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Abstract
We present Feasibility Jump (FJ), a primal heuristic for mixed-integer linear programs
(MIP) using stochastic guided local search over a Lagrangian relaxation. The method
is incomplete: it does not necessarily produce solutions to all feasible problems, the
solutions it produces are not in general optimal, and it cannot detect infeasibility. It
does, however, very quickly produce feasible solutions to many hard MIP problem
instances. Starting from any variable assignment, Feasibility Jump repeatedly selects
a variable and sets its value tominimize a weighted sum of constraint violations. These
weights (which correspond to the Lagrangian multipliers) are adjusted for constraints
that remain violated in local minima. Contrary to many other primal heuristics, Fea-
sibility Jump does not require a solution of the continuous relaxation, which can be
time-consuming for some problems. We compare FJ against FICOXpress Solver 8.14
and we show that this heuristic is effective on a range of problems from the MIPLIB
2017 benchmark set, significantly improving the average time to find a first feasible
solution.We also show that providing these quick solutions to Xpress produces a mod-
est reduction in the average time to optimality in the same benchmark set. Our entry
based on FJ to the MIP 2022 Computational Competition (which challenged partic-
ipants to write LP-free MIP heuristics) won 1st place. Moreover, an implementation
of Feasibility Jump now runs by default on FICO Xpress Solver 9.0, where similar
results to the ones presented here could be observed.
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1 Introduction

Inmathematical programming, heuristic algorithms have always been an essential tool
to quickly find good feasible solutions.Not only are they used as standalone specialized
algorithms, but they are also tightly integrated in all state-of-the-art MIP solvers. The
introduction of primal heuristics was one of the four key ideas (together with cutting
planes, branching strategies, and preprocessing) that helped MIP solvers become so
effective in the last two decades [22]. But as MIP solvers got better, users wanted to
solve increasingly hard optimization problems, making sure the task of finding proven
optimal solutions (or even just feasible solutions) would still be challenging (note that
finding a feasible solution for a MIP problem is NP-hard [31]). This work will focus
on the development of a general purpose primal heuristic, that is, a heuristic algorithm
for finding feasible solutions to generic MIP problems, allowing it to be used as a
standalone heuristic or to be integrated into a generic MIP solver.

Most of the general purpose primal heuristics employed by existingMIP solvers are
applied only after solving the LP relaxation at the root node, such as local branching
[13], pivot and shift [4], feasibility pump [12], RINS [10], RENS [6], and tabu search
methods (see, for example, [23]). Somemore recent heuristics that exploit information
obtained from the LP relaxation of a MIP problem include conflict-driven diving
heuristics [30] and even ML-based heuristics, such as [28, 29].

But very few heuristics have been developed so as to be applied before the root
node (i.e., pre-root heuristics), and they can generally be subdivided into propaga-
tion methods or relaxation methods. Propagation methods mostly involve constructive
heuristics, where iterative greedy decisions on the value of variables are propagated
to the rest of the problem. Berthold and Hendel’s [7] shift-and-propagate heuristic
follows exactly this approach. It alternately fixes one variable at a time to a promising
value, and propagates this partial assignment to the rest of the problem. The order
in which the variables are fixed is decided from the beginning and depends on the
number of violated rows in the initial assignment. The promising value of a certain
variable, called best-shift, is the one that minimizes the total number of violated con-
straints. More recently, a similar structure-driven approach was proposed by Gamrath
et al. [18], where the order in which the variables are fixed is based on information
extracted either from the clique table or the variable bound graph, both of which are
usually computed in the presolve phase of state-of-the-art MIP solvers.

Relaxation methods follow instead a very different approach, usually employing
local search methods in a relaxed version of the problem. This is also the approach
recently proposed by Lei et al. [21] in the context of pseudo-Boolean optimization,
that is when all variables have binary domains (also called 0–1 integer programs).
The idea is to consider the Lagrangian relaxation of a pseudo-Boolean problem and
iteratively flip the value of the variable that most reduces the total weighted constraint
violation. The weighting of the constraints (which corresponds to the Lagrangian
multipliers) is updated whenever a local minimum is reached, that is, when there
is no variable that improves the current weighted total constraint violation and the
current assignment is still infeasible. Once a feasible solution has been found, the
original objective function of the problem can be also taken into account. Despite the
large amount of recent literature about Lagrangian methods for MIP problems, most
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Feasibility Jump: an LP-free Lagrangian MIP heuristic 367

of the proposed heuristics are very problem specific, and “an improved Lagrangian
technology would be a useful tool in the bag of tricks available for solving difficult
optimization problems” [17].

In this paper we describe Feasibility Jump (FJ), a general-purpose pre-root primal
heuristic for mixed-integer linear programming problems that belongs to the cate-
gory of relaxation methods. It can be used either as a standalone heuristic or tightly
integrated into a more sophisticated MIP solver. It extends the Lagrangian approach
described in [21] to deal with both general integer and continuous variables. In par-
ticular, when considering a variable separately and assuming all other variables are
fixed, we can efficiently find a new optimal value for the variable. We say that values
of promising variables jump towards assignments with smaller constraint violations.
The jump values are computed by extending and improving the concept of best-shift
described in [7]. These values are updated in a lazy fashion, only after a variable
“jumps” and only for that variable.

Being an incomplete algorithm, Feasibility Jump does not have any guarantee in
terms of finding a feasible solution or proving infeasibility, for example. The trade-off
is speed. With a recent laptop and on sparse problems (almost independently of their
size), FJ can hit 1 million jumps per second. Algorithms that quickly produce feasible
solutions can be extremely valuable as a subroutine of a complete branch-and-bound
MIP solver, either because the user might be content with (possibly sub-optimal)
solutions that are produced as quickly as possible, or because the branch-and-bound
search itself can become faster when a (good-quality) feasible solution is known (see,
for example, [2, 5, 16]).

