Knot insertion

Michael S. Floater

March 2, 2022

In these notes we consider how to refine a spline function by adding knots. To understand this we focus on what happens to a single B-spline when we add one knot.

1 Refining a spline by inserting a knot

Let us suppose that we start with a spline function

$$
\begin{equation*}
s(x)=\sum_{j=1}^{n} c_{j} B_{j, d, \mathbf{t}}(x), \quad x \in\left[t_{d+1}, t_{n+1}\right] \tag{1}
\end{equation*}
$$

where, as usual, $B_{j, d, \mathbf{t}}=B_{j, d}$ is the j-th B-spline and $d \geq 0$ and $n \geq 1$ and $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right)$ is the corresponding non-decreasing knot vector. We use the notation $B_{j, d, \mathbf{t}}$ here to indicate that $B_{j, d}$ depends on the knot vector \mathbf{t}.

Suppose we now add a new knot z to some knot interval $\left[t_{\mu}, t_{\mu+1}\right)$, where $d+1 \leq \mu \leq n$, to form the refined knot vector

$$
\boldsymbol{\tau}=\left(t_{1}, t_{2}, \ldots, t_{\mu}, z, t_{\mu+1}, \ldots, t_{n+d+1}\right)
$$

We then ask, how can we represent the same spline function s with respect to the refined knot vector $\boldsymbol{\tau}$? What we need to do is to find coefficients b_{j} such that

$$
\begin{equation*}
s(x)=\sum_{j=1}^{n+1} b_{j} B_{j, d, \boldsymbol{\tau}}(x) . \tag{2}
\end{equation*}
$$

To do this we need to express each B-spline $B_{j, d, \mathbf{t}}$ as a linear combination of the $B_{j, d, \tau}$. We need only consider $B_{j, d, \mathbf{t}}$ where $j=\mu-d, \ldots, \mu$, since the remaining B-splines on \mathbf{t} are not affected by the insertion of z.

Suppose then that $\mu-d \leq j \leq \mu$, and consider the support $\left[t_{j}, t_{j+d+1}\right]$ of $B_{j, d, \mathbf{t}}$. Only two of the B -splines over the knot vector $\boldsymbol{\tau}$ have support contained in $\left[t_{j}, t_{j+d+1}\right]$, namely, $B_{j, d, \tau}$ and $B_{j+1, d, \tau}$. Thus, we would expect to be able to express $B_{j, d, \mathbf{t}}$ as a linear combination of $B_{j, d, \tau}$ and $B_{j+1, d, \tau}$.

2 Refining a B-spline by inserting a knot

We will derive a formula for the refinement of a single B-spline when we add one knot to the interior of its support. To this end, we will first derive a corresponding refinement formula for divided differences.

Lemma 1 Consider a divided difference $\left[x_{0}, x_{1}, \ldots, x_{k}\right] f$, in which x_{0} and x_{k} are distinct, and let $z \in \mathbb{R}$. Then

$$
\begin{equation*}
\left[x_{0}, \ldots, x_{k}\right] f=\frac{z-x_{0}}{x_{k}-x_{0}}\left[x_{0}, \ldots, x_{k-1}, z\right] f+\frac{x_{k}-z}{x_{k}-x_{0}}\left[x_{1}, \ldots, x_{k}, z\right] f \tag{3}
\end{equation*}
$$

We note here that we are implicitly assuming that if any of the points x_{0}, \ldots, x_{k} and z are not distinct, f has sufficiently many derivatives at the multiple points for these divided differences to be well-defined.

Proof. We have

$$
\begin{aligned}
& {\left[x_{1}, \ldots, x_{k}\right] f-\left[x_{0}, \ldots, x_{k-1}\right] f=} \\
& \left(\left[x_{1}, \ldots, x_{k-1}, z\right] f-\left[x_{0}, \ldots, x_{k-1}\right] f\right)+\left(\left[x_{1}, \ldots, x_{k}\right] f-\left[x_{1}, \ldots, x_{k-1}, z\right] f\right) \\
& =\left(z-x_{0}\right)\left[x_{0}, \ldots, x_{k-1}, z\right] f+\left(x_{k}-z\right)\left[x_{1}, \ldots, x_{k}, z\right] f
\end{aligned}
$$

and dividing by $x_{k}-x_{0}$ gives (3).
By this lemma we now obtain a formula for the refinement of a B-spline.
Theorem 1 Suppose $t_{j}<t_{j+d+1}$, and let z be any point in $\left[t_{j}, t_{j+d+1}\right]$. Then

$$
B_{j, d, \mathbf{t}}(x)= \begin{cases}\frac{z-t_{j}}{t_{j+d}-t_{j}} B_{j, d, \tau}(x)+B_{j+1, d, \tau}(x), & z \leq t_{j+1} \tag{4}\\ \frac{z-t_{j}}{t_{j+d}-t_{j}} B_{j, d, \tau}(x)+\frac{t_{j+d+1}-z}{t_{j+d+1}-t_{j+1}} B_{j+1, d, \tau}(x), & t_{j+1}<z<t_{j+d} ; \\ B_{j, d, \tau}(x)+\frac{t_{j+d+1}-z}{t_{j+d+1}-t_{j+1}} B_{j+1, d, \tau}(x), & z \geq t_{j+d}\end{cases}
$$

