0 −
〈x− x0, a〉
〈a, a〉

a+ x0 = x− 〈x− x0, a〉
〈a, a〉

a

(we here instead projected onto the orthogonal complement).

For the plane in question we obtain 〈a, a〉 = 3, and we can use x0 = (1, 0, 0) For
the point (0, 0, 0) we obtain

x− 〈x− x0, a〉
〈a, a〉

a =
1

3
(1, 1, 1),

while for the point (1, 2, 2) we obtain

x− 〈x− x0, a〉
〈a, a〉

a = (1, 2, 2)− 4

3
(1, 1, 1) = (−1/3, 2/3, 2/3).

Exercise 3.8. Let L be a linear subspace in IRn and let q1, . . . , qt be an orthonor-
mal basis for L. Thus, q1, . . . , qt span L, qTi qj = 0Â when i 6= j and ‖qj‖ = 1

for each j. Let qÂ be the n × t-matrix whose jth column is qj, for j = 1, . . . , t.
Define the associated matrix p = qqT . Show that px is the nearest point in L to
x. (The matrix P is called an orthogonal projector (or projection matrix)). Thus,
performing the projection is simply to apply the linear transformation given by p.
Let L⊥ be the orthogonal complement of L. Explain why (I − P )x is the nearest
point in L⊥ to x.

Solution: The orthogonal decomposition theorem states that the closest point is

t∑
j=1

〈x, qj〉qj =
t∑

j=1

(qTx)jqj = qqTx = px.

by the definition of matrix multiplication. Similary, if qt+1, . . . , qn is an orthonor-
mal basis for L⊥, and Q is the matrix with these n− t column, we have

n∑
j=t+1

〈x, qj〉qj =
n∑

j=t+1

(QTx)jqj = QQTx =: Px.
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That p + P = I (so that P = I − p) follows now since, for x ∈ L, px = x and
Px = 0, while for x ∈ L⊥, px = 0 and Px = x. This shows that I − P is the
projector onto the orthogonal complement.

Exercise 3.9. Let L ⊂ IR3 be the subspace spanned by the vectors (1, 0, 1) and
(0, 1, 0). Find the nearest point to (1, 2, 3) in L using the results of the previous
exercise.

Solution: We compute1 0
0 1
1 0

(1 0 1
0 1 0

)1
2
3

 =

1 0 1
0 1 0
1 0 1

1
2
3

 =

4
2
4

 .

Exercise 3.10. Show that the nearest point in IRn
+ to x ∈ IRnÂ is the point x+

defined by x+j = max{xj, 0} for each j.

Solution: Let y ∈ IRn
+. We have that

‖x− y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2.

Now, if xj is negative, the smallest value we can obtain for (xj−yj)2 is by choosing
yj = 0 (we require that yj ∈ IR+). If xj is nonnegative, the smallest value we can
obtain for (xj−yj)2 is by choosing yj = xj. Setting yj = max(0, xj) = x+j captures
both these possibilities.

Exercise 3.11. Find a set S ⊂ IRn and a point x ∈ IRn with the property that
every point of SÂ is nearest to xÂ in S!

Solution: This is exercise 3.1

Exercise 3.12. Verify that every hyperplane in IRn has dimension n− 1.

Solution: Let the hyperplane be xta = α, let x1 be a point in the hyperplane,
and let y2, . . . , yn span the orthogonal complement of a. Set xj = x1 + yj. Then
x1, . . . , xn are affinely independent since xj − x1 = yj are linearly independent.
The dimension can’t be larger, since the orthogonal complement does not have
dimension larger than n− 1.

Exercise 3.13. Let C = [0, 1]×[0, 1] ⊂ IR2 and let a = (2, 2). Find all hyperplanes
that separates C and a.

Solution: Let 0 ≤ a ≤ 1/2. Then y = ax+ b separates the two sets if b > 1 and
2a+ b < 2.

Let a ≤ 0. Then we have separation if a+ b > 1 and 2a+ b < 2.

Let a ≥ 2. Then we have separation if a+ b < 0 and a+ 2b > 2.

Exercise 3.14. Let C be the unit ball in IRn and let a 6∈ C. Find a hyperplane
that separates CÂ and a.
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Solution: Set x0 = 1
2
(a+ a/‖a‖). we can use aTx = aTx0 = α.

Exercise 3.15. Find an example in IR2Â of two sets that have a unique separating
hyperplane.

Solution: The left and right half planes give an example.

Exercise 3.16. Let S, T ⊆ IRn. Explain the following fact: there exists a hyper-
plane that separates SÂ and T if and only if there is a linear function l : IRn → IR
such that l(s) ≤ l(t) for all s ∈ SÂ and t ∈ T . Is there a similar equivalence for
the notion of strong separation?

Solution: Separation means that aTx ≤ α on S, aTx ≥ α on T . Setting l(x) =
aTx (which is linear), this means that l(x) ≤ α on S, l(x) ≥ α on T . This implies
one way. The other way follows by setting α to be any number in the interval
[maxx∈S(l(x)),miny∈T (l(y))].

For strong separation, there must be some ε so that l(x) ≤ α−ε on S, l(x) ≥ α+ε
on T .

Exercise 3.17. Let CÂ be a nonempty closed convex set in IRn. Then the asso-
ciated projection operator pC is Lipschitz continuous with Lipschitz constant 1,
i.e.,

‖pC(x)− pC(y)‖ ≤ ‖x− y‖ for all x, y ∈ IRn.

(Such an operator is called nonexpansive). You are asked to prove this using
the following procedure. Define a = x − pC(x) and b = y − pC(y). Verify that
(a−b)T (pC(x)−pC(y)) ≥ 0. (Show first that aT (pC(y)−pC(x) ≤ 0 and bT (pC(x)−
pC(y) ≤ 0 using ( 3.2). Then consider ‖x − y‖2 = ‖(a − b) + (pC(x) − pC(y))‖2
and do some calculations.)

Solution: From (3.2) it follows that (x−pC(x))T (y−pC(x)) = aT (y−pC(x)) ≤ 0
for all y ∈ C. If we in particular set y = pC(y) we obtain aT (pC(y)− pC(x)) ≤ 0.
Similarly, (x − pC(y))T (y − pC(y)) = bT (x − pC(y)) ≤ 0 for all x ∈ C. If we in
particular set x = pC(x) we obtain bT (pC(x)− pC(y)) ≤ 0.

We now obtain

‖x− y‖2 = ‖(a− b) + (pC(x)− pC(y))‖2

= aT (pC(x)− bTpC(y)) + bT (pC(x)− pC(y)) + ‖a− b‖2 + ‖pC(x)− pC(y)‖2

≥ ‖a− b‖2 + ‖pC(x)− pC(y)‖2 ≥ ‖pC(x)− pC(y)‖2.

The result follows after taking square roots.

Exercise 3.18. Consider the outer description of closed convex sets given in
Corollary 3.2.4. What is this description for each of the following sets:

(i) C1 = {x ∈ IRn : ‖x‖ ≤ 1},
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(ii) C2 = conv({0, 1}n),
(iii) C3 = conv({−1, 1}2)
(iv) C4 = conv({−1, 1}n), n > 2.

Solution: This is a compulsory exercise.



Chapter 4

Representation of convex sets

Exercise 4.1. Consider the polytope P ⊂ IR2 being the convex hull of the points
(0, 0), (1, 0) and (0, 1) (so P is a simplex in IR2).

(i) Find the unique face of P Â that contains the point (1/3, 1/2).
(ii) Find all the faces of P Â that contain the point (1/3, 2/3).

(iii) Determine all the faces of P .

Solution:

(i) The face is the entire polytope.
(ii) This is the line from (1, 0) to (0, 1).

(iii) The three vertices, the three edges, and the polytope itself.

Exercise 4.2. Explain why an equivalent definition of face is obtained using the
condition: if whenever x1, x2 ∈ C and (1/2)(x1 + x2) ∈ F , then x1, x2 ∈ F .

Solution: The old condition clearly implies that the new condition holds (simply
choose λ = 1/2). The other way, assume that the new condition holds, and let
x1, x2 ∈ C be so that x = (1 − λ)x1 + λx2 ∈ F . If λ ≤ 1/2, x is the midpoint
between x1 and (1− 2λ)x1 + 2λx2, and since both these are on the line segment
between x1 and x2 (and hence in C), it follows from the condition that x1 ∈ F
(1−2λ)x1 +2λx2. This can be repeated until we find a point in F which is on the
second part of the line segment between x1 and x2. In the same way, if λ ≥ 1/2,
it follows that x2 ∈ F . Combining these two proves the result.

Exercise 4.3. Prove this proposition!

Solution: Let x1, x2 ∈ C, and let (1 − λ)x1 + λx2 ∈ F2. Since F2 ⊆ F1 and F1

is a face of C, it follows that x1, x2 ∈ F1. Since F2 is a face of F1 it follows that
x1, x2 ∈ F2 as well. It follows that F2 is a face of C.

Exercise 4.4. Define C = {(x1, x2) ∈ IR2 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1}. Why
does C not have any extreme halfline? Find all the extreme points of C.