The algorithm was originally developed for the MIP 2022 Workshop’s Computa-
tional Competition [25], where it won 1st place. It competed on a set of (hidden) MIP
instances as a standalone heuristic. In this paper, we go one step further by integrating
FJ within Xpress, and showing how it can improve both the time to first feasible solu-
tion and the time to optimal solution on instances from the MIPLIB 2017 benchmark
set [19]. A C++ open-source implementation of Feasibility Jump together with the
Xpress integration are available at https://github.com/sintef/feasibilityjump.

This paper provides the following contributions:

– a fast and effective primal heuristic for MIP problems;
– a high-performance open-source C++ implementation;
– results from a tight integration with the FICO Xpress solver.

2 Feasibility Jump

A mixed-integer linear program (MIP) is an optimization problem of the form

minimize
∑

j∈N
c j x j

subject to
∑

j∈N
ai j x j ≤ bi i ∈ M,

l j ≤ x j ≤ u j j ∈ N ,

x j ∈ Z j ∈ I ,

(1)
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where N = {1, . . . , n}, M = {1, . . . ,m}, x ∈ R
n , ai j , c j , bi ∈ R, l j ∈ R and u j ∈ R

are variable bounds, and I ⊆ N are indices of variables that are constrained to take
only integer values. Any specific vector x̄ ∈ R

n is an assignment to the variables. An
assignment that satisfies the linear constraints, bounds, and integrality, is a feasible
solution. A feasible solution that minimizes the objective is an optimal solution.

Local search algorithms are heuristic optimization algorithms that work by consid-
ering a feasible solution x̄ and examining a set of other neighboring solutions N (x̄)
(i.e., solutions that are close to x̄ according to some predefined distance measure). If
it finds a new feasible solution x̄ ′ ∈ N (x̄) with a better objective value, then it sets
x̄ ← x̄ ′, and the process repeats as long as such an improving solution can be found.
When no such x̄ ′ exists, the process has reached a local minimum. It is not possi-
ble, in general, to know if the local minimum is also a global minimum. In practice,
local search algorithms work well for many optimization problems even though their
theoretical guarantees tend to be weak [1].

The objective of primal heuristics is to find feasible solutions to problems such
as (1). In the context of a local search algorithm, this requires relaxing some of the
constraints, so that it becomes possible to start from a solution that is feasible for
all but the relaxed constraints. Depending on which constraints get relaxed, different
algorithms or techniques may emerge. For example, the well-known Feasibility Pump
[12] (to which we owe the inspiration for our heuristic’s name) is an algorithm that
relaxes the integrality constraints of (1) and tries to move towards solutions in which
these constraints are less and less violated. Our approach is different. We relax all but
the variable bounds and the integrality constraints, penalizing the relaxed ones (when
violated) in the objective function. This technique is usually known as Lagrangian
relaxation [27].

In the next sections,wedescribe all the pieces that contribute toFeasibility Jump.We
first introduce a Lagrangian relaxation of the MIP problem (Sect. 2.1) and we explain
how to compute promising values that variables can use to heuristically “jump” towards
local minima of the corresponding Lagrangian function (Sect. 2.2). We then describe
how these values can be used to efficiently define new neighborhoods (Sect. 2.3) and
how to proceed when reaching a local minimum (Sect. 2.4). Finally, Sect. 2.5 summa-
rizes the entire algorithm and Sect. 2.6 describes how to extend FJ to take the original
objective function into account.

2.1 Relaxing the linear constraints

Based on the well-known Lagrangian relaxation of a MIP problem, we define our
relaxed MIP problem as:

minimize Fw(x)
subject to l j ≤ x j ≤ u j j ∈ N ,

x j ∈ Z j ∈ I ,
(2)
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where Fw(x) is the total infeasibility penalty incurred by x . It is defined as the sum
of the infeasibility penalties computed for each linear constraint,

Fw(x) =
∑

i∈M
wi fi (x), (3)

where wi ≥ 0 is a weight associated to each constraint and the infeasibility penalty
fi (·), i ∈ M , for a single linear constraint

∑
j∈N ai j x j ≤ bi is

fi (x) = max

⎧
⎨

⎩
0,

∑

j∈N
ai j x j − bi

⎫
⎬

⎭
. (4)

Note that problem (2) does not contain the original objective of (1), and solving (2)
corresponds to finding feasible solutions to (1). We discuss in Sect. 2.6 how to extend
(2) to also consider the original objective function.

We use themax function in fi (·) (as opposed to the classical Lagrangian full penalty∑
j∈N ai j x j − bi ) because we are more interested in solutions that live at the edge of

the feasible region, rather than at its center. It has been shown this can be beneficial
for feasibility heuristics (see, for example, [12]), and we also hope this could yield
feasible solutions with better objective value.

The first surveys on Lagrangian techniques for discrete optimization started appear-
ing already in the 1970s [27], but the basic idea did not change since then: minimize
the Lagrangian function F w̄(x) for fixed w̄, produce modified weights w̄′ (usually by
increasing their value for violated constraints and reducing it for satisfied ones), and
repeat. Unfortunately (but not unexpectedly), no theoretical guarantees exist for the
this method to converge to an integer feasible solution [9].

As we will see in the following sections, Feasibility Jump follows a very similar
framework. However, we do not minimize the Lagrangian function exactly, but rather
look for a local minimum in neighborhoods where we only change the value of one
variable at a time. The next section describes how to compute a promising value for
each variable.

