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These notes derive Marsden’s identity and use it to express polynomials
in terms of B-splines and to show that B-splines are linearly independent.

1 Recursions

Let us recall the two kinds of recursion for spline functions. For any integers
d ≥ 0 and n ≥ 1, let t = (t1, t2, . . . , tn+d+1) be a non-decreasing knot vector.
Such a sequence of knots together with a sequence of coefficients cj ∈ R,
j = 1, . . . , n, define a spline function

s(x) =
n∑
j=1

cjBj,d(x), x ∈ [td+1, tn+1], (1)

where the functions Bj,d are B-splines. These B-splines satisfy a recursion.
When d = 0,

Bj,0(x) =

{
1 x ∈ [tj, tj+1);

0 otherwise,
(2)

and for d ≥ 1,

Bj,d(x) =
x− tj
tj+d − tj

Bj,d−1(x) +
tj+d+1 − x
tj+d+1 − tj+1

Bj+1,d−1(x). (3)

Let us consider how to compute the value s(x), given some x ∈ [td+1, tn+1].
First we locate the index µ such that x ∈ [tµ, tµ+1]. Then s(x) is given by

1



the local summation,

s(x) =

µ∑
j=µ−d

cjBj,d(x) (4)

because all the B-splines other than Bµ−d,d, . . . , Bµ,d are zero at x. Then
there are two ways of evaluating s at x, i.e, calculating the value s(x).

1.1 Algorithm 1

The first algorithm is to use the B-spline recursion directly to compute the
d + 1 values Bj,d(x), j = µ − d, . . . , d, and then to multiply them by the
coefficients cj, j = µ− d, . . . , µ and sum them up. The recursion formula (3)
gives us a triangular scheme for computing the B-splines. We fix x ∈ [tµ, tµ+1)
and initialize the scheme by setting Bµ,0 = 1. Then, for r = 1, 2, . . . , d, and
j = µ− r, . . . , µ, we set

Bj,r =
x− tj

tj+d−r+1 − tj
Bj,r−1 +

tj+d−r+1 − x
tj+d−r+1 − tj

Bj+1,r−1.

Here, we are using the fact that both Bµ−r,r−1 and Bµ+1,r−1 are zero at x.
The flow of computations is as follows, where in each column, each value is
computed from two values from the previous column.

Bµ,0 Bµ−1,1 Bµ−2,2 · · · Bµ−d,d
Bµ,1 Bµ−1,2 · · · Bµ−d+1,d

Bµ,2 · · · Bµ−d+2,d

. . .
...

Bµ,d

1.2 Algorithm 2

Alternatively, we can use recursion on the coefficients cj in (4). We fix x
and initialize the algorithm by setting c0j = cj, j = µ − d, . . . , µ. Then for
r = 1, . . . , d, and j = µ− d+ r, . . . , µ, we set

crj =
tj+d−r+1 − x
tj+d−r+1 − tj

cr−1
j−1 +

x− tj
tj+d−r+1 − tj

cr−1
j . (5)

Theorem 1 The last value computed, cdµ, is the value of s at x in (4).

2



Proof. To prove this, consider the first step of the algorithm. By the B-spline
recurrence for the Bj,d we have

s(x) =

µ∑
j=µ−d

c0j

(
x− tj
tj+d − tj

Bj,d−1(x) +
tj+d+1 − x
tj+d+1 − tj+1

Bj+1,d−1(x)

)

=

µ∑
j=µ−d+1

(
tj+d − x
tj+d − tj

c0j−1 +
x− tj
tj+d − tj

c0j

)
Bj,d−1(x),

where we have used the fact that both Bµ−d,d−1 and Bµ+1,d−1 are zero at x.
Hence by the definition of c1j in (5),

s(x) =

µ∑
j=µ−d+1

c1jBj,d−1(x).

Continuing in this way we find that for any r = 1, . . . , d,

s(x) =

µ∑
j=µ−d+r

crjBj,d−r(x). (6)

The case r = d gives us s(x) = cdµ. 2

This algorithm can also be arranged in a triangular scheme, as follows.
In each column, each value is computed from two values from the previous
column.

c0µ−d c1µ−d+1 · · · cd−1
µ−1 cdµ

c0µ−d+1 c1µ−d+2 · · · cd−1
µ

... . . .

c0µ−1 c1µ
c0µ

2 Marsden’s identity

For each j = 1, . . . , n, let us define the so-called dual polynomial

ρj,d(y) = (y − tj+1)(y − tj+2) · · · (y − tj+d).

Then Marsden’s identity is as follows.
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Theorem 2 For any x ∈ [td+1, tn+1] and for any y ∈ R,

(y − x)d =
n∑
j=1

ρj,d(y)Bj,d(x). (7)

To prove this theorem, it is sufficient to show a local form of the theorem.