Solution: C is bounded. Existence of an extreme halfline would imply C to be
unbounded. The extreme points of C are clearly (0, 0), (1, 0), and (0, 1).

25



26 CHAPTER 4. REPRESENTATION OF CONVEX SETS

Exercise 4.5. Consider a polytope P ⊂ IRn, say P = conv({x1, . . . , xt}). Show
that if xÂ is an extreme point of P , then x ∈ {x1, . . . , xt}. Is every xj necessarily
an extreme point?

Solution: Write an extreme point as x =
∑y

j=1 λjxj ∈ P with
∑t

j=1 λj = 1.
Assume that 0 < λ1 < 1. We can rewrite

x = λ1x1 + (1− λ1)
t∑

j=2

λj
1− λ1

xj.

Since x1 ∈ P and
∑t

j=2
λj

1−λ1xj ∈ P , the extreme point property implies that
x = x1.

Not every xj needs to be an extreme point: simply add an xj which already is in
the convex hull of the previous ones to see this.

Exercise 4.6. Show that rec(C, x) is a closed convex cone. First, verify that
z ∈ rec(C, x) implies that µz ∈ rec(C, x)Â for each µ ≥ 0. Next, in order to
verify convexity you may show that

rec(C, x) =
⋂
λ>0

1

λ
(C − x)

where 1
λ
(C − x)Â is the set of all vectors of the form 1

λ
(y − x) where y ∈ C.

Solution: Since x + z = x + 1
µ
(µz), we see that µz ∈ rec(C, x) whenever z ∈

rec(C, x) and µ > 0. This applies also when µ = 0, since trivially 0 ∈ rec(C, x).

An element in
⋂
λ>0

1
λ
(C−x) can for any λ > 0 be written on the form z = 1

λ
(c−x)

for some c ∈ C, so that x + λz = c. This is clearly the same as z ∈ rec(C, x).
rec(C, x) can thus be ritten as an intersection of closed convex sets, and is thus
also closed and convex.

Another way to show convexity is as follows: Let z1, z2 ∈ rec(C, x), 0 ≤ λ ≤ 1,
and λ′ ≥ 0. We have that

x+ λ′ ((1− λ)z1 + λz2) = (1− λ)(x+ λ′z1) + λ(x+ λz2)

z1, z2 ∈ rec(C, x) implies x+ λ′z1 ∈ C, x+ λz2 ∈ C. By convexity of C it follows
that the left hand side also is in C, so that (1 − λ)z1 + λz2 ∈ C. Convexity of
rec(C, x) follows.

Exercise 4.7. Show that a closed convex set CÂ is bounded if and only if
rec(C) = {O}.
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Solution: Clearly C is unbounded if the recession cone is nontrivial. The other
way, when C is unbounded, we will construct a nonzero vector in rec(C). The
proof is long and involved, and builds on many small lemmas (the three stated
below are not proved here, see the book of Rockafellar).

Assume that C ⊆ IRn. Consider the convex cone K ⊆ IRn+1 generated by (1, x),
with x ∈ C. Clearly (0, 0) is the only point in K with first component zero. We
will attempt to extend K to a cone K ′ = K ∪K0, where K ′ ⊆ {(λ, x) : λ ≥ 0},
K0 ⊆ {(λ, x) : λ = 0}. K0 is thus required to be a cone, and so that K0 +K ⊆ K.
In particular we must have that, for any z ∈ C,

(0, x) + (1, z) =
∑
i

λi(1, xi)

for some xi ∈ C, λi ≥ 0. The λi must sum to one, so that the right hand side can
be written as (1, w) for some w ∈ C (by convexity). It follows that x + z = w.
i.e., adding any element from C to x gives another element in C. We prove the
following statement, which implies that x ∈ rec(C):

x ∈ rec(C) ⇐⇒ C + x ⊆ C.

⇒ is obvious. The other way, if C + x ⊆ C, then C + 2x ⊆ C, and in general
C + mx ⊆ C for any integer m. letting λ ≥ 0 be any integer, y + λx lies on
the between y and a + mx where m is some integer larger than λ. By convexity
y + λx ∈ C (it is one the line between y and y + mx, which both are in C). It
follows that x ∈ rec(C).

Thus, K0 ⊆ (0, rec(C)). Since (0, rec(C)) itself is a cone, it follows that K0 =
(0, rec(C)) is the largest cone we can choose for K0. This choice also satisfies
K0 +K ⊆ K, so that K0 ∪K is a cone. To see this, let Cλ = {x : (λ, x) ∈ K} for
λ ≥ 0. Clearly λC ⊂ Cλ. The other way, if x ∈ Cλ, then (λ, x) ∈ K so that

(λ, x) =
∑
i

λi(1, xi) = (
∑
i

λi,
∑
i

λixi)

with λi ≥ 0. It follows that

x =
∑
i

λixi = λ
∑
i

λi
λ
xi ∈ λC

since
∑

i λi = λ and due to convexity of C. It follows that λC = Cλ. From this,
since

(0, x) + (λ, z) = (0, x) + (λ, λy) = (λ, λ(
1

λ
x+ y)) ∈ K
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(since 1
λ
x ∈ rec(C)). K0 +K ⊆ K follows.

Below we will prove that cl(K) ⊆ K ′ (actually one can prove equality here
as well with a bit more work). Let us see how we can use this to construct a
nonzero vector in rec(C) when C is unbounded, and thereby complete the proof.
If C is unbounded we can find a sequence xn from C so that ‖xn‖ → ∞. The
elements (1/‖xn‖, xn/‖xn‖) are in K. One can find a convergent subsequence so
that xnk

/‖xnk
‖ → y, where ‖y‖ = 1. But then (1/‖xnk

‖, xnk
/‖xnk

‖) → (0, y).
Since cl(K) ⊆ K ′ it follows that y ∈ rec(C).

Proving that cl(K) ⊆ K ′ requires two additional results, both taken from the
book of Rockafellar. Set Mλ to be the affine set {(λ, x) : x ∈ IRn}:

1. (Theorem 6.6). If K is convex and A is a linear transformations, the rint(AK) =
Arint(K). We will use this as follows: Consider the projection P : (λ, x) → λ
(from IRn+1 to IR). P is linear, so that P (rint(K)) = rint(P (K)) = rint(IR+) =
(0,∞). It follows that rint(K) ∩Mλ 6= ∅ for any λ > 0.

2. (Corollary 6.5.1). If K is convex and M is affine and contains a point in rint(K),
then

rint(M ∩ C) = M ∩ rint(C)

cl(M ∩ C) = M ∩ cl(C).

We will use this as follows, using M = Mλ (due to 1., rint(K) ∩Mλ 6= ∅):

Mλ ∩ rint(K) = rint(Mλ ∩K) = rint(λ,Cλ) = rint(λ, λC) = λ(1, rint(C)).

This proves that

rint(K) = ∪λ>0(Mλ ∩ rint(K)) = ∪λ>0λ(1, rint(C)).

Since rint(K) ∩M1 6= ∅ in particular, cl(M1 ∩K) = M1 ∩ cl(K) (second part of
Corollary 6.5.1). Since M ∩K = {(1, x) : x ∈ C}, which is closed, we have that
M1 ∩ cl(K) = {(1, x) : x ∈ C}. It follows that cl(K) and K are equal on λ > 0.
By maximality of K ′ it follows that cl(K) ⊆ K ′.

Exercise 4.8. Consider a hyperplane H. Determine its recession cone and lin-
eality space.

Solution: Let aTx = α be a hyperplane. rec(H, x) consists of all z so that
x + λz ∈ H for all x ∈ H and λ ≥ 0, i.e., α = aT (x + λz) = α + λaT z for all
λ. This implies that z must be orthogonal to a, i.e., rec(C, x) = {a}⊥. Since the
recession cone here is a vector space, it equals its lineality space.

Exercise 4.9. What is rec(P ) and lin(P ) when P Â is a polytope?
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Solution: Since polytopes are bounded, we have that rec(P ) = lin(P ) = {0}.
Exercise 4.10. Let CÂ be a closed convex cone in IRn. Show that rec(C) = C.

Solution: If x ∈ C then (1+λ)x = x+λx ∈ C for any λ ≥ 0, so that x ∈ rec(C).
The other way, if x ∈ rec(C) then 0 + 1 · x = x ∈ C since 0 ∈ C. The result
follows.

Exercise 4.11. Prove that lin(C)Â is a linear subspace of IRn.

Solution: lin(C) is closed under multiplication with scalars:

If x ∈ rec(C) then −x ∈ −rec(C). If x ∈ −rec(C) then −x ∈ rec(C). It follows
that lin(C) is closed under multiplication with −1, and thus also with all scalars.
Since both rec(C) and −rec(C) are closed under addition, the result follows.

Exercise 4.12. Show that rec({x : Ax ≤ b}) = {x : Ax ≤ O}.
Solution: Let C = {x : Ax ≤ b}, and assume that z ∈ rec(C, x). Then Ax ≤ b
and A(x+λz) ≤ b for all λ ≥ 0. Since A(x+λz) = Ax+λAz, this is clearly only
possible if Az ≤ 0. This implies the ⊆-direction.

The other way, if Az ≤ 0, then, for any x ∈ C, λ ≥ 0, we have that A(x+ λz) ≤
b + 0 = b, so that x + λz ∈ C. It follows that z ∈ rec(C). This proves the other
direction.

Exercise 4.13. Let C be a line-free closed convex set and let F Â be an extreme
halfline of C. Show that then there is an x ∈ CÂ and a z ∈ rec(C) such that
F = x+ cone({z}).

Solution: An extreme halfline can be written on the form {x + tz}t≥0 for some
x ∈ C, and some vector z. Since the extreme halfline is in C, it follows that
z ∈ rec(C, x) = rec(C).

Exercise 4.14. Decide if the following statement is true: if z ∈ rec(C) then
x+ cone({z})Â is an extreme halfline of C.

Solution: No. Let C = IRn. Then rec(C) = IRn, and C has no extreme half lines.

Exercise 4.15. Consider again the set C = {(x1, x2, 0) ∈ IR3 : x21 + x22 ≤ 1}
from Exercise 2.16. Convince yourself that C equals the convex hull of its relative
boundary. Note that we here have bd(C) = CÂ so the fact that CÂ is the convex
hull of its boundary is not very impressive!

Solution: Its relative boundary has been shown to be {(x1, x2, 0) : x21 + x22 = 1},
and the convex hull of these is clearly C.

Exercise 4.16. Let H be a hyperplane in IRn. Prove that H 6= conv(rbd(H)).

Solution: The relative boundary of a hyperplane is ∅, so that conv(rbd(H)) =
∅ 6= H.

Exercise 4.17. Consider a polyhedral cone C = {x ∈ IRn : Ax ≤ O} (where, as
usual, AÂ is a real m× n-matrix). Show that O is the unique vertex of C.
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Solution: This is a compulsory exercise.

Exercise 4.18. Let F Â be a face of a convex set C in IRn. Show that every
extreme point of F is also an extreme point of C.

Solution: This follows from Exercise 4.3

Exercise 4.19. Find all the faces of the unit ball in IR2. What about the unit
ball in IRn?

Solution: Every point on the boundary is a face.

Exercise 4.20. Let F Â be a nontrivial face of a convex set C in IRn. Show that
F ⊆ bd(C)Â (recall that bd(C) is the boundary of C). Is the stronger statement
F ⊆ rbd(C) also true? Find an example where F = bd(C).

Solution: Assume that F contains an interior point x. Then clearly F must
contain a small ball around x. Let y be any other point in C. We can draw a line
through x starting at y and ending at the opposite side of x in another point in
C. By the face property this implies that y ∈ C, so that F = C. This shows that
any non-trivial face is contained in the boundary. F = bd(C) is possible when C
is the left or right side of a hyperplane.

Assume that F contains a relative interior point x of C. Then Bo(x, r)∩aff(C) ⊆
C for some ball. Let y be another point in C. Draw again a line through x
starting at y and ending at the opposite side of x in another point in C. By the
face property this implies that y ∈ C, so that F = C.

Exercise 4.21. Consider the convex set C = B + ([0, 1] × {0}) where B is the
unit ball (of the Euclidean norm) in IR2. Find a point on the boundary of C which
is a face of C, but not an exposed face.

Solution: Choose the point (0, 1) for instance. This gives the line from (0, 1) to
(1, 1) as an exposed face, but the point itself is a face.

Exercise 4.22. Let P ⊂ IR2Â be the polyhedron being the solution set of the
linear system

x − y ≤ 0;

−x + y ≤ 1;

2y ≥ 5;

8x − y ≤ 16;

x + y ≥ 4.

Find all the extreme points of P .

Solution: This is a compulsory exercise.

Exercise 4.23. Find all the extreme halflines of the cone IRn
+.
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Solution: Clearly any halfline where all except one component is nonzero is an
extreme halfline. Assume that we have an extreme halfline where there are points
with two nonzero components. Assume for simplicity that (x1, x2, 0) is on the
extreme halfline. Then clearly the halfline must contain all points with arbitrary
values in the first two components, so that it can’t be a halfline.

Exercise 4.24. Determine the recession cone of the set {(x1, x2) ∈ IR2 : x1 >
0, x2 ≥ 1/x1}. What are the extreme points?

Solution: Clearly the recession cone is IR2
+. All points in the first quadrant on

the graph y = 1/x are extreme points.

Exercise 4.25. Let B be the unit ball in IRn (in the Euclidean norm). Show that
every point in BÂ can be written as a convex combination of two of the extreme
points of C.

Solution: The extreme points of B are the boundary points of B. Clearly any
interior point of B can be written as a convex combination of two boundary
points.

Exercise 4.26. Let C be a compact convex set in IRn and let f : C → IR be a
function satisfying

f(
t∑

j=1

λjxj) ≤
t∑

j=1

λjf(xj)

whenever x1, . . . , xt ∈ C, λ1, . . . , λt ≥ 0Â and
∑t

j=1 λj = 1. Such a function
is called convex, see chapter 5. Show that f attains its maximum over C in an
extreme point. Hint: Minkowski’s theorem.

Solution: According to Minkowski’s theorem, C is the convex hull of its extreme
points. Write x ∈ C as x =

∑
λixj, where the xj are extreme points. But then

f(x) ≤
∑

λjf(xj) ≤ max f(xj).

This implies that, if x = argmaxx extreme(f(x)) is attained, then the maximum
is attained in the extreme point x. It turns out, however, that this maximum
may not be attained: Let C = {x ∈ IR2 : ‖x‖ ≤ 1}, and consider the function f
defined to be zero on the interior of C, and defined on the boundary so that it
both ≥ 0 and unbounded there. f is clearly convex, but the maximum x is not
attained due to unboundedness on the boundary.

Exercise 4.27. Prove Corollary 4.4.5 using the Main theorem for polyhedra.

Solution: Clearly a polytope is a bounded polyhedron. Assume now that P =
conv(V ) + cone(Z) is a bounded polyhedron, where V and Z are finite sets.
Boundedness implies that Z is empty, so that P = conv(V ). It follows that P is
a polytope.
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Exercise 4.28. Let S ⊆ {0, 1}n, i.e., SÂ is a set of (0, 1)-vectors. Define the
polytope P = conv(S). Show that xÂ is a vertex of P Â if and only if x ∈ S.

Solution: For polytopes, vertices and extreme points coincide.

Clearly any x ∈ S is an extreme point: A line which passes through x ∈ S must
either increase or decrease at least one component linearly, in which case one of
the end components lies outside [0, 1]. But any component of a vector in P must
lie between 0 and 1. It follows that the points are extreme points. It is also clear
that any vector outside S with 0,1 components must be outside P .

Assume that x is an extreme point of P with 0 < x1 < 1. Then x must be
a convex combinations of two different points in S, contradicting that it is an
extreme point. Therefore, all components are either 0 or 1 in an extreme point.

Exercise 4.29. Let S ⊆ {0, 1}3 consist of the points (0, 0, 0), (1, 1, 1), (0, 1, 0)
and (1, 0, 1). Consider the polytope P = conv(S) and find a linear system defining
it.

Solution: Since all four points have equal first and third candidate, we can
eliminate the third component by requiring x3 = x1. The convex hull of the four
points (0, 0), (0, 1), (1, 0), and (1, 1) in IR2 is clearly described by 0 ≤ x1, x2 ≤ 1.
A possible linear system defining the system is thus

x1, x2, x3 ≥ 0

x1, x2 ≤ 1

x3 − x1 = 0

Exercise 4.30. Let P1Â and P2Â be two polytopes in IRn. Prove that P1∩P2Â is
a polytope.

Solution: Both P1 and P2 are bounded polyhedra. But then P1 ∩ P2 is also a
bounded polyhedron, hence a polytope.

Exercise 4.31. Is the sum of polytopes again a polytope? The sum of two poly-
topes P1Â and P2 in IRn is the set P1 + P2 = {p1 + p2 : p1 ∈ P1, p2 ∈ P2}.
Solution: Let P1 = conv(A), P2 = conv(B), where A and B are finite sets.
By exercise 2.25, conv(A + B) = conv(A) + conv(B) = P1 + P2. In the case of
polytopes A and B are finite sets. But then A + B is also a finite set, so that
conv(A+B) is also a polytope. It follows that P1 + P2 is a polytope.

Exercise 4.32. Let L = span({b1, . . . , bk})Â be a linear subspace of IRn. Define
b0 = −

∑k
j=1 bj. Show that L = cone({b0, b1, . . . , bk}). Thus, every linear subspace

is a finitely generated cone, and we know how to find a set of generators for L
(i.e., a finite set with conical hull being L).



33

Solution: Clearly cone({b0, b1, . . . , bk}) ⊆ L, since also b0 ∈ L. The other way,
let x =

∑k
j=1 cjbj ∈ L. If all ck ≥ 0, then this is in cone({b0, b1, . . . , bk}). Assume

thus there are nonnegative cj, and let cl be the smallest such. Write

x = −cl

(
−

k∑
j=1

bj

)
+
∑
j 6=l

(cj − cl)bj.

Since cj ≥ cl and cl < 0 this is a nonnegative combination, so that

x ∈ cone({b0, b1, . . . , bk}).

Exercise 4.33. Let P = conv({v1, . . . , vk}) + cone({z1, . . . , zm}) ⊆ IRn. Define
new vectors in IRn+1 by adding a component which is 1 for all the v.-vectors and
a component which is 0 for all the z.-vectors, and let C be the cone spanned by
these new vectors. Thus,

C = cone({(v1, 1), . . . , (vk, 1), (z1, 0), . . . , (zm, 0)})

Prove that x ∈ P if and only if (x, 1) ∈ C. The cone C is said to be obtained
by homogenization of the polyhedron P . This is sometimes a useful technique for
translating results that are known for cones into similar results for polyhedra, as
in the proof of Theorem 4.4.4.

Solution: Let x =
∑

j λjvj +
∑

k µkzk ∈ P , where
∑

j λj = 1, all µk ≥ 0. We
have that (

x
1

)
=
∑
j

λj

(
vj
1

)
+
∑
k

µk

(
zk
0

)
∈ C.

The other way, suppose that (x, 1) ∈ C, so that we can write(
x
1

)
=
∑
j

λj

(
vj
1

)
+
∑
k

µk

(
zk
0

)
.

Clearly this forces the λj to sum to one, and also x =
∑

j λjvj +
∑

k µkzk, which
thus is in conv({v1, . . . , vk}) + cone({z1, . . . , zm}) = P .

Exercise 4.34. Show that the sum of valid inequalities for a set P is another
valid inequality for P . What about weighted sums? What can you say about the
properties of the set

{(a, α) ∈ IRn+1 : aTx ≤ α is a valid inequality for P}.

Solution: If cT1 x ≤ α1 and cT2 x ≤ α2 for x ∈ P , then clearly

(c1 + c2)
Tx = cT1 x+ cT2 x ≤ α1 + α2,
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for x ∈ P as well, so that valid inequalities can be summed to obtain new valid
inequalities. For weighted sums,

(w1c1 + w2c2)
Tx = w1c

T
1 x+ w2c

T
2 x ≤ w1α1 + w2α2,

so that we get new valid inequalities here as well, as long as the wights are
nonnegative. It follows that the stated set is a cone.



Chapter 5

Convex functions

Exercise 5.1. Prove this lemma.

Solution: That Px2Â is below the line segment Px1Px3 (i.e., (i)) is equivalent to

f(x2) ≤
f(x3)− f(x1)

x3 − x1
(x2 − x1) + f(x1).

Reorganizing this gives that

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x1)

x3 − x1
,

which states that slope(Px1 , Px2) ≤ slope(Px1 , Px3) (i.e. (ii)). This proves that (i)
and (ii) are equivalent.

(i) is also equivalent to

f(x2) ≤
f(x3)− f(x1)

x3 − x1
(x2 − x3) + f(x3).

Reorganizing this gives that

f(x3)− f(x1)

x3 − x1
≤ f(x3)− f(x2)

x3 − x2

which states that slope(Px1 , Px3) ≤ slope(Px2 , Px3) (i.e. (iii)).

Exercise 5.2. Show that the sum of convex functions is a convex function, and
that λfÂ is convex if f is convex and λ ≥ 0 (here λf is the function given by
(λf)(x) = λf(x)).

Solution: We have that∑
k

fk((1−λ)x+λy) ≤
∑
k

((1−λ)fk(x)+λfk(y)) = (1−λ)
∑
k

fk(x)+λ
∑
k

fk(y),

35
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whichs shows that
∑

k fk also is convex. We also have that

µf((1− λ)x+ λy) ≤ µ((1− λ)f(x) + λf(y)) = (1− λ)µf(x) + λµf(y),

which shows that µf is convex.

Exercise 5.3. Prove that the following functions are convex:

(i) f(x) = x2,
(ii) f(x) = |x|,

(iii) f(x) = xp where p ≥ 1,
(iv) f(x) = ex,
(v) f(x) = − ln(x) defined on IR+.

Solution:

(i) f(x) = x2 has a positive second derivative, so that it must be convex.
(ii) f(x) = |x| is convex due to the triangle inequality: |(1 − λ)x + λy| ≤

(1− λ)|x|+ λ|y|.
(iii) f(x) = xp has second derivative p(p − 1)xp−2, which is nonnegative when

p ≥ 1.
(iv) f(x) = ex has positive second derivative ex, so that it is convex.
(v) f(x) = − lnx has positive second derivative 1/x2, so that it is convex.

Exercise 5.4. Consider Example 5.1.2 again. Use the same technique as in the
proof of arithmetic-geometric inequality except that you consider general weights
λ1, . . . , λrÂ (nonnegative with sum one). Which inequality do you obtain? It in-
volves the so-called weighted arithmetic mean and the weighted geometric mean.

Solution: By convexity of f(x) = − lnx we obtain

− ln(
r∑
j=1

λjxj) ≤ −
r∑
j=1

λj ln(xj) = − ln(
r∏
j=1

x
λj
j ),

which leads to
r∏
j=1

x
λj
j ≤

r∑
j=1

λjxj.

Exercise 5.5. Repeat Exercise 5.2, but now for convex functions defined on some
convex set in IRn.

Solution: The proof goes in the same way.

Exercise 5.6. Verify that every linear function from IRnÂ to IRÂ is convex.

Solution: If f is linear we have that

f((1− λ)x+ λy) = (1− λ)f(x) + λf(y),

so that f is also convex and with equality holding in the definition of convexity.
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Exercise 5.7. Prove Proposition 5.2.1.

Solution: We have that

f(h((1− λ)x+ λy)) = f((1− λ)h(x) + λh(y)) ≤ (1− λ)f(h(x)) + λf(h(y)),

where we used that h is affine and that f is convex. It follows that f ◦ h also is
convex.

Exercise 5.8. Let f : C → IR be convex and let w ∈ IRn. Show that the function
x→ f(x+ w)Â is convex.

Solution: This follows from the previous exercise since x→ x+ w is affine.

Exercise 5.9. Prove Theorem 5.2.3 (just apply the definitions).

Solution: Assume that f is convex. Let (x, s) ∈ epi(f), (y, t) ∈ epi(f). We have
that

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ≤ (1− λ)s+ λt.

It follows that (1− λ)(x, s) + λ(y, t) = ((1− λ)x+ λy, (1− λ)s+ λt) ∈ epi(f), so
that epi(f) is convex.

Assume now that epi(f) is convex. Since (x, f(x)) and (y, f(y)) are in epi(f), also
((1−λ)x+λy, (1−λ)f(x)+λf(y)) ∈ epi(f). This implies that f((1−λ)x+λy) ≤
(1− λ)f(x) + λf(y), so that f is convex.

Exercise 5.10. By the result above we have that if fÂ and g are convex functions,
then the function max{f, g} is also convex. Prove this result directly from the
definition of a convex function.

Solution: This is a compulsory exercise.

Exercise 5.11. Let f : IRn → IRÂ be a convex function and let α ∈ IR. Show
that the set {x ∈ IRn : f(x) ≤ α}Â is a convex set. Each such set is called a
sublevel set.

Solution: Assume that f(x) ≤ α, f(y) ≤ α. Then

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) ≤ (1− λ)α + λα = α.

It follows that sublevel sets are convex.

Exercise 5.12. Verify that the function x→ ‖x‖p is positively homogeneous.

Solution: We have that

‖λx‖p = ((λx1)
2 + . . .+ (λxn)2)1/p = λ(x21 + . . .+ x2n)1/p = λ‖x‖p,

so that the p-norm is positively homogeneous.
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Exercise 5.13. Consider the support function of an optimization problem with
a linear objective function, i.e., let f(c) := max{cTx : x ∈ S} where S ⊆ IRn is a
given nonempty set. Show that fÂ is positively homogeneous. Therefore (due to
Example 5.2.2), the support function is convex and positively homogeneous when
SÂ is a compact convex set.

Solution: We have that

f(λc) = max{λcTx : x ∈ S} = λmax{cTx : x ∈ S} = λf(c),

so that f is positively homogeneous.

Exercise 5.14. Let f(x) = xTx = ‖x‖2 for x ∈ IRn. Show that the directional
derivative f ′(x0; z) exists for all x0 and nonzero z and that f ′(x0; z) = 2zTx0.

Solution: We have that

f ′(x0; z) = lim
t→0

(x0 + tz)T (x0 + tz)− xT0 x0
t

= lim
t→0

2txT0 z + t2zT z

t
= lim

t→0
(2xT0 z + tzT z) = 2zTx0.

Exercise 5.15. A quadratic function is a function of the form

f(x) = xTAx+ cTx+ α

for some (symmetric) matrix A ∈ IRn×n, a vector c ∈ IRnÂ and a scalar α ∈ IR.
Discuss whether f is convex.

Solution: The Hessian of f is 2A, so f is convex if and only if A is positive
semidefinite.

Exercise 5.16. Assume that fÂ and g are convex functions defined on an in-
terval I. Determine which of the functions following functions that are convex or
concave:

(i) λf where λ ∈ IR,
(ii) min{f, g},

(iii) |f |.
Solution:

(i) λf is convex when λ ≥ 0, otherwise it is concave.
(ii) min{f, g} can be neither convex or concave. As an example consider a

convex parabola and a line which intersects it at two points.
(iii) |f | can be either convex or concave. If f(x) = x2, then |f | is concave. If

f(x) = x2 − 4, defined on (−2, 2), then |f | is concave.
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Exercise 5.17. Let f, g : I → IR where I is an interval. Assume that f and
f + gÂ both are convex. Does this imply that gÂ is convex? Or concave? What if
f + gÂ is convex and fÂ concave?

Solution: Assume that f is convex. If g = −f , f + g = 0 is clearly convex, but
g is concave (not convex).

If h = f + g is convex, and f is concave, then g = h− f is a sum of two convex
functions, so that it is convex.

Exercise 5.18. Let f : [a, b]→ IR be a convex function. Show that

max{f(x) : x ∈ [a, b]} = max{f(a), f(b)}

i.e., a convex function defined on closed real interval attains its maximum in one
of the endpoints.

Solution: Any point in [a, b] can be written on the form (1− λ)a+ λb, for some
0 ≤ λ ≤ 1. We have that

f(x) = f((1− λ)a+ λb) ≤ (1− λ)f(a) + λf(b)

≤ (1− λ) max{f(a), f(b)}+ λmax{f(a), f(b)} = max{f(a), f(b)}.

The result follows.

Exercise 5.19. Let f : I → IR be a convex function defined on a bounded interval
I. Prove that fÂ must be bounded below (i.e., there is a number L such that
f(x) ≥ L for all x ∈ I). Is fÂ also bounded above?

Solution: By the previous exercise f is bounded above by the maximum of the
endpoint values. Since f is convex it has an increasing left-/right-derivative on
(a, b). For a ≤ x < z < y ≤ b, since the slope function is increasing we have that

f(z)− f(x)

z − x
≤ f ′−(z) f ′+(z) ≤ f(y)− f(z)

y − z
,

so that

f(x) ≥ −f−(z)(z − x) + f(z) f(y) ≥ f ′+(z)(y − z) + f(z).

It follows that f is bounded below on both sides of z by linear functions, so that
f in total is bounded below.

Exercise 5.20. Let f, g : IR → IR be convex functions and assume that f is
increasing. Prove that the composition f ◦ g is convex.
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Solution: Since g((1− λ)x+ λy) ≤ (1− λ)g(x) + λg(y) and f is increasing, we
have that

f(g((1− λ)x+ λy)) ≤ f((1− λ)g(x) + λg(y)) ≤ (1− λ)f(g(x)) + λf(g(y)),

which proves that f ◦ g is convex.

Exercise 5.21. Find the optimal solutions of the problem min{f(x) : a ≤ x ≤
b}Â where a < bÂ and f : IR→ IR is a differentiable convex function.

Solution: This occurs when the derivative is 0.

Exercise 5.22. Let f : 〈0,∞〉 → IR and define the function g : 〈0,∞〉 → IR by
g(x) = xf(1/x). Prove that f is convex if and only if g is convex. Hint: Prove
that

g(x)− g(x0)

x− x0
= f(1/x0)−

1

x0
· f(1/x)− f(1/x0)

1/x− 1/x0

and use Proposition 5.1.2. Why is the function x→ xe1/xÂ convex?

Solution: This is a compulsory exercise

Exercise 5.23. Prove Theorem 5.1.9 as follows. Consider the function

g(x) = f(x)− f(a)− f(b)− f(a)

b− a
(x− a).

Explain why gÂ is convex and that it has a minimum point at some c ∈ 〈a, b〉
(note that g(a) = g(b) = 0 and g is not constant). Then verify that

∂g(c) = ∂f(c)− f(b)− f(a)

b− a
and use Corollary 5.1.8.

Solution: g is convex since it is a sum of a convex and an affine function. We
know from the exercises then that it has a minimum c. We compute first

g(x)− g(c) = f(x)− f(c)− f(b)− f(a)

b− a
(x− c).

We then obtain

lim
x→c+

g(x)− g(c))

x− c
= lim

x→c+

(
f(x)− f(c))

x− c
− f(b)− f(a)

b− a
x− c
x− c

)
= f ′+(c)− f(b)− f(a)

b− a

lim
x→c−

g(x)− g(c))

x− c
= lim

x→c−

(
f(x)− f(c))

x− c
− f(b)− f(a)

b− a
x− c
x− c

)
= f ′−(c)− f(b)− f(a)

b− a
,
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so that

∂g(c) = [f ′−(c), f ′+(c)]− f(b)− f(a)

b− a
= ∂f(c)− f(b)− f(a)

b− a
.

By Corollary 5.1.8 it follows that 0 ∈ ∂g(c), so that 0 ∈ ∂f(c)− f(b)−f(a)
b−a , so that

f(b)−f(a)
b−a ∈ ∂f(c). This proves Theorem 5.1.9.

Exercise 5.24. Let f : IR → IR be an increasing convex function and let g :
C → IR be a convex function defined on a convex set C in IRn. Prove that the
composition f ◦ g (defined on C) is convex.

Solution: See previous exercise.

Exercise 5.25. Prove that the function given by h(x) = ex
TAx is convex when

AÂ is positive definite.

Solution: We know that g(x) = xTAx is convex, and that f(x) = ex is both
convex and increasing. The result thus follows from the previous exercise.

Exercise 5.26. Let f : C → IR be a convex function defined on a compact convex
set C ⊆ IRn. Show that f attains its maximum in an extreme point. Hint: use
Minkowski’s theorem (Corollary 4.3.4).

Solution: Corollary 4.3.4 says that C is the convex hull of its extreme points.
Denote them by xj. We have that

f(
∑
j

λjxj) ≤
∑
j

λjf(xj) ≤
∑
j

λj max
j

(f(xj)) = max
j

(f(xj)),

it follows that any maximum value must be attained in an extreme point.

Exercise 5.27. Let C ⊆ IRn be a convex set and consider the distance function
dC defined in ( 3.1), i.e., dC(x) = inf{‖x− c‖ : c ∈ C}. Show that dC is a convex
function.

Solution: Let x, y be given, and find x1, y1 ∈ C so that ‖x − x1‖ ≤ dC(x) + ε,
‖y − y1‖ ≤ dC(y) + ε. Since C is convex, (1− λ)x1 + λy1 ∈ C. We have that

dC((1− λ)x+ λy) = inf{‖(1− λ)x+ λy − c‖ : c ∈ C}
≤ ‖(1− λ)x+ λy − ((1− λ)x1 + λy1)‖
≤ (1− λ)‖x− x1‖+ λ‖y − y1‖
≤ (1− λ)(dC(x) + ε) + λ(dC(y) + ε)

= (1− λ)dC(x) + λdC(y) + ε.

Since this applies for all ε it follows that dC((1−λ)x+λy) ≤ (1−λ)dC(x)+λdC(y)
as well, so that dC is convex.



42 CHAPTER 5. CONVEX FUNCTIONS

Exercise 5.28. Prove Corollary 6.1.1 using Theorem 5.3.5.

Solution: Let x∗ be a local minimum Since f is convex, Theorem 5.3.5 says that
f(x) ≥ f(x∗) + ∇f(x∗)T (x − x∗)) for all x ∈ C. If ∇f(x∗) = 0 this says that
f(x) ≥ f(x∗), i.e., x∗ is a global minimum. Therefore (iii) implies (ii), and (ii)
obviously implies (i).

Assume finally that x∗ is a local minimum, and assume for contradiction that
∇f(x∗) 6= 0. Note that ∇f(y)T∇f(x∗) > 0 for y in some neighbourhood of x∗ (at
least if the gradient is continuous).

It is now better to use the following Taylor formula

f(x) = f(x∗) +∇f(x∗ + t(x− x∗))T (x− x∗),

for some 0 < t < 1. By choosing x = x∗ − α∇f(x∗) and α small enough, we get

f(x) = f(x∗)− α∇f(x∗ + t(x− x∗))T∇f(x∗) < f(x∗),

which contradicts that we have a local minimum. This proves (iii), and the proof
is complete.

Exercise 5.29. Compare the notion of support for a convex function to the notion
of supporting hyperplane of a convex set (see section 3.2). Have in mind that f
is convex if and only if epi(f) is a convex set. Let f : IRn → IR be convex and
consider a supporting hyperplane of epi(f). Interpret the hyperplane in terms of
functions, and derive a result saying that every convex function has a support at
every point.

Solution: Let aTx = α be a supporting hyperplane of epi(f) at (y, f(y)) (at
points (y, t) with t > f(y) the epigraph can not have a supporting hyperplane).
Assume that a is scaled so that its last component is 1 (this is always possible
when the last component of a is nonzero. Note that the case of a zero last compo-
nent is not interesting, since this rather constrains the domain of f). This means
that the hyperplane can be written as

aTx = (a1, . . . , an)T (x1, . . . , xn) + t = (a1, . . . , an)T (y1, . . . , yn) + f(y),

so that
t = −(a1, . . . , an)T (x1 − y1, . . . , xn − yn) + f(y).

Denote this affine function by h(x). Since aTx ≥ α on epi(f), from the above it
follows that

(a1, . . . , an)T (x1, . . . , xn) + f(x) ≥ (a1, . . . , an)T (y1, . . . , yn) + f(y),



43

so that

f(x) ≥ −(a1, . . . , an)T (x1 − y1, . . . , xn − yn) + f(y) = h(x).

All this can be more compactly explained in terms of graphs: The graph of the
hyperplane lies below the graph of f . The supporting hyperplane is viewed as the
tangent plane of the graph.
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Nonlinear and convex optimization

Exercise 6.1. Consider the least squares problem minimize ‖Ax − b‖ over all
x ∈ IRn. From linear algebra we know that the optimal solutions to this problem
are precisely the solutions to the linear system (called the normal equations)

ATAx = AT b.

Show this using optimization theory by considering the function f(x) = ‖Ax−b‖2.

Solution: The gradient of f(x) = ‖Ax−b‖2 = xTATAx−2bTAx+bT b is∇f(x) =
2ATA− 2AT b. We see that the gradient is zero if and only if ATAx = AT b.

Exercise 6.2. Prove that the optimality condition is correct in Example 6.2.1.

Solution: Assume that x∗i = 0. Let x = x∗ + ei ∈ C. Then ∇f(x∗)T (x − x∗) =
∂f
∂xi

(x∗), which must be greater than zero.

Assume that x∗i > 0. Then x = x∗±εei ∈ C for ε small enough. These two choices
give ±ε ∂f

∂xi
(x∗) as values for ∇f(x∗)T (x−x∗). If both of these are ≥ 0 then clearly

∂f
∂xi

(x∗) = 0.

Exercise 6.3. Consider the problem to minimize a (continuously differentiable)
convex function f subject to x ∈ C = {x ∈ IRn : O ≤ x ≤ p}Â where p is some
nonnegative vector. Find the optimality conditions for this problem. Suggest a
numerical algorithm for solving this problem.

Solution: The constraints can be written as −xi ≤ 0, xi − p ≤ 0, which have
gradients −ei and ei, respectively.

Go through all possibilities of active constraints.
If 0 < xi < pi, the gradient equation says that ∂f

∂xi
= 0 If for instance xi = 0, we

would add −µiei to the gradient equation. This is the same as ∂f
∂xi

= µi ≥ 0.
If for instance xi = pi, we would add µiei to the gradient equation. This is the
same as ∂f

∂xi
= −µi ≤ 0.

We thus arrive at the following: ∂f
∂xi
≥ 0 if xi = 0, ∂f

∂xi
≤ 0 if xi = pi.

44
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Exercise 6.4. Consider the optimization problem minimize f(x) subject to x ≥
O, Â where f : IRn → IR is a differentiable convex function. Show that the KKT
conditions for this problem are

x ≥ O, ∇f(x) ≥ O, and xk · ∂f(x)/∂xk = 0 for k = 1, . . . , n.

Discuss the consequences of these conditions for optimal solutions.

Solution: If xi = 0 then the ith component of the gradient equation is ∂f
∂xi
−µi =

0, so that ∂f
∂xi

= µi ≥ 0. Otherwise ∂f
∂xi

= 0. In any case xk · ∂f(x)/∂xk = 0. In
any case ∇f(x) ≥ 0.

Exercise 6.5. Solve the problem: minimize (x + 2y − 3)2Â for (x, y) ∈ IR2 and
the problem minimize (x+ 2y − 3)2 subject to (x− 2)2 + (y − 1)2 ≤ 1.

Solution: The minimum of the first is clearly 0. with the minimum obtained for
any point on the line x+ 2y = 3. For the second the gradient equation is(

2(x+ 2y − 3)
4(x+ 2y − 3)

)
+ µ

(
2(x− 2)
2(y − 1)

)
= 0.

Note first that the gradient of the constraint is zero if x = 2, y = 1. This gives
the candidate f(2, 1) = 1 (this point also satisfies the constraint).

If the constraint is not active we must have x + 2y − 3 = 0. Any point on
this line, and so that (x − 2)2 + (y − 1)2 < 1, is a candidate for the minumum
(the point (1, 1) for instance makes the constraint active, so that the line clearly
intersects the interior of the circle satisfie). At all these points f is zero, so that the
unconstrained global minimum is attained, so that we can stop here. Nevertheless,
let us also see what happens when the constraint is active. We then have that
2(y− 1) = 4(x− 2), i.e., y = 2x− 3. Inserting this in (x− 2)2 + (y− 1)2 = 1 gives

(x− 2)2 + 4(x− 1)2 = 5(x− 1)2 = 1,

so that x = 1±
√

5, y = ±2/
√

5− 3.

x+2y−3 = ±5
√

5−5 = −5±
√

5. The minimum value for the two new candidates
is clearly (−5 +

√
5)2, but the minimum was already found to be 0 above.

Clearly the global minimum is attained in this exercise, since we minimize over
a bounded region.

Exercise 6.6. Solve the problem: minimize x2+y2−14x−6y subject to x+y ≤ 2,
x+ 2y ≤ 3.

Solution: The gradient equation is(
2x− 14
2y − 6

)
+ µ1

(
1
1

)
+ µ2

(
1
2

)
= 0.
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Note first that the constraint gradients are linearly independent.

Assume that both constraints are active. This gives x = y = 1 and f(1, 1) = −18.

Assume that only the first constraint is active. We get 2x − 14 = 2y − 6 and
x+ y = 2, so that we get x = 3, y = −1, and f(3,−1) = −26.

Assume that only the second constraint is active. We get y = 2x−11 and x+2y =
3, so that we get x = 5, y = −1, and f(5,−1) = −38.

Assume finally that no constraints are active. Then x = 7, y = 3, and f(7, 3) =
−58. By comparing with the other candidates we see that this is the minimum.

We should finally comment that f goes to zero as x, y → ∞. This implies that
the minimum we have found also is global.

Exercise 6.7. Solve the problem: minimize x2−y subject to y−x ≥ −2, y2 ≤ x,
y ≥ 0.

Solution: The gradient equation is(
2x
−1

)
+ µ1

(
1
−1

)
+ µ2

(
−1
2y

)
+ µ3

(
0
−1

)
= 0.

We see that x ≥ 0.

From the second component we see that the second constraint must be active
and y > 0. The third constraint can thus never be active. We are left with two
possiblities: The first constraint may or may not be active.

Assume first that the first constraint is active. We then have that y = x− 2 and
y2 = x, so that y2 − y − 2 = 0. This gives that y = 2 or y = −1. y = −1 can be
discarded, so that we obtain the candidate (4, 2). We have that f(4, 2) = 14.

Finally assume that the first constraint is not active. The gradient equation can
now be written as (

2x
−1

)
= µ2

(
1
−2y

)
.

Taking ratios we see that −2x = −1/2y so that 4xy = 1 (and both x and y must
be > 0). Inserting this in y2 = x gives that 4y3 = 1, so that x = 4−2/3, y = 4−1/3,
and

f(4−2/3, 4−1/3) = 4−4/3 − 4−1/3 = −3

4
4−1/3 < 0.

It follows that this is the constrained minimum.

We should also comment on the possibility of having linearly dependent active
constraint gradients. The only problematic part here can be when the first two
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constraints both are active, but this is covered by the calculations above, which
lead to f(4, 2) = 14.

We should also comment that the area we minimize over is bounded, so that there
actually exists a global minimum, which is the one we have found.



More on the proof of Theorem 1.2 in [2]

F (G) ⊆ Q follows from Lemma 1.1: Since (1.4) holds for all incidence vectors
of forests, it also holds for their convex hull, i.e., F (G) ⊆ Q. The other way,
as Q is compact and convex, Minkowski’s theorem yields that Q is the convex
hull of its extreme points. According to Chapter 4 in [1], as Q is a polyhedron,
vertices and extreme points coincide, and faces and exposed faces are the same.
It follows that it is enough to show that any unique optimal solution to a problem
on the form max{cTx : x ∈ Q} is also in F (G). We will actually show that such
a unique optimal solution must be an incidence vector for a forest, which is an
even stronger statement.

It is smart to consult section 1.4 in [21] here, where one learns the following
greedy algorithm for constructing a maximum weight forest: At step k in the
algorithm we have a forest (collection of subtrees), and we add an edge ek of
maximum overall weight (there may be more than one such) which preserves the
forest property. The new forest results from joining two trees in the previous
forest, and we denote by Vk the vertex set of the resulting tree. We terminate
when there are no such edges left with positive weight. Since the later edges
added also were candidates at previous iterations, the weights are decreasing:
c(e1) ≥ c(e2) ≥ · · · c(er) > 0 (the edges ei are the ones found by the algorithm).
This is a crucial point, which is not commented in the proof.

We define yS = 0 for S different from the Vj. With this definition (i) in (1.6)
takes the form ∑

i:e joins vertices from Vi

yVi ≥ ce.