2.2 The jump value

Given the current variable assignment x̄ and considering a single variable x j , wewould
like to find the value that solves (2) when all variables xk , k ∈ N , k �= j , are fixed
to their current value x̄k . In essence, this is the value of x j that minimizes the total
constraint violation given that all other variables are fixed to the current incumbent. But
there is a caveat.Wewant this value to be different from the current x̄ j . This is common
in local search methods, where one would want to have a non-empty neighborhood
for each variable so that there are always moves available, even if they do not improve
the objective value. However, if x j is not restricted to take only integer values, then
one could not simply add the additional constraint x j �= x̄ j .
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370 B. Luteberget, G. Sartor

Notice that when all variables but x j are fixed, then each fi (x j ) in (4) measures
the constraint violation of an expression of the form ai j x j ≤ di , where di = bi −∑

k �= j aik x̄k . If x j is integer and di is fractional, then it only makes sense to consider
ai j x j ≤ 	di
 if ai j > 0, or ai j x j ≤ �di� if ai j < 0 [20]. In this way, we include the
integrality constraint of x j directly into the constraint violation measure.

In general, given a current variable assignment x̄ and a variable x j , for each con-
straint violation function fi (x j | xk = x̄k, k �= j) in which ai j �= 0, we define the
critical value, ti j (x̄k �= j ), as follows:

ti j (x̄k �= j ) =

⎧
⎪⎨

⎪⎩

	r
 ai j > 0

�r� ai j < 0

r = 1

ai j

⎛

⎝bi −
∑

k �= j

aik x̄k

⎞

⎠ , (5)

where x̄k �= j is short for xk = x̄k, k �= j . In other words, the critical value ti j (x̄k �= j )

is the greatest (resp. smallest, if the coefficient is negative) value that variable x j can
take before constraint i becomes violated, when all the other variables are fixed to x̄ .
For greater (resp. smaller) values of x j , the penalty associated with the violation of
constraint i increases proportionally to its corresponding weight wi . For values of x j
smaller (resp. greater) than ti j (x̄k �= j ), the penalty is zero. For a given x̄ , this defines a
piecewise-linear convex function gi j (t |x̄k �= j ) such that:

gi j (t |x̄k �= j ) =

⎧
⎪⎨

⎪⎩

max
{
0, wi

(
t − ti j (x̄k �= j )

)}
ai j > 0

max
{
0,−wi

(
t − ti j (x̄k �= j )

)}
ai j < 0,

(6)

where t ∈ R and j ∈ N . In other words, gi j (t |x̄k �= j ) is equivalent to the function
fi (x j | xk = x̄k, k �= j) translated by the fractional part of r , as defined in (5).1 Note
that one could also choose to normalize the penalty function gi j by ai j , but we did not
experiment with this.

We are now ready to define the promising value each variable is allowed to jump
to.

Definition 1 Given a feasible solution x̄ for problem (2), we define the jump value of
variable x j as the feasible value of x j (different from x̄ j ) that minimizes the sum of
the constraint violation penalties,

G j (t |x̄k �= j ) =
∑

i∈M : ai j �=0

gi j (t |x̄k �= j ).

1 We found that using the constraint violation functions fi (x j | xk = x̄k , k �= j) (as opposed to gi j (t |x̄k �= j ))
to compute the jump value in (7), did not perform aswell, reducing the number of problems from theMIPLIB
2017 benchmark set for which Feasibility Jump found a feasible solution by 5%.
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Then we have:

Jump j (x̄k �= j ) = min

(

argmin
t∈[l j ,u j ],t �=x̄ j

G j (t |x̄k �= j )

)

. (7)

By looking at (6), it is easy to see that the jump value of a variable will be exactly
equal to one of the values in the set of critical values, plus its lower and upper bounds:

Tj (x̄) = l j ∪ u j ∪
⋃

i∈M
ti j (x̄k �= j ).

Therefore, it is always possible to find a t that is different from x̄ j , even in the con-
tinuous case. A simple and efficient algorithm to compute the jump value of variable
x j given the current incumbent x̄ is described in Algorithm (1). We start by finding
the set of critical values Tj (x̄), and by computing the cumulative slope of G j (t |xk �= j )

when approaching t = l j from below (see lines 8–11 and also Example 1 below). We
then loop through the feasible values of Tj (x̄) in ascending order, keeping track of the
slope changes inG j (t |x̄k �= j )while storing the best value that is different from x̄ j . Note
that since we can assume that l j �= u j (otherwise the variable x j is fixed), then we
will always reach line 16 at least once, and the algorithm will return a value different
from the incumbent one. If we reach the upper bound, or the slope becomes greater or
equal to 0, then we have found the optimal solution of mint∈[l j ,u j ], t �=x̄ j G j (t |x̄k �= j ).
The correctness is easy to prove, since we are simply traversing a piecewise-linear
convex function from l j to u j , where the only slope changes happen at the critical
values. Starting from the correct slope at l j and updating the slope at each feasible
critical value (plus l j and u j ), either we reach the upper bound or the slope becomes
non-negative (i.e., we reached the bottom of G j (t |xk �= j )). Then the best value found
up this point (which always exists) is the optimum.

The following example demonstrates the computation of the jump value in a simple
MIP problem.

Example 1 Consider a pure feasibility problem and consider the pair of constraints:

x1 + x2 = 3
x2 + x3 ≥ 3,

where x1, x2, x3 ∈ Z
+, the current incumbent is x̄1 = 1, x̄2 = 2, x̄3 = 0, and

w1, w2 = 1. Figure1shows the constraint violation functions gi,2(t |x̄k �= j ) and corre-
sponding critical values for the first (Fig. 1a) and second (Fig. 1b) constraints, while
Fig. 1c shows the sum of those functions and the jump value (the equality constraint
is simply the sum of a ≥ and ≤ constraint). In this case, T2(x̄k �= j ) = {0, 2, 3,+∞},
and Algorithm 1 loops through these values starting from l2 = 0 with a slope equal to
− 2. When hitting the critical value at x2 = 2, the slope changes to 0 and we reached
the bottom of the total constraint violation function for variable x2. But since x̄2 = 2,
then we continue to the next critical value, x2 = 3, which becomes the jump value.
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Algorithm 1 Jump value
Input Problem (2), incumbent solution x̄ , and variable index j
Output: The jump value.

1: t∗ ← l j � Initialize the best value
2: � ← [

(l j , 0), (u j , 0)
] � Initialize the list of (value,slope) pairs

3: slope ← 0 � Initialize the cumulative slope
4: for i ∈ M where ai j �= 0 do
5: t ← ti j (x̄k �= j ) � Compute the critical value
6: if l j ≤ t ≤ u j then
7: �.insert

(
(t, wi )

) � Add feasible critical value and slope change
8: if t ≥ l j and ai j < 0 then
9: slope ← slope − wi � Accumulate the negative slopes before l j
10: if t < l j and ai j > 0 then
11: slope ← slope + wi � Accumulate the positive slopes before l j
12: for (t, w) ∈ sorted(�) do � Iterate � in ascending order by the first component
13: slope ← slope + w � Update the current slope
14: if t = x̄ j then
15: continue � Skip values equal to the current incumbent
16: t∗ ← t � Update the best value
17: if slope ≥ 0 then
18: break � Stop when the slope becomes non-negative
19: return t∗

Fig. 1 The constraint violation functions for variable x2 (a, b), and their sum (c)

The jump value was motivated by the best shift of the Shift-and-Propagate
heuristic [7]. In [7], given an incumbent solution x̄ , the best-shift for a variable x j is the
valueψ j such that x̄ j +ψ j minimizes the number of violated constraints (assuming the
rest of the incumbent stays the same). This is in contrast with the infeasibility penalties
described in (4), where even partial reductions of constraint violations are considered.
The intrinsic problem of considering only when constraints switch between being
violated and satisfied is the loss of information associated with, for example, the
following combination of constraint and incumbent solution:

x1 + · · · + xn ≥ b, x1, . . . , xn ∈ {0, 1}, n ≥ 2, b > 1, x̄1, . . . , x̄n = 0.
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Since in the current incumbent all variables have value zero, changing the value of
any of the variables individually by +1 would not be enough to satisfy this constraint,
and there would be no incentive for the algorithm to do so.

In the next section, we show how can we construct neighborhoods based on the
jump value.

2.3 Lazy adaptive neighborhoods

Feasibility Jump looks for local minima of (2) by traversing neighborhoods in which
only one variable at a time can change its value. For a particular incumbent solution x̄ ,
we define a neighborhoodN (x̄) for problem (2) by simply associating a pair (v j , s j ) to
each variable x j , where v j is a new value the variable could jump to and s j represents
its corresponding score.

This score is computed as the difference between the current total constraint vio-
lation penalty G j (x̄ j |x̄k �= j ) and the same penalty obtained by changing the current
value of x j from x̄ j to v j :

s j = G j (x̄ j |x̄k �= j ) − G j (v j |x̄k �= j ). (8)

A positive score s j > 0 means that assigning the new value v j to x j will reduce the
total constraint violation of the current incumbent solution.

The value v j is initialized to the jump value, but it is updated in a lazy fashion.
Ideally, since in the previous section we went through the trouble of computing the
value that minimizes G j (t |x̄k �= j ), we would like to always have v j = Jump j (x̄k �= j ).
But since the jump values depend on the current incumbent x̄ , we would need to
recompute all of them every time we change x̄ , which means every time we make
a single variable jump to a new value. This can easily become too computationally
expensive. One could also choose to recompute all of them at regular intervals or after
a certain condition gets satisfied, but we decided not to experiment with this behavior
(in limited preliminary experiments, we saw that even recomputing all jump values
after each jumpwould not significantly reduce the amount of jumps necessary to reach
a feasible solution, while increasing the computation time).

We consider instead “lazy” neighborhood updates. The idea is to initialize the very
first neighborhood with the jump values, v j = Jump j (x̄k �= j ) for all j ∈ N . Then,
every time a variable x j performs a jump, we update only its value v j = Jump j (x̄k �= j ),
keeping the remaining vk, k �= j intact, but updating all the scores s j , j ∈ N . This
means that in any neighborhood except the first one, only the value v j of the variable
that performed a jump in the previous neighborhood is guaranteed to be equal to
its corresponding jump value, as defined in (1). In other words, performing a jump
with positive score will always improve feasibility since the scores are always updated
correctly, but one might miss better jump values since only a single value v j is updated
after performing a jump. Note that only the scores of the variables that share the same
constraints as the previous “jumping” variable need to be updated, and this can be
done with a simple single pass.
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Having defined our neighborhoodN and how to update it, we can hope that repeat-
edly choosing new assignments for variables with positive scores will eventually lead
us to a feasible solution. There are no guarantees, however, that the neighborhood will
always contain such an improving assignment, i.e., that there exists a variable with
a positive score. When this happens, we say that the local search is stuck in a local
minimum. To escape such a local minimum, we can add a new layer of heuristics that
will try to perturb the current assignment or search parameters so that the local search
will not return to the same local minimum but instead find a new and potentially better
one. The next section describes exactly this.

2.4 How to guide the search

The specific metaheuristic we use in Feasibility Jump is known as guided local search
(see [3] for a detailed survey). Guided local search works by modifying the objective
function of the local search whenever the search is stuck in a local minimum. In our
Lagrangian relaxation (2), we introduced the weight parameters wi , i ∈ M , to be
able to adjust the “importance” of each constraint individually. Since these parameters
influence the scores s j , j ∈ N , we hope that we can use them to guide the search out
of local minima and towards a feasible (or optimal) solution. This penalty method is
indeed similar to the classical Lagrangian relaxation method, and can be seen as its
approximation.

