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These notes derive Marsden’s identity and use it to express polynomials
in terms of B-splines and to show that B-splines are linearly independent.

1 Recursions
Let us recall the two kinds of recursion for spline functions. For any integers
d>0andn >1,let t = (t1,t2,...,th1qr1) be a non-decreasing knot vector.

Such a sequence of knots together with a sequence of coefficients ¢; € R,
7 =1,...,n, define a spline function

S(iﬂ) = chBj}d(x)? S [td—i-latn-i-l]a (1)

where the functions B;q are B-splines. These B-splines satisfy a recursion.
When d =0,

1 x € [tj, tjr1);
Bjo(z) = DT 2
0(@) {0 otherwise, @)
and for d > 1,
B T ljitdy1 — T
ja(T) = ﬁBj,d—l(x) + t—tBj+1,d—1($)- (3)
j+d = bj j+d+1 — Uj+1

Let us consider how to compute the value s(x), given some = € [tgi1, tpi1].
First we locate the index p such that = € [t,,t,41]. Then s(z) is given by



the local summation,

I
s(x) = > ¢;Bja(x) (4)
Jj=p—d
because all the B-splines other than B,_44,...,B,q are zero at x. Then
there are two ways of evaluating s at z, i.e, calculating the value s(z).

1.1 Algorithm 1

The first algorithm is to use the B-spline recursion directly to compute the
d+ 1 values Bj4(x), j = p—d,...,d, and then to multiply them by the
coefficients ¢;, j = p—d, ..., p and sum them up. The recursion formula (3)
gives us a triangular scheme for computing the B-splines. We fix z € [t,,, t,4+1)
and initialize the scheme by setting B, o = 1. Then, for r = 1,2,...,d, and
J=Wu—="y..., 1, we set
Bj, = Ltjgjmil + W—“_J;BHLPL
tivd—r+1 — 1 tivd—r+1 — T

Here, we are using the fact that both B,_,,_; and B,1,-1 are zero at x.
The flow of computations is as follows, where in each column, each value is
computed from two values from the previous column.

Buo Bu-11 Bu-22 -+ Bu-da
Bu,l B,ufl,Q Bufd+1,d

B.o -+ Bu_di24

B#,d

1.2 Algorithm 2

Alternatively, we can use recursion on the coefficients ¢; in (4). We fix
and initialize the algorithm by setting c? =c¢j, ] =p—d,...,pu Then for
r=1,...,d,;and j=pu—d+r,...,u we set

—1
gy TTH e (5)
i a8

= tj+d—7”+1 — T . L — tj r—1
titd—r+1 = t;

Theorem 1 The last value computed, CZ, is the value of s at x in (4).



Proof. To prove this, consider the first step of the algorithm. By the B-spline
recurrence for the B; 4 we have

j+d — tivdrr = tjp

& tivg — X T —t;
- Y (e ) Bt

b — 1. 3710 4. _t.cj
j=p—d+1 Jj+d J j+d J

i
T —1; t; —x
s@) =, ¢ (t—]Bj,d—l(l’) + LBﬁl,d—l(ﬂc))
j d

where we have used the fact that both B,_44-1 and B, 41 are zero at .
Hence by the definition of ¢; in (5),

I

s(z) = Z C;Bjd_l(a:).

Jj=p—d+1

Continuing in this way we find that for any r =1,...,d,

m
s(@)= ) ¢Bjar(a). (6)
Jj=p—d+r
The case r = d gives us s(x) = ¢ O

This algorithm can also be arranged in a triangular scheme, as follows.

In each column, each value is computed from two values from the previous
column.

d—
Cp—dt1 Cu—d+2 7 Cu
& ¢,
%
2 DMarsden’s identity
For each j = 1,...,n, let us define the so-called dual polynomial

pia(y) = (Y — i)y —tjve) - (Y — tjra).

Then Marsden’s identity is as follows.



