Marsden's identity and linear independence of B-splines

Michael S. Floater

March 1, 2022

These notes derive Marsden's identity and use it to express polynomials in terms of B-splines and to show that B-splines are linearly independent.

1 Recursions

Let us recall the two kinds of recursion for spline functions. For any integers $d \geq 0$ and $n \geq 1$, let $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right)$ be a non-decreasing knot vector. Such a sequence of knots together with a sequence of coefficients $c_{j} \in \mathbb{R}$, $j=1, \ldots, n$, define a spline function

$$
\begin{equation*}
s(x)=\sum_{j=1}^{n} c_{j} B_{j, d}(x), \quad x \in\left[t_{d+1}, t_{n+1}\right] \tag{1}
\end{equation*}
$$

where the functions $B_{j, d}$ are B-splines. These B-splines satisfy a recursion. When $d=0$,

$$
B_{j, 0}(x)= \begin{cases}1 & x \in\left[t_{j}, t_{j+1}\right) \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

and for $d \geq 1$,

$$
\begin{equation*}
B_{j, d}(x)=\frac{x-t_{j}}{t_{j+d}-t_{j}} B_{j, d-1}(x)+\frac{t_{j+d+1}-x}{t_{j+d+1}-t_{j+1}} B_{j+1, d-1}(x) \tag{3}
\end{equation*}
$$

Let us consider how to compute the value $s(x)$, given some $x \in\left[t_{d+1}, t_{n+1}\right]$. First we locate the index μ such that $x \in\left[t_{\mu}, t_{\mu+1}\right]$. Then $s(x)$ is given by
the local summation,

$$
\begin{equation*}
s(x)=\sum_{j=\mu-d}^{\mu} c_{j} B_{j, d}(x) \tag{4}
\end{equation*}
$$

because all the B -splines other than $B_{\mu-d, d}, \ldots, B_{\mu, d}$ are zero at x. Then there are two ways of evaluating s at x, i.e, calculating the value $s(x)$.

1.1 Algorithm 1

The first algorithm is to use the B-spline recursion directly to compute the $d+1$ values $B_{j, d}(x), j=\mu-d, \ldots, d$, and then to multiply them by the coefficients $c_{j}, j=\mu-d, \ldots, \mu$ and sum them up. The recursