Marsden's identity and linear independence of B-splines

Michael S. Floater

March 1, 2022

These notes derive Marsden's identity and use it to express polynomials in terms of B-splines and to show that B-splines are linearly independent.

1 Recursions

Let us recall the two kinds of recursion for spline functions. For any integers $d \geq 0$ and $n \geq 1$, let $\mathbf{t} = (t_1, t_2, \dots, t_{n+d+1})$ be a non-decreasing knot vector. Such a sequence of knots together with a sequence of coefficients $c_j \in \mathbb{R}$, $j = 1, \dots, n$, define a spline function

$$s(x) = \sum_{j=1}^{n} c_j B_{j,d}(x), \qquad x \in [t_{d+1}, t_{n+1}], \tag{1}$$

where the functions $B_{j,d}$ are B-splines. These B-splines satisfy a recursion. When d = 0,

$$B_{j,0}(x) = \begin{cases} 1 & x \in [t_j, t_{j+1}); \\ 0 & \text{otherwise,} \end{cases}$$
 (2)

and for $d \geq 1$,

$$B_{j,d}(x) = \frac{x - t_j}{t_{j+d} - t_j} B_{j,d-1}(x) + \frac{t_{j+d+1} - x}{t_{j+d+1} - t_{j+1}} B_{j+1,d-1}(x).$$
 (3)

Let us consider how to compute the value s(x), given some $x \in [t_{d+1}, t_{n+1}]$. First we locate the index μ such that $x \in [t_{\mu}, t_{\mu+1}]$. Then s(x) is given by the local summation,

$$s(x) = \sum_{j=\mu-d}^{\mu} c_j B_{j,d}(x)$$
 (4)

because all the B-splines other than $B_{\mu-d,d}, \ldots, B_{\mu,d}$ are zero at x. Then there are two ways of evaluating s at x, i.e, calculating the value s(x).

1.1 Algorithm 1

The first algorithm is to use the B-spline recursion directly to compute the d+1 values $B_{j,d}(x), j=\mu-d,\ldots,d$, and then to multiply them by the coefficients $c_j, j=\mu-d,\ldots,\mu$ and sum them up. The recursion formula (3) gives us a triangular scheme for computing the B-splines. We fix $x \in [t_{\mu}, t_{\mu+1})$ and initialize the scheme by setting $B_{\mu,0}=1$. Then, for $r=1,2,\ldots,d$, and $j=\mu-r,\ldots,\mu$, we set

$$B_{j,r} = \frac{x - t_j}{t_{j+d-r+1} - t_j} B_{j,r-1} + \frac{t_{j+d-r+1} - x}{t_{j+d-r+1} - t_j} B_{j+1,r-1}.$$

Here, we are using the fact that both $B_{\mu-r,r-1}$ and $B_{\mu+1,r-1}$ are zero at x. The flow of computations is as follows, where in each column, each value is computed from two values from the previous column.

$$B_{\mu,0}$$
 $B_{\mu-1,1}$ $B_{\mu-2,2}$ \cdots $B_{\mu-d,d}$ $B_{\mu,1}$ $B_{\mu-1,2}$ \cdots $B_{\mu-d+1,d}$ $B_{\mu,2}$ \cdots $B_{\mu-d+2,d}$ \vdots \vdots $B_{\mu,d}$

1.2 Algorithm 2

Alternatively, we can use recursion on the coefficients c_j in (4). We fix x and initialize the algorithm by setting $c_j^0 = c_j$, $j = \mu - d, \ldots, \mu$. Then for $r = 1, \ldots, d$, and $j = \mu - d + r, \ldots, \mu$, we set

$$c_j^r = \frac{t_{j+d-r+1} - x}{t_{j+d-r+1} - t_j} c_{j-1}^{r-1} + \frac{x - t_j}{t_{j+d-r+1} - t_j} c_j^{r-1}.$$
 (5)

Theorem 1 The last value computed, c_{μ}^{d} , is the value of s at x in (4).

Proof. To prove this, consider the first step of the algorithm. By the B-spline recurrence for the $B_{j,d}$ we have

$$s(x) = \sum_{j=\mu-d}^{\mu} c_j^0 \left(\frac{x - t_j}{t_{j+d} - t_j} B_{j,d-1}(x) + \frac{t_{j+d+1} - x}{t_{j+d+1} - t_{j+1}} B_{j+1,d-1}(x) \right)$$
$$= \sum_{j=\mu-d+1}^{\mu} \left(\frac{t_{j+d} - x}{t_{j+d} - t_j} c_{j-1}^0 + \frac{x - t_j}{t_{j+d} - t_j} c_j^0 \right) B_{j,d-1}(x),$$

where we have used the fact that both $B_{\mu-d,d-1}$ and $B_{\mu+1,d-1}$ are zero at x. Hence by the definition of c_j^1 in (5),

$$s(x) = \sum_{j=\mu-d+1}^{\mu} c_j^1 B_{j,d-1}(x).$$

Continuing in this way we find that for any $r = 1, \ldots, d$,

$$s(x) = \sum_{j=\mu-d+r}^{\mu} c_j^r B_{j,d-r}(x).$$
 (6)

The case r = d gives us $s(x) = c_{\mu}^{d}$.

This algorithm can also be arranged in a triangular scheme, as follows. In each column, each value is computed from two values from the previous column.

2 Marsden's identity

For each j = 1, ..., n, let us define the so-called dual polynomial

$$\rho_{j,d}(y) = (y - t_{j+1})(y - t_{j+2}) \cdots (y - t_{j+d}).$$

Then Marsden's identity is as follows.

Theorem 2 For any $x \in [t_{d+1}, t_{n+1}]$ and for any $y \in \mathbb{R}$,

$$(y-x)^d = \sum_{j=1}^n \rho_{j,d}(y) B_{j,d}(x).$$
 (7)

To prove this theorem, it is sufficient to show a local form of the theorem.

Theorem 3 If $x \in [t_{\mu}, t_{\mu+1})$, for some $\mu \in \{d+1, \ldots, n\}$, then for any $y \in \mathbb{R}$,

$$(y-x)^d = \sum_{j=\mu-d}^{\mu} \rho_{j,d}(y) B_{j,d}(x).$$
 (8)

Proof. The proof uses Algorithm 2 applied to the initial data $c_j = \rho_{j,d}(y)$, $j = \mu - d, \dots, \mu$. Consider the first step of the algorithm. With r = 1 in (5),

$$\begin{split} c_{j}^{1} &= \frac{t_{j+d} - x}{t_{j+d} - t_{j}} c_{j-1}^{0} + \frac{x - t_{j}}{t_{j+d} - t_{j}} c_{j}^{0} \\ &= \frac{t_{j+d} - x}{t_{j+d} - t_{j}} \rho_{j-1,d}(y) + \frac{x - t_{j}}{t_{j+d} - t_{j}} \rho_{j,d}(y) \\ &= \left(\frac{t_{j+d} - x}{t_{j+d} - t_{j}} (y - t_{j}) + \frac{x - t_{j}}{t_{j+d} - t_{j}} (y - t_{j+d})\right) \rho_{j,d-1}(y), \end{split}$$

and a simple calculation shows that

$$\frac{t_{j+d} - x}{t_{j+d} - t_j}(y - t_j) + \frac{x - t_j}{t_{j+d} - t_j}(y - t_{j+d}) = y - x.$$

This shows that

$$c_i^1 = (y - x)\rho_{j,d-1}(y).$$

In the next step of the algorithm, with r=2 in (5), we find, similarly, that

$$c_i^2 = (y - x)^2 \rho_{i,d-2}(y).$$

Continuing in this way, we find that for all r = 1, ..., d

$$c_j^r = (y - x)^r \rho_{j,d-r}(y). \tag{9}$$

The case d=r gives $c_{\mu}^{d}=(y-x)^{d}$, which, by Theorem 1, proves (8). \square

3 Linear independence of B-splines

We can use Marsden's identity to show that the B-splines $B_{1,d}, \ldots B_{n,d}$ are linearly independent with respect to the interval $[t_{d+1}, t_{n+1}]$. To this end, suppose that there are coefficients c_j such that

$$\sum_{j=1}^{n} c_j B_{j,d}(x) = 0, \qquad t_{d+1} \le x \le t_{n+1}. \tag{10}$$

The task is show that $c_1 = \cdots = c_n = 0$.