In particular, if e = ej, we get

yVj +
∑

i:Vj⊆Vi

yVi ≥ c(ej) (6.1)

We now define the yVj so that we have equality here (this gives 0 slack for the dual
constraints corresponding to ej). For each j, this gives an upper triangular system
in the {yVi}i:Vj⊆Vi which defines the yVj uniquely. As x′ is the incidence vector of

48



49

e1, . . . , er we have complementary slackness between the primal variables and the
dual slack variables.

Complementary slackness between the dual variables and the primal slack vari-
ables: since yS = 0 for all S 6= Vj, we only need to show that the primal slack
corresponding to the Vj constraint is 0, i.e., that x(E[Vj) = |Vj| − 1 for all i.
But this follows from the fact that the components constructed by the greedy
algorithm are trees.

It remains to argue why we have primal and dual feasibility. Primal feasibility is
obvious, so let us prove dual feasibility.

yVj ≥ 0 for all j: After all iterations of the greedy algorithm, we end up with a
forest where the nodes in any connected component equal a Vj which is maximal
in the sense that it is not a subset of another Vi (this means that I(j) = ∅). If
Vj is such, then yVj = c(ej) > 0 due to (6.1). Now, each Vj is constructed by the
algorithm by adding edges, providing a subsystem of (6.1), where only subsets of
Vj occur in the summations. If we eliminate yVj = c(ej) > 0 (back-substitution) in
this subsystem, we get a system where the right hand side is c(ek)−c(ej) ≥ 0 (and
still decreasing), and where ej joins Vj1 and Vj2 to Vj. The sketched procedure
can now be repeated to show that yVj1 ≥ 0, yVj2 ≥ 0, and so on, proving that all
yVj ≥ 0.

For dual feasibility we also need to explain why∑
i:e joins vertices from Vi

yVi ≥ ce

when e is different from the ei added by the algorithm (when e equals some ei we
have equality here). There are two different cases to consider:

1. e joins two different components of the forest we end up with, we must
have that c(e) ≤ 0 (otherwise the forest is not maximum weight), and the
equation follows since all yVi ≥ 0.

2. e joins two vertices in the same component of the forest we end up with.
At some point in the algorithm, the two end nodes of e are joined into the
same component by means of one edge ek. As e was also a candidate for
this join, we must have that c(ek) ≥ c(e) by maximality of c(ek) in the
algorithm. But then∑

i:e joins vertices from Vi

yVi =
∑

i:ek joins vertices from Vi

yVi = c(ek) ≥ c(e).

where we used that e joints vertices from Vi if and only if ek does.
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Dual feasibility follows.

From complementary slackness it now follows that x′ is optimal for the primal
problem. As x̄ also is optimal, they must be equal due to the uniqueness assump-
tion. As x′ is the incidence vector of a forest, the result follows.



Chapter 2 in [2]

Regarding the final statement in proposition 2.2, I believe it should be that,
if P is pointed and rational, nonempty polyhedron, then P is integral if and
only if each vertex is integral. To see why: When it is pointed, we can write
P = conv(ext(P )) + cone(Z) according to Proposition 4.3.3. Since P also is
assumed rational, we can choose integral generators for Z as in Theorem 2.1.

⇒: IF P is integral, P = conv(P ∩ Zn). According to Exercise 4.5, all vertices
of P are contained in P ∩ Zn, so that they are integral (this direction does not
require the polyhedron to be rational).

⇐: If each vertex is integral, then conv(ext(P )) ⊆ PI . Since P and PI have the
same characteristic cone according to Theorem 2.1, we have that

P = conv(ext(P )) + cone(Z) ⊆ PI + cone(Z) = PI .

Thus P ⊆ PI , so that P is integral.

Add details in Proposition 2.3: Note that the vertices are rational since the poly-
hedron is rational. Since the polyhedron is not integral, one of the vertices is not
integral. Since it is rational, it must be fractional. That there is a c̄ as described is
not explained. Note that each vertex is the unique intersection of n planes. Con-
sider a supporting hyperplane at the optimal solution. We can slightly change its
normal vector c̄ to a rational vector (and therefore also an integral vector), while
maintaining the supporting hyperplane property. c̄ must be changed so that its
inner products with the normal vectors of the planes do not change in sign. For
the same reason we can find c′.

51



Chapter 4 in [2]

The deductions on the bottom of page 54

Let us go carefully through the deductions on the bottom of page 54. The first
two lines follow by definitions, while the third line follows frm the fact that the
maximum of a convex function in a polytope can be found in one of the vertices
of the polytope. The fourth line, introducing η, is a simple rewriting, while the
fifth line simply moves the terms from side to side. The fifth line is an LP in
the variables η and λ. The coefficient vector in the objective is (1, 0, . . . , 0). With

X =
(
x1 · · · x|K|

)T
, and 1n the column vector with all ones, the inequalities

can be rephrased as(
1n (A2X −

(
b2 · · · b2

)
)T
)(η

λ

)
≥ XT c.

The dual LP is thus (with variables denoted by µk) to maximize (XT c)Tµ =
cT
∑

k∈K µ
kxk subject to

(
1Tn

A2X −
(
b2 · · · b2

))
µ

1

µ2

...

 ≤


1
0
...
0

 ,

where there is equality in the first inequality since there was no requirement on
η to be nonnegative. This first equality can be rephrased as

∑
k∈K µ

k = 1. The
other inequalities can be rephrased as

(
A2X −

(
b2 · · · b2

))µ
1

µ2

...

 ≤ 0,

i.e.,

A2
∑
k∈K

µkxk ≤ b2
∑
k∈K

µk = b2.

This is the statement on the sixth line. Since
∑

k∈K µ
kxk is a general element in

P 1
I , the last line follows.
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The details at the top of page 65

Let us also clarify the details at the top of page 65. By adding the degree con-
straints we have that

∑
v∈H x(δ(v)) = 2|H|. Now, each edge in E(H) contributes

twice in this sum, while each x ∈ δ(H) contributes once, so that 2x(E(H)) +
x(δ(H)) = 2|H|, so that x(E(H)) + 1

2
x(δ(H)) = |H|. Adding that −1

2
xe ≤ 0 for

e ∈ δ(H) \ (∪iE(Ti)) we obtain

x(E(H)) +
1

2

k∑
i=1

x(E(Ti) ∩ δ(H)) ≤ |H|, (6.2)

where we used that we have the disjoint union

δ(H) = (δ(H) \ ∪iE(Ti)) ∪ (∪iE(Ti) ∩ δ(H)) .

Now note that we also have the disjoint union

E(Ti) = E(Ti ∩H) ∪ E(Ti \H) ∪ δ(H) ∩ E(Ti),

and that

1. An edge in E(Ti ∩H) contributes both in (ii) and (iv).
2. An edge in E(Ti \H) contributes both in (ii) and (iii).
3. An edge in δ(H) ∩ E(Ti) contributes both in (ii) and (6.2).

Therefore, if (i), (ii), and (iii) are scaled by 1
2
, and these three are added for all i

with (6.2), the left hand side will become x(E(H))+
∑k

i=1 x(E(Ti)). On the right
side we obtain

|H|+ 1

2

(
k∑
i=1

(|Ti| − 1 + |Ti \H| − 1 + |Ti ∩H| − 1)

)

= |H|+ 1

2

k∑
i=1

(2|Ti| − 3)

= |H|+
k∑
i=1

(|Ti| − 1)− k/2.

The use of Farkas lemma

Let us also comment on how Farkas lemma is used in (4.17). Farkas lemma
(Theorem 3.2.5) states that. Ax = b has a solution x ≥ 0 if and only if for each
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y, yTA ≥ 0 implies yT b ≥ 0. Alternatively this says that Ax = b has a solution
x ≥ 0 if and only if for each y, yTA ≤ 0 implies yT b ≥ 0.

Applied to the matrix

(
A
e

)
and vector

(
x̄
1

)
, the first statement is equivalent

to x ∈ conv(T ). x 6∈ conv(T ) is thus equivalent to that there exists a y so that

yT
(
A
e

)
≤ 0 and yT

(
x̄
1

)
> 0. Writing y =

(
a
−b

)
, this says that aTA − be ≤ 0

and aT x̄− b > 0, which is the staement in the book.

The matrix A here has nonnegative entries, as well as x̄. The reason for using −b
instead of b is that the equations secure equivalence between positivity of a and
that of b.



Exercises from [2]

Exercise 4.1: The coordinate change xj = b
aj
yj turns the problem into maximizing

b
∑n

j=1
cj
aj
yj under the constraints

∑n
j=1 yj ≤ 1, and 0 ≤ yj ≤ aj

b
. Clearly we must

choose y1 = min
(
1, a1

b

)
, i.e., x1 = min

(
1, b

a1

)
.

If a1 ≥ b we are done and must choose x2 = · · · = xn = 0. Otherwise x1 = 1 and
the problem can be rephrased as minimizing subject to

∑n
j=2 ajxj ≤ b− a1.