Proof. By Lemma 1,

$$
\begin{aligned}
\left(t_{j+d+1}-t_{j}\right)\left[t_{j}, \ldots, t_{j+d+1}\right] f & =\left(z-t_{j}\right)\left[t_{j}, \ldots, t_{j+d}, z\right] f \\
& +\left(t_{j+d+1}-z\right)\left[t_{j+1}, \ldots, t_{j+d+1}, z\right] f
\end{aligned}
$$

and applying this equation to the function $f(y)=(\cdot-x)_{+}^{d}$ leads to (4)

3 Algorithm for refining a spline

We now return to the problem posed in Section 1. Using Theorem 1, we can find the coefficients b_{j} in (2). The algorithm for computing the b_{j} is known as Boehm's algorithm.

Theorem 2 The coefficients b_{j} in (2) are

$$
b_{j}= \begin{cases}c_{j} & \text { if } 1 \leq j \leq \mu-d \tag{5}\\ \frac{t_{j+d}-z}{t_{j+d}-t_{j}} c_{j-1}+\frac{z-t_{j}}{t_{j+d}-t_{j}} c_{j} ; & \text { if } \mu-d+1 \leq j \leq \mu \\ c_{j-1} & \text { if } \mu+1 \leq j \leq n+1\end{cases}
$$

Proof. We convert the sum in (1) into the form (2) by expressing each B-spline $B_{j, d, \mathbf{t}}$ as a linear combination of the B-splines $B_{j, d, \boldsymbol{\tau}}$. We have $B_{j, d, \mathbf{t}}=B_{j, d, \tau}$ for $j=1, \ldots, \mu-d-1$, since z is not in the support of these B-splines, and so

$$
\sum_{j=1}^{\mu-d-1} c_{j} B_{j, d, \mathbf{t}}=\sum_{j=1}^{\mu-d-1} c_{j} B_{j, d, \tau}
$$

Similarly, $B_{j, d, \mathbf{t}}=B_{j+1, d, \tau}$ for $j=\mu+1, \ldots, n$, and so

$$
\sum_{j=\mu+1}^{n} c_{j} B_{j, d, \mathbf{t}}=\sum_{j=\mu+1}^{n} c_{j} B_{j+1, d, \tau}=\sum_{j=\mu+2}^{n+1} c_{j-1} B_{j, d, \boldsymbol{\tau}}
$$

To treat the remaining part of the sum in (1) we use Theorem 2, and find

$$
\begin{aligned}
\sum_{j=\mu-d}^{\mu} c_{j} B_{j, d, \mathbf{t}} & =c_{\mu-d}\left(B_{\mu-d, d, \boldsymbol{\tau}}(x)+\frac{t_{\mu+1}-z}{t_{\mu+1}-t_{\mu-d+1}} B_{j+1, d, \boldsymbol{\tau}}(x)\right) \\
& +\sum_{j=\mu-d+1}^{\mu-1} c_{j}\left(\frac{z-t_{j}}{t_{j+d}-t_{j}} B_{j, d, \boldsymbol{\tau}}(x)+\frac{t_{j+d+1}-z}{t_{j+d+1}-t_{j+1}} B_{j+1, d, \tau}(x)\right) \\
& +c_{\mu}\left(\frac{z-t_{\mu}}{t_{\mu+d}-t_{\mu}} B_{\mu, d, \tau}(x)+B_{\mu+1, d, \boldsymbol{\tau}}(x)\right) \\
& =c_{\mu-d} B_{\mu-d, d, \boldsymbol{\tau}}(x) \\
& +\sum_{j=\mu-d+1}^{\mu}\left(\frac{t_{j+d}-z}{t_{j+d}-t_{j}} c_{j-1}+\frac{z-t_{j}}{t_{j+d}-t_{j}} c_{j}\right) B_{j, d, \boldsymbol{\tau}}(x) \\
& +c_{\mu} B_{\mu+1, d, \boldsymbol{\tau}}(x)
\end{aligned}
$$

which gives us (5).