Theorem 2 For any x € [tgy1,tni1] and for any y € R,
(y— ) = Z p;.d(y) Bja(z). (7)
j=1

To prove this theorem, it is sufficient to show a local form of the theorem.

Theorem 3 If x € [t,,t,+1), for some p € {d+1,...,n}, then for any
y €R,

(y—2)"= > pja(y)Bjalx). (8)

Jj=p—d

Proof. The proof uses Algorithm 2 applied to the initial data ¢; = p;a(y),
j=p—d,...,u Consider the first step of the algorithm. With » =1 in (5),

tivg— T T —1;
ol = litd ?71 j C?
bj+d — U tivd — 1
tj-i—d — X r — tj
= ———pj-14(y) + ——p;a(y)
tiva — 1" W) tiva—t;
tiva— T —t;
= <tj——t(y — ;) + ﬁ(y - thrd)) Pjd-1(Y),
J+d J j+d — Y
and a simple calculation shows that
litd — X T —t;
(=) (Y~ tjya) =y — .
Litd —t; tivd — tj

This shows that

= (y—)pja-1(y)-

In the next step of the algorithm, with » = 2 in (5), we find, similarly, that
G = (y — x)ij,d—2<y)'

Continuing in this way, we find that for all r =1,...,d,

¢ = (y — $)Tﬂj,dfr(y)- 9)

The case d = r gives cZ = (y — x)%, which, by Theorem 1, proves (8). O



3 Linear independence of B-splines

We can use Marsden’s identity to show that the B-splines B4, ... B, 4 are
linearly independent with respect to the interval [tg1,¢,41]. To this end,
suppose that there are coefficients ¢; such that

n

ZCijd(ZL‘) = 0, td+1 S X S tn+1. (10)
j=1
The task is show that ¢; =--- =¢, = 0.
From (10), for any p, d+ 1 < p < n,
o
Z Cijd(ZL’) == O, t# S T S t,u-l-l'
Jj=p—d
We will have ¢,—q = - - - = ¢, = 0 if the B-splines B,,_q 4, ..., B4 are linearly

independent. Since there are d + 1 of these, it is sufficient to show that we
can express any monomial ", 0 < r < d as a linear combination of them. To
do this we use the local form (8) of Marsden’s identity. First we differentiate
it d — r times with respect to y, giving

d! = (dr
y—2)"= Y A% W)Ba(x),

7l
Jj=p—d
and then we let y = 0, giving

d!

7!

(—1)2" = Y p47(0)Bjalx).

Jj=p—d

Rearranging this gives

I
x = Z erBj,d(x)a (11)
Jj=p—d
where

TT! d—r
¢ = (=1 5l (0).

Thus we have indeed now shown that B, _qg4,..., B, are linearly indepen-
dent and so ¢, g = -+ = ¢, = 0. By considering all p, it follows that
c1 = =c¢, =0, as claimed.



We can obtain an explicit formula for ¢;, as follows. By the product rule
for differentiation of a product of d functions, we have

A = A=) S (y—t) -y —t,).

JH1I<H1 < <jr<j+d

The sum is over all possible products of r of the d factors of p; 4(y). It follows

that .
P 7(0) = (—1)"(d —7)! > ty ot

JH1I<H < <jr<j+d

1
Cjr = E > ZTRR A

r/ jH1I<i < <jr<j+d

and therefore,

The sum here is over all possible products of r of the d interior knots

tjt1,...,tj+q in the support of B; 4. The binomial coefficient (f) is the num-

ber of these products. Thus, c¢j, is simply the average of all these products.
We can also express (11) as

n

2" =Y i Bja(x). (12)

j=1

Some examples are

1= Z Bjyd(fﬂ),
j=1
T = Z t:aBja(T),
j=1
z? = Z traBia(z),
j=1

2= "t tipaBja(2),
j=1

where
g bt F e
Jid d ’




oo _ Latjee + Gaaties + o+ Gra-1tja
Jd (d) :
2

The first example shows that the B-splines sum to one at every .