The heuristic we use for updating these weights is based on the fact that whenever
we reach a local minimum, we expect most of the constraints in our originalMIP (1) to
be satisfied by the current assignment. By increasing the weights of the few remaining
violated constraints, we hope that subsequent solutions will be less likely to violate
them, since the corresponding penalties (6) will be higher. In general, a MIP problem
may contain constraints that are easy to satisfy, and other constraints (or combinations
of constraints) that are difficult to satisfy. By increasing the weight of the latter we
focus the search on the constraints that are the hardest to satisfy.

We update the weights wi , i ∈ M , at every local minimum by setting:

wi ← �W (w, x̄, i),

where�W is some weight update function that depends on the current local minimum
x̄ . The simplest weight update is to increase the weight of any violated constraints by
a constant amount:

�W+(w, x̄, i) =
{

wi
∑

j∈N ai j x̄ j ≤ bi
wi + 1 otherwise.

This is in fact the update function that we have used. We did also experiment with
multiplicative updates, i.e.,

�W ∗(w, x̄, i) =
{

wi
∑

j∈N ai j x̄ j ≤ bi
λwi otherwise,
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which also requires some implementation tricks to avoid saturating the floating point
number representation, but we found that it had no significant effect on the algorithm’s
performance.

2.5 The algorithm

In this section we combine the ideas described in the previous sections and present
our LP-free Langrangian MIP heuristic. Feasibility Jump performs a highly-efficient
guided local search by computing promising neighborhoods based on the jump values,
and updating them lazily. The steps of the algorithms are shown in Algorithm 2. The
algorithm starts from any (potentially infeasible) assignment, and measures how far
away the current incumbent assignment is from satisfying the constraints (i.e., from
feasibility). We maintain for each variable a promising new value (which is different
from the current incumbent value), andwe associate to this value the score as defined in
(8). In each iteration (line 8–26),we assign a newvalue to a promising variable (line 23)
and we perform two updates: we compute the jump value for the current variable (line
24), and we update the scores of the variables that appear in the same constraints (line
25). If no value exists that improves the current sum of constraint violations (line 11),
we have reached a local minimum. If there are unsatisfied constraints, thenwe increase
their weight (line 14), we update the scores of the values of the variables involved
(line 16), and we choose the best move within one random unsatisfied constraint (line
18–19). If the current assignment is feasible, we return it (line 8–10).

To further reduce the computational effort of the heuristic, we maintain a set of
variable indices with a positive score, and we choose the variable index with the
highest score among a small random sample of them. We found that maintaining the
ranking of all variables to find the highest scoring one had a modest negative impact
in the performance (i.e., number of “jumps per second”), while providing almost zero
benefits. Moreover, a bit of randomness can sometimes be beneficial when dealing
with MIP problems (see, for example [14]). We use a sample size of min{n, 25}. Also,
with a probability of 0.1%, we use a sample size of 1.

As there is no natural time at which to stop the algorithm, we use an estimate of
the computation effort expended by the algorithm. One of the easiest ways to do this
is simply to sum the size of the bounds of every for-loop that runs. The advantage
of using such an effort estimate over measuring wall-clock time, is that the heuristic
runs deterministically, which simplifies debugging, adds reliability, and is typically a
property that MIP solvers offer. The algorithm terminates after some amount of effort
has been expended since the last improvement made (that is, since the last time Fw(x̄)
reached its lowest value yet) or if a given total amount of effort has been exceeded.
This stopping criteria is referred to as ShouldTerminate() in line 7 of Algorithm 2. The
value of the threshold has currently been tuned based on theMIPLIB 2017 benchmark
set [19]. Whenever FJ runs within a MIP solver, one could also simply decide to stop
the algorithm after any feasible solution has been found (either by FJ or by other
components of the MIP solver).

The computational complexity of each iteration is dominated by the updating of
the scores and weights:
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Algorithm 2 Feasibility Jump
Input Problem (2), initial assignment x̃
Output: a feasible solution or Null

1: x∗ ← Null � Initialize best feasible solution
2: x̄ ← x̃ � Initialize incumbent
3: wi = 1, i ∈ M � Initialize weights
4: v j = Jump j (x̄k �= j ), j ∈ N � Initialize promising values
5: s j = G j (x̄ j |x̄k �= j ) − G j (v j |x̄k �= j ), j ∈ N � Initialize scores
6: P = { j ∈ N : s j > 0} � Initialize set of indices with positive score
7: while ShouldTerminate() is false do
8: if Fw(x̄) = 0 then
9: x∗ ← x̄
10: break � Found a feasible solution
11: if P = ∅ then � Whether we have reached a local minimum
12: U ← ∅ � Set of violated constraints
13: for i ∈ N : fi (x̄) > 0 do
14: wi ← wi + 1 � Put more emphasis on satisfying this constraint
15: U ← U ∪ i
16: Update scores s j : ai j �= 0, i ∈ U , j ∈ N
17: Update P
18: i∗ = random choice in U � Random violated constraint
19: j∗ = argmax

j∈N : ai∗ j �=0
s j � Best move in this constraint

20: else
21: P∗ = randomly choose up to 25 indices from P
22: j∗ = argmax

j∈P∗
s j � Best move among a random set of moves with s j > 0.

23: x̄ j∗ ← v j∗ � Make the move
24: v j∗ = Jump j∗ (x̄k �= j∗ ) � Recompute jump value
25: Update scores s j of the neighboring variables
26: Update P
27: return x∗

– Choosing a move takes constant time because it consists of sampling a constant
amount of move scores, running in worst-case O(1).