Theorem 3 If x ∈ [tµ, tµ+1), for some µ ∈ {d + 1, . . . , n}, then for any
y ∈ R,

(y − x)d =

µ∑
j=µ−d

ρj,d(y)Bj,d(x). (8)

Proof. The proof uses Algorithm 2 applied to the initial data cj = ρj,d(y),
j = µ− d, . . . , µ. Consider the first step of the algorithm. With r = 1 in (5),

c1j =
tj+d − x
tj+d − tj

c0j−1 +
x− tj
tj+d − tj

c0j

=
tj+d − x
tj+d − tj

ρj−1,d(y) +
x− tj
tj+d − tj

ρj,d(y)

=

(
tj+d − x
tj+d − tj

(y − tj) +
x− tj
tj+d − tj

(y − tj+d)
)
ρj,d−1(y),

and a simple calculation shows that

tj+d − x
tj+d − tj

(y − tj) +
x− tj
tj+d − tj

(y − tj+d) = y − x.

This shows that
c1j = (y − x)ρj,d−1(y).

In the next step of the algorithm, with r = 2 in (5), we find, similarly, that

c2j = (y − x)2ρj,d−2(y).

Continuing in this way, we find that for all r = 1, . . . , d,

crj = (y − x)rρj,d−r(y). (9)

The case d = r gives cdµ = (y − x)d, which, by Theorem 1, proves (8). 2
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3 Linear independence of B-splines

We can use Marsden’s identity to show that the B-splines B1,d, . . . Bn,d are
linearly independent with respect to the interval [td+1, tn+1]. To this end,
suppose that there are coefficients cj such that

n∑
j=1

cjBj,d(x) = 0, td+1 ≤ x ≤ tn+1. (10)

The task is show that c1 = · · · = cn = 0.
From (10), for any µ, d+ 1 ≤ µ ≤ n,

µ∑
j=µ−d

cjBj,d(x) = 0, tµ ≤ x ≤ tµ+1.

We will have cµ−d = · · · = cµ = 0 if the B-splines Bµ−d,d, . . . , Bµ,d are linearly
independent. Since there are d + 1 of these, it is sufficient to show that we
can express any monomial xr, 0 ≤ r ≤ d as a linear combination of them. To
do this we use the local form (8) of Marsden’s identity. First we differentiate
it d− r times with respect to y, giving

d!

r!
(y − x)r =

µ∑
j=µ−d

ρ
(d−r)
j,d (y)Bj,d(x),

and then we let y = 0, giving

d!

r!
(−1)rxr =

µ∑
j=µ−d

ρ
(d−r)
j,d (0)Bj,d(x).

Rearranging this gives

xr =

µ∑
j=µ−d

cjrBj,d(x), (11)

where

cjr = (−1)r
r!

d!
ρ
(d−r)
j,d (0).

Thus we have indeed now shown that Bµ−d,d, . . . , Bµ,d are linearly indepen-
dent and so cµ−d = · · · = cµ = 0. By considering all µ, it follows that
c1 = · · · = cn = 0, as claimed.
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We can obtain an explicit formula for cjr as follows. By the product rule
for differentiation of a product of d functions, we have

ρ
(d−r)
j,d (y) = (d− r)!

∑
j+1≤j1<···<jr≤j+d

(y − tj1) · · · (y − tjr).

The sum is over all possible products of r of the d factors of ρj,d(y). It follows
that

ρ
(d−r)
j,d (0) = (−1)r(d− r)!

∑
j+1≤j1<···<jr≤j+d

tj1 · · · tjr ,

and therefore,

cjr =
1(
d
r

) ∑
j+1≤j1<···<jr≤j+d

tj1 · · · tjr .

The sum here is over all possible products of r of the d interior knots
tj+1, . . . , tj+d in the support of Bj,d. The binomial coefficient

(
d
r

)
is the num-

ber of these products. Thus, cjr is simply the average of all these products.
We can also express (11) as

xr =
n∑
j=1

cjrBj,d(x). (12)

Some examples are

1 =
n∑
j=1

Bj,d(x),

x =
n∑
j=1

t∗j,dBj,d(x),

x2 =
n∑
j=1

t∗∗j,dBj,d(x),

xd =
n∑
j=1

tj+1 · · · tj+dBj,d(x),

where

t∗j,d =
tj+1 + · · ·+ tj+d

d
,
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t∗∗j,d =
tj+1tj+2 + tj+1tj+3 + · · ·+ tj+d−1tj+d(

d
2

) .

The first example shows that the B-splines sum to one at every x.
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