If a2 ≥ b − a1 we are again done. Otherwise x2 = 1, and we get the system∑n
j=3 ajxj ≤ b− a1 − a2. We continue this procedure until for some k,

ak ≥ b− a1 − · · · − ak−1, (6.3)

i.e.,
∑k−1

i=1 ai < b ≤
∑k

i=1 ai. We obtain the optimal solution(
1, . . . , 1,

b−
∑k−1

i=1 ai
ak

, 0, . . . , 0

)
, (6.4)

and the optimal value is c1 + . . .+ ck−1 +
ck(b−

∑k−1
i=1 ai)

ak

The dual problem is: Minimize by + y1 + · · ·+ yn subject to aiy + yi ≥ ci, y ≥ 0.

This can also be written as yi ≥ ci − aiy.

With y ≥ 0 fixed, clearly the minimum is obtained by choosing yj = max(cj −
ajy, 0). Let now y be chosen so that ci

ai
≥ y ≥ ci+1

ai+1
.

Since cj − ajy = aj(
cj
aj
− y) we have that

max(cj − ajy, 0) =

{
cj − ajy j ≤ i

0 j > i.

The minimum is thus

by +
i∑

j=1

(cj − ajy) =

(
b−

i∑
j=1

aj

)
y +

i∑
j=1

cj.
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This states that the minimization problem can be stated as finding the minimum

of the piecewise linear function defined as
(
b−

∑i
j=1 aj

)
y+
∑i

j=1 cj on
(
ci+1

ai+1
, ci
ai

)
.

Thus the minimum occurs when
∑k−1

j=1 aj ≤ b ≤
∑k

j=1 aj+1, and at y = ck
ak

, which
gives (

b−
k−1∑
j=1

aj

)
ck
ak

+
k−1∑
j=1

cj,

which is the same expression we found when solving the primal problem.

The vertices are obtained by collecting all possible maxima when the ci are varied
(this gives all exposed faces, which consitute the vertices for polyhedra). By
permuting the ci in particular we see that all vectors obtained by permuting the
entries in (6.4) also are vertices. Let us take a look at how many possible such
permutations there are. The actual number depends on the k we found in (6.3).
If the middle number in (6.4) is in (0, 1), the number of vertices is n

(
n−1
k

)
, where

the binomial coefficient comes from the number of ways to place k zeros among
n− 1 numbers.

Exercise 4.2: No. That v(R(u)) > v(Q) implies that that the LP relaxation has
an optimal value which is not integral. The optimal node in the enumeration tree
may still be below u, so that we cannot prune.

Exercise 4.3: Assume that x represents a Hamilton tour. Then clearly (i) holds.
Also, if W is as described in (ii), along the Hamilton tour we must pass at least
twice between an element in W and an element outside W , so that x(δ(W )) ≥ 2.

On the other hand, suppose (i) and (ii) are fulfilled. (i) secures that x passes
through each vertex twice, so that the only possibility is to have one tour, or
several subtours. Assume the latter, and let W be the node set of one of those
subtours. Then no edges are entering or leaving W , so that x(δ(W )) = 0, contra-
dicting (ii). It follows that x represents a Hamilton tour.

Exercise 4.4:

Exercise 4.5: The constraints x(E[S]) ≤ |S| − 1 (for all S ⊆ V , S 6= ∅, S 6= V ),
xe ≥ 0 forces x to be the incidence vector of a forest.

We should now add the degree constraints x(δ(v)) ≤ bv (bv is the constrained
degree at v), for all v ∈ V .

Finally we should add constraints enforcing a tree. For this we can add the con-
straints x(δ(W )) ≥ 1 (for all W ⊆ V , W 6= ∅, W 6= V ).

Exercise 4.6:
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Exercise 4.7:

Exercise 4.8:



Exercises from [3]

Exercise 1: We have that

∑
v∈V

divx(v) =
∑
v∈V

 ∑
e∈δ+(v)

x(e)−
∑

e∈δ−(v)

x(e)


=

∑
e=(u,v)∈E

(x(e)− x(e)) = 0,

since (u, v) ∈ δ+(u), and (u, v) ∈ δ−(v).

Exercise 2: This does not give meaning, since one sums together edges sets. I
suppose what is meant is to show that x(δ−(S)) = x(δ+(S)), i.e., that the total
inflow to S equals the total outflow from S. The total inflow to S can be written∑

v∈S
∑

e∈δ−(v) x(e), while the total outflow can be written
∑

v∈S
∑

e∈δ+(v) x(e).

The flow balance equations say that
∑

e∈δ−(v) x(e) =
∑

e∈δ+(v) x(e) for any v.
Adding for v ∈ S we obtain the desired equality.

We have that
∑

e∈δ+(v) x(e) =
∑

e∈δ−(v) x(e) for any v ∈ V . Summing over v ∈ S
we obtain ∑

v∈S

∑
e∈δ+(v)

x(e) =
∑

e∈δ−(v)

x(e) =
∑

e∈δ+(S)

x(e) =
∑

e∈δ−(S)

x(e).

Exercise 3: Clearly x satisfies the bounds l ≤ x ≤ u if and only if 0 ≤ x′ ≤ u− l.
If divx(v) = 0, then

div′x(v) =
∑

e∈δ+(v)

x′(e)−
∑

e∈δ−(v)

x′(e)

=
∑

e∈δ+(v)

x(e)−
∑

e∈δ−(v)

x(e)−
∑

e∈δ+(v)

l(e) +
∑

e∈δ−(v)

l(e)

= −
∑

e∈δ+(v)

l(e) +
∑

e∈δ−(v)

l(e),
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which gives the required divergence of x′.

Exercise 4: We have that
∑

x∈V divx(v) = 0. Also divx(v) = 0 for v 6= s, t. It
follows that divx(s) = −divx(t). If one assumes (as one usually does) that there
is no edge entering s and no edge leaving t, we obtain

divx(s) =
∑

e∈δ+(s)

x(e)−
∑

e∈δ−(s)

x(e) =
∑

e∈δ+(s)

x(e) = val(x)

−divx(t) =
∑

e∈δ−(t)

x(e)−
∑

e∈δ+(t)

x(e) =
∑

e∈δ−(t)

x(e),

and the result follows.

Exercise 5: The value of a flow is a continuous (in fact linear) function. The
constraints 0 ≤ x ≤ c gives a closed and bounded (i.e., compact) set. It fol-
lows from the extreme value theorem that there is a maximum flow. Any linear
programming problem with box constraints has a maximum.

Exercise 6: Let x be a maximum flow. Dx thus contains no x-augmenting path.
As in the proof of Theorem 1.5 we define S(x) as the set of all vertices v to which
we can find an augmenting sv-path in Dx, and we define the cut K = δ+(S(x).
The proof shows that the capacity of this cut equals the value of the (flow), and
the result follows from Lemma 1.3.

Exercise 7:

Exercise 8:

(a) The outgoing edges from s are (s, v) with b(v) > 0, and their capacities are
b(v). It follows that val(x) =

∑
v∈V + x(s, v) ≤

∑
v∈V + b(v).

(b) Assume that a flow in D satisfies divx = b and 0 ≤ x ≤ c. Define a flow x′

in D′ by expanding x so that x′(s, v) = b(v) for v ∈ V +, and x′(v, t) = −b(v) for
v ∈ V −. The value of x′ is

∑
v∈V + b(v) = M , so that the value of the maximum

flow is M . x′ also satisfies the balancing equations for v ∈ V +, and for v ∈ V−,a
dn thus for all v.

The other way, if the value of a maximum st-flow in D′ is M , all the edges x′(s, v)
must be at capacity c′(s, v) = b(v) for v ∈ V +. From the flow balance equations
it follows that div(x) is b(v) for all v, and the result follows.

(c) One simply restricts x’ from E ′ to E.

Exercise 9: The Ford Fulkerson algorithm starts with the zero flow, which is
integral. Due to integral capacities, the ε found by the algorithm will at each step
be integral, so that each step produces a new integral flow. After all steps we thus
end with an integral flow.
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Exercise 10: Since the capacities are integral, there exists a maximum flow which
is integral (Theorem 1.6). This implies that all edges have either unit- or zero
flow. Due to flow conservation, each vertex has the same number of incoming
unit flow edges as outgoing unit flow edges. Start by following edge-disjoint edges
with unit flow from s, all the way to t (if this was impossible, we would have
a contradiction to flow balancing). If one removes this st-path from D, one still
have a flow of the same type. One can in this way take out one edge-disjoint
st-path at a time, unitl there are noe edges left.

Exercise 11: From the previous exercise it is clear that the maximum number of
edge-disjoint st-paths equals the maximum flow, which again equals the capacity
of the minimum cut, which is

∑
e∈K c(e) = |K|.

Exercise 12: The upper and lower bounds should be defined as follows:

• For e = (ui, vj), we set l(e) = baijc, r(e) = daije.
• For e = (s, ui), we set l(e) = bric, r(e) = drie.
• For e = (vj, t), we set l(e) = bsjc, r(e) = dsje.
Hoffman’s circulation theorem ensures that, if a circulation exists in thsi graph, an
integral circulation also exists. Such an integral circulation represents a solution
to the matrix rounding problem.

Exercise 13: See the proof of Exercise 4.28.

Exercise 14: That every permutation matrix is a vertex follows directly from the
previous exercise. Integral matrices in Ωn must have exactly one 1 in each row
and column, the rest zeros (in order for a column/row summing to one). But this
is equivalent to being a permutation matrix.