– Computing the jump value takes time proportional to the number of constraints
that the selected variable appears in, meaning that it runs in worst-case O(η),
where η is the maximum number of constraints that any variable appears in.

– Computing the updated scores for neighboring variables (line 25) requires iterating
over all the constraints that the selected variable appears in and all the variables
appearing in those constraints, meaning that it runs in worst-case O(ημ), where
μ is the maximum number of variables appearing in a constraint.

– Computing the updated scores of the variables appearing in the currently unsatis-
fied constraints (line 16) requires iterating over those constraints (in the worst case,
all constraints) and over all variables appearing in those constraints, meaning that
it runs in worst-case O(mμ), wherem is the number of constraints in the problem.

In summary, each iteration of FJ (line 8–26) has a worst-case O(η + ημ + mμ)

running time.Note that both of the last two terms are proportional to the total number of
non-zero coefficients in the problem instance.However, inmanyproblem instances, the
number of variables in each constraint is small, and the number of violated constraints
in a local minimum is small, which makes an iteration very fast in practice.
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2.6 How to optimize using the original objective function

In the previous sections, we described a heuristic algorithm designed specifically for
feasibility, disregarding the original objective function andquitting as soon as a feasible
solution has been found (or any other termination criteria has been reached). However,
Feasibility Jump can be easily extended to support an “improving” behavior, that is to
keep searching for feasible solutions with better objective value after a first feasible
solution has been found.

A simple way to take into account the original objective function is to consider an
extended Lagrangian function:

Oq(x) + Fw(x),

where Oq(x) = q
∑

j∈N c j x j is the original objective weighted by q ≥ 0. The factor
q is introduced to adjust the relative importance of the feasibility objective versus
the original MIP objective. One drawback of this extended Lagrangian function is
the possibility of having heavily unbalanced objective components, so that it would
difficult to update q and w to maintain the correct balance between feasibility and
optimality.

A more elegant way to look for solutions with better objective value is to consider
an additional constraint of the form:

cT x ≤ cT x∗ − θ, (9)

where x∗ is the current best feasible solution, and θ > 0 is an appropriate cutoff
tolerance. This cutoff constraint has been used in other MIP heuristic approaches (see,
for example, [15]). The idea is that selecting a suitable θ will help the algorithm find a
sequence of improving solutions. This constraint could be also immediately integrated
in the current Feasibility Jump framework without changes to the algorithm, simply
by adding (9) to the Lagrangian function Fw(x).

Note that Feasibility Jump was not initially developed to provide improving solu-
tions, and the objective functionwas not taken into account in any of the computational
results below. However, this is a very interesting direction for future research.

3 Implementation

We have developed a C++ reference implementation of Feasibility Jump that is not
dependent on any otherMIP solver. This solver is available online2 [24] under an open
source license. To use it, one creates a new FeasibilityJumpSolver object and
adds variables by calling the addVar method. Constraints are added by calling the
addConstraint method. The solve function takes an initial assignment and a
callback function parameter that the solver will call periodically with an FJStatus
object, containing the effort spent so far and anynewsolutions found and their objective

2 https://github.com/SINTEF/feasibilityjump.
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value. The callback function’s return value decides whether to continue or abort the
heuristic.

// Method signatures
class FeasibilityJumpSolver {
FeasibilityJumpSolver(int seed=0, int verbosity=0);
int addVar(VarType type, double lb, double ub, double coeff);
int addConstraint(RowType sense, double rhs, int numCoeffs,

int *rowVarIdxs, double *rowCoeffs);
int solve(double *x, function<int(FJStatus)> callback);
};

The C++ implementation is generic in the type of neighborhoods it uses, with the
Jump value being one of many possible. We have also experimented with other neigh-
borhoods, such as the nearest integer values (i.e., x̄ j ← x̄ j ± 1), but found that they
had only marginal impact on the solver’s performance. All uses of the neighborhood
throughout the algorithm are performed through the method forEachMove, where
all moves for a variable are enumerated. The neighborhood can be modified by simply
editing this function, which has the following signature:

template <typename F> void forEachMove(int32_t varIdx, F f);

Our reference implementation can also be used as a starting point for other experi-
ments with MIP local search, such as modifying the weight update functions �W or
testing other metaheuristics.

Feasibility Jump can be used both as a standalone heuristic or integrated within
an existing exact MIP solver. In the latter case, one would be interested not only
in improving the average time to first feasible solution, but also the average time to
optimal solution. Current state-of-the-art MIP solvers, such as FICO Xpress [11], are
already so effective that improving the average solving time of just few percent would
be a great achievement. We used the interface presented above also to integrate the
heuristic within Xpress. But since we only have access to Xpress’ external interface, it
requires copying all the constraints from the Xpress problem instance representation
to the heuristic’s representation. Except for duplicating the constraint coefficients
(also called the matrix), Feasibility Jump requires very little memory, proportional to
the sum of the number of variables and the number of constraints. Duplicating the
constraint coefficients would not be required if the heuristic was implemented using
the MIP solver’s internal interfaces.

To integrate FJ with Xpress, we start by loading the MIP problem into Xpress.
Then, we copy all the variables and constraints from Xpress to FJ and start FJ on a
background thread. After starting FJ (i.e., on the non-presolved instance), we presolve
the problem using Xpress and copy all the variables and constraints of the presolved
problem into a new FJ instance, which is launched on another background thread. We
then call the main MIPoptimize function of Xpress with a checktime callback
function, which Xpress will periodically call after a very short interval of time (to
make sure we inject the solutions found by FJ as soon as possible). In this callback
function we check if any solution has been found by any of the two FJ threads, and, if
so, copy it into Xpress by using the addMIPsolution method.
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Fig. 2 Average computation time (in s) for each iteration of the while loop of Algorithm (2), for each
problem instance in MIPLIB 2017

OurC++ reference implementation is around 800 lines of code,withXpress integra-
tion adding an additional 500 lines. The version of Feasibility Jump that participated
in the computational competition of the 2022 Mixed Integer Programming Workshop
was written in Rust and contained a few additional tunable parameters and additional
move types. These additional features only allowed finding feasible solutions to a few
more instances from the MIPLIB 2017 benchmark set, and we found that the increase
in complexity was not worth-while for the presentation in this paper (and its accom-
panying source code), nor for integration in a more comprehensive MIP solver. The
Rust competition implementation is available on request.

