Assignment 2 for MAT4170 Spline methods, Spring 2021

To be completed by Tuesday 9 March. Please send your solution as a single pdf file (including plots/figures) to michaelf@math.uio.no.

1. State the smoothness properties of $B[0,0,0,0,1](x)$ and $B[0,1,1,1,2](x)$.
2. Use induction on the degree d to show that the formula

$$
B\left[t_{j}, \ldots, t_{j+d+1}\right]\left(t_{i}\right)=B\left[t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right]\left(t_{i}\right)
$$

holds for $i=j, \ldots, j+d+1$. Use it to prove property (5) of Lemma 2.3.
3. Do problem 2.17.
4. Do problem 2.18. Test your implementation on the knot vector

$$
\begin{equation*}
\mathbf{t}=(-1,-1,-1,-1,0,1,2,3,4,5,5,5,5) \tag{1}
\end{equation*}
$$

by plotting the non-zero B -splines of degree $d=3$ on the interval $[0,1]$. Hint: do not use the B-spline matrices $R_{k}(x)$. Start with a vector B of zeros of length $d+1$ and set its last element to $B_{\mu, 0}(x)=1$. Then use the recurrence relation (2.1) to compute $B_{j, k}(x)$ for $j=\mu-k+1, \ldots, \mu$ for each $k=1, \ldots, d$ (as in Figure 2.8), storing the result in B.
5. Do problem 2.19. Test your implementation by plotting the cubic spline with knot vector \mathbf{t} of (1) and coefficients

$$
\mathbf{c}=(-1,1,-1,1,-1,1,-1,1,-1) .
$$

Hint: do not use the B-spline matrices $R_{k}(x)$. Start with the vector $\mathbf{c}=$ $\left(c_{\mu-d}, \ldots, c_{\mu}\right)$. Then compute c_{j-k+1} by (2.20) for $j=\mu, \ldots, \mu-k+1$ for each $k=1, \ldots, d$ (as in Figure 2.9), storing the result in \mathbf{c}.
6. Do problem 2.26.