From (10), for any μ , $d+1 \le \mu \le n$,

$$\sum_{j=\mu-d}^{\mu} c_j B_{j,d}(x) = 0, \qquad t_{\mu} \le x \le t_{\mu+1}.$$

We will have $c_{\mu-d} = \cdots = c_{\mu} = 0$ if the B-splines $B_{\mu-d,d}, \ldots, B_{\mu,d}$ are linearly independent. Since there are d+1 of these, it is sufficient to show that we can express any monomial x^r , $0 \le r \le d$ as a linear combination of them. To do this we use the local form (8) of Marsden's identity. First we differentiate it d-r times with respect to y, giving

$$\frac{d!}{r!}(y-x)^r = \sum_{j=\mu-d}^{\mu} \rho_{j,d}^{(d-r)}(y)B_{j,d}(x),$$

and then we let y = 0, giving

$$\frac{d!}{r!}(-1)^r x^r = \sum_{j=\mu-d}^{\mu} \rho_{j,d}^{(d-r)}(0) B_{j,d}(x).$$

Rearranging this gives

$$x^{r} = \sum_{j=\mu-d}^{\mu} c_{jr} B_{j,d}(x), \tag{11}$$

where

$$c_{jr} = (-1)^r \frac{r!}{d!} \rho_{j,d}^{(d-r)}(0).$$

Thus we have indeed now shown that $B_{\mu-d,d}, \ldots, B_{\mu,d}$ are linearly independent and so $c_{\mu-d} = \cdots = c_{\mu} = 0$. By considering all μ , it follows that $c_1 = \cdots = c_n = 0$, as claimed.

We can obtain an explicit formula for c_{jr} as follows. By the product rule for differentiation of a product of d functions, we have

$$\rho_{j,d}^{(d-r)}(y) = (d-r)! \sum_{j+1 \le j_1 < \dots < j_r \le j+d} (y-t_{j_1}) \cdots (y-t_{j_r}).$$

The sum is over all possible products of r of the d factors of $\rho_{j,d}(y)$. It follows that

$$\rho_{j,d}^{(d-r)}(0) = (-1)^r (d-r)! \sum_{j+1 \le j_1 < \dots < j_r \le j+d} t_{j_1} \cdots t_{j_r},$$

and therefore,

$$c_{jr} = \frac{1}{\binom{d}{r}} \sum_{j+1 < j_1 < \dots < j_r < j+d} t_{j_1} \cdots t_{j_r}.$$

The sum here is over all possible products of r of the d interior knots t_{j+1}, \ldots, t_{j+d} in the support of $B_{j,d}$. The binomial coefficient $\binom{d}{r}$ is the number of these products. Thus, c_{jr} is simply the average of all these products.

We can also express (11) as

$$x^{r} = \sum_{j=1}^{n} c_{jr} B_{j,d}(x). \tag{12}$$

Some examples are

$$1 = \sum_{j=1}^{n} B_{j,d}(x),$$

$$x = \sum_{j=1}^{n} t_{j,d}^{*} B_{j,d}(x),$$

$$x^{2} = \sum_{j=1}^{n} t_{j,d}^{**} B_{j,d}(x),$$

$$x^{d} = \sum_{j=1}^{n} t_{j+1} \cdots t_{j+d} B_{j,d}(x),$$

where

$$t_{j,d}^* = \frac{t_{j+1} + \dots + t_{j+d}}{d},$$

$$t_{j,d}^{**} = \frac{t_{j+1}t_{j+2} + t_{j+1}t_{j+3} + \dots + t_{j+d-1}t_{j+d}}{\binom{d}{2}}.$$

The first example shows that the B-splines sum to one at every x.