4 Computational results

In this section, we provide an extensive set of results to assess the performance and
effectiveness of Feasibility Jump. All tests were executed on an AMD Threadripper
3990x CPU running at 2.9 GHz with 128 GB of memory. The instances we used
for testing belong to the MIPLIB 2017 benchmark set [19], a widely-used set of
240 mixed-integer problems of various size and difficulty. Our implementation of
Feasibility Jump is able to find feasible solutions to 123 of these, when combining
solutions from both the non-presolved and presolved versions of the problem. For 84
of these instances, solutions are found in both the non-presolved and the presolved
case, while an additional 6 are found only using the non-presolved problem and 33
only using the presolved problem.

We first look at the average time it takes FJ to perform an iteration, that is an
iteration of the while loop in line 7 of Algorithm 2. Figure2 shows a somewhat linear
correlation of the iteration time and the average number of non-zero coefficients per
variable. More importantly, it shows that for many problems of MIPLIB 2017, an
iteration can take less than a microsecond.

The next computational results will consider three different solvers:
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– FJ: Feasibility Jump, running on two threads, one with the non-presolved problem
and one where the problem is presolved by Xpress (using the framework from
Sect. 3);

– XPR: FICO Xpress Solver 8.14 with its default settings;
– XPR+FJ: Feasibility Jump integrated into Xpress as described in Sect. 3.

We compare these solvers on the time it takes to find the first feasible solution
(Sect. 4.1), and the time it takes to prove optimality (Sect. 4.2).

Note that FJ typically produces solutions very quickly, if it produces any at all.
We did not see significant improvements in FJ’s performance when increasing the
computational effort with the current implementation. The local search framework
could easily be extended to increase the ability to find feasible solutions, perhaps
at the cost of more computational effort. When integrated in a more comprehensive
MIP solver, a very quick heuristic may be preferred, so that more computation time is
allocated to methods that are guaranteed to eventually produce solutions (for example,
branch-and-bound).

Note that in both XPR and XPR+FJ, the MIP solver is configured to run on a single
thread only, while FJ runs on two additional threads (as described in Sect. 3). In other
words, we are simulating how FJ would influence a MIP solver if there were enough
computational resources to run both programs at the same time. This gives a slight
resource advantage to XPR+FJ when compared to XPR, but note that the Feasibility
Jump heuristic is tuned to run for a very short amount of time, typically much less
than the MIP solver (in these tests, the average running time of FJ was 0.6 s). Inside a
comprehensive MIP solver, one would instead select between different heuristics with
different trade-offs and tune FJ to run for as little time as necessary, taking problem
characteristics into account. The objective of this paper is to show that integrating
FJ in a MIP solver can indeed be beneficial, which has also been confirmed by the
introduction of Feasibility Jump as a default heuristic in Xpress 9.0 [26].

4.1 Time to feasibility

We first compare FJ, XPR, and XPR+FJ on the time it takes to find the first feasible
solution (TF). We run all solvers with a time limit of 1min, although FJ will usually
terminate much earlier even when not finding a feasible solution (the termination
criterion is described in Sect. 2.5).

Figure3 shows the fraction of instances Ps(τ ) for which a solver s is the fastest
when its running times are scaled by 1/τ . It is not surprising to see XPR+FJ always
in the lead, since it combines solutions both from XPR and FJ. Still, it represents a
notable improvement compared to standalone Xpress, XPR. This is also summarized
in Fig. 4, where we show the ratio between the TF of XPR and the TF of XPR+FJ.
Instances where only one of the solvers found a feasible solution within the time limit
are represented by plus andminus infinity. Thanks to Feasibility Jump,XPR+FJ found
a feasible solution to 6 more problems than XPR, and provided an average reduction
of 25% on the time to first feasible solution. In about 10% of the instance, XPR+FJ
found a feasible solution more than 10 times faster than XPR thanks to Feasibility
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Fig. 3 Performance profile of time to first feasible solution (TF) for FJ, XPR and XPR+FJ on the MIPLIB
2017 benchmark set. Since XPR+FJ contains the best solution of either of the other two solvers, it is always
faster

Fig. 4 Logscale plot of the ratio between the time to first feasible solution (TF) of XPR versus XPR+FJ on
the MIPLIB 2017 benchmark set

Table 1 Categorization of the MIPLIB 2017 benchmark set instances based on the time to feasibility (TF)
of FJ versus XPR

In particular, when FJ is faster than XPR, we check whether FJ found a feasible solution (1) during
presolve, (2) during root node (either while running the LP solver, other feasibility heuristics, or root
cutting heuristics), or (3) during branching

Jump. Table 1 lists the number of instances on which FJ found a feasible solution
before XPR, and which phase of the MIP solver was reached at that time.

