Assignment 3 for MAT4170 Spline methods, Spring 2021

To be completed by Tuesday 6 April. Please send your solution as a single pdf file (including plots/figures) to michaelf@math.uio.no.

1. Problem 3.2.

2. Problem 4.5. Hint: Insert $d+1$ knots at $a<t_{1}$ and $d+1$ knots at $b>t_{m+d+1}$, in both τ and t, to form new knot vectors τ^{\prime} and t^{\prime} respectively. This adds $d+1$ new B-splines to each 'end' of \mathcal{S}_{τ} and \mathcal{S}_{t}, forming $\mathcal{S}_{\tau^{\prime}}$ and $\mathcal{S}_{t^{\prime}}$. Then use the fact that any $f=\sum_{i} c_{i} B_{i, d, \tau} \in \mathcal{S}_{\tau}$ can be represented in $\mathcal{S}_{\tau^{\prime}}$ by adding $d+1$ zero coefficients to both ends of its coefficient vector, and similarly for \mathcal{S}_{t}. Use this to show that any $f \in \mathcal{S}_{\tau}$ belongs to \mathcal{S}_{t}.
3. Problem 4.6.
4. Problem 4.7. Hint: Use the fact that $\sum_{j} B_{j, d, \tau}=\sum_{i} B_{i, d, t}=1$ and properties of discrete B-splines.
5. Problem 4.8. Hint: Algorithm 4.11 is very similar to algorithm 2.16, which you implemented in Assignment 2. Do not use the B-spline matrices R_{k}. The plots should look like Fig. 4.5 in the compendium (include control polygons).
6. Problem 4.10. Hint: Use linearity of the polar form / blossom.