4.2 Time to optimality

Sometimes, finding feasible solutions quickly may not be sufficient for improving the
performance of a solver when considering the time to optimality. Therefore, it is of
interest to check whether quick feasible solutions found by Feasibility Jump can be
exploited by a MIP solver to solve some problems faster. We run XPR and XPR+FJ
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Fig. 5 Performance profile of time to optimality (TO) for XPR andXPR+FJ on theMIPLIB2017 benchmark
set

Fig. 6 Logscale plot of the ratio between the time to optimal solution (TO) of XPR versus XPR+FJ on the
MIPLIB 2017 benchmark set

with a 10min time limit, in which the solvers were able to find an optimal solution
for 137 of the MIPLIB 2017 benchmark set instances. Similar to the previous section,
Fig. 5 shows the fraction of instances Ps(τ ) for which a solver s is the fastest when its
running times are scaled by 1/τ . Figure6, instead, shows the ratio between the TO of
XPR and TO of XPR+FJ. Instances where only one of the solvers found an optimal
solution within the time limit are represented by plus and minus infinity. We found
that the time to prove optimality (TO) improved for a small subset of instances. But
there are also other cases in which the solving time remained the same even though
Feasibility Jump provided Xpress with good solutions (better than those found by
XPR in the same time interval). On average, we see a reduction on the solving time of
about 3% on the instances where both solvers finish within the time limit. On 3 of the
instances, XPR+FJ does not finish even though XPR does. Figure7 shows how the
best objective value improves over time for each of the solvers, for a set of instances
where XPR+FJ proves optimality before XPR. In this figure, Feasibility Jump did not
always provide a better bound than XPR, but Xpress could be taking advantage of the
additional feasible solutions in other ways. Figure8 shows similar plots for instances
where solutions found by FJ did not impact the total running time of XPR. In this case,
even though Feasibility Jump provided solutions with a better bound than the ones
found by XPR, they were not useful to reduce the total running time.

We observe that Feasibility Jump has little impact on the time to optimality on a
large number of instances, i.e., their TO ratios (Fig. 6) are very close to 1. This is not
surprising, since FJ is just one of the many heuristics running in a state-of-the-art MIP
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Fig. 7 Some examples of Feasibility Jump improving the solving time of Xpress. FJ solutions are shown as
green circles, while the blue and red lines are the primal bounds for XPR and XPR+FJ, respectively. The
squares mark the first feasible solution. The stars mark the time that the solution is known to be optimal
(color figure online)
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Fig. 8 Some examples of Feasibility Jump not improving (at least not significantly) the solving time of
Xpress, even though it provided good solutions (better than the those found by Xpress) from the beginning.
FJ solutions are shown as green circles, while the blue and red lines are the primal bound for XPR and
XPR+FJ, respectively. The squares mark the first feasible solution. The stars mark the time that the solution
is known to be optimal (color figure online)
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solver such as Xpress. In fact, even if FJ finds a feasible solution quickly, the MIP
solver may find a better solution before the branch-and-bound search starts, and the
solution provided by FJ might then have little impact on the search. We measured
that, in 22 cases, XPR+FJ had a better upper bound than XPR when branching starts
(in 5 of those cases, XPR had no feasible solution at all). In 10 cases, XPR had a better
upper bound than XPR+FJ when branching starts (in none of those cases XPR+FJ
had no feasible solution at all). In the remaining 208 instances, the upper bound is the
same in XPR and XPR+FJ at the time the branching search starts.

5 Conclusions and future directions

We have introduced Feasibility Jump, a pre-root primal heuristic for mixed-integer
linear programs based on a guided local search approach over a Lagrangian relaxation
of the original problem. The algorithm is able to find feasible solutions for some large
benchmark problems where even state-of-the-art commercial solvers can struggle.
And because Feasibility Jump does not require a solution to the LP relaxation, it can
find solutions to some instances very early in the solution process, sometimes even
before presolve has finished.

We have also integrated Feasibility Jump with the FICO Xpress Solver [11] and
shown that, in addition to providing feasible solutions early in the solution process,
supplying those solutions back to a MIP solver can also improve the time it takes to
prove optimality.

An efficient C++ implementation of Feasibility Jump is available under an open-
source license, and can be easily extended with custom, experimental designs. In
particular, we refrained (on purpose) from “over-optimizing” the algorithm with
sophisticated tuning, hoping to inspire the research community to come up with inno-
vative solutions. Among others, we recognize the following directions as the most
promising ones to consider for improving FJ:

– Neighborhoods The neighborhood of each variable is currently made of a single
value v j . In a previous implementation, we considered twomore values (a positive
or negative increment of the current incumbent value) and we saw little to no
improvements. However, in general, we expect that having a larger neighborhood
with different values could to be beneficial if easy to compute.

– Metaheuristics The algorithm is currently based on a guided search metaheuris-
tic that favors constraints that remain violated across many assignments. Other
metaheuristics, such as tabu search [23], or a combination of them, could provide
different advantages.

– Weight updates The weights of the Lagrangian function are currently updated with
a simple constant update function, but we expect that more sophisticated heuristics
(perhaps even based on machine learning techniques) could increase their effec-
tiveness in steering the algorithm towards a feasible solution. In particular, there
can be local minima affected by so-called short cycles, whereby the algorithm
repeatedly goes back to a previous infeasible assignment until the weights of the
corresponding infeasible constraints have risen enough. We did not witness any
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long cycles, but that might also be due to the randomness steps added in each local
minimum. With that said, we did witness cases in which a lot of weight updates
were necessary to get out of a local minimum. Then one could try to determine the
minimum weight update required by those constraints to escape from the current
local minimum.

– Specializations Feasibility Jump is currently completely problem agnostic, but
several other primal MIP heuristics have been shown to take advantage of known
constraint types (see, for example, [8]) or problem specific structures (see, for
example, [18]).

– Solution quality The current implementation of FJ emphasizes finding a feasible
solution.We experimentedwith giving the original objective function some impor-
tance through a simple weight update function. A more sophisticated version of
FJ could include a better way to exploit existing feasible solutions (perhaps even
provided by the MIP solver in which it is embedded) and incorporate a behavior
usually found in improving heuristics.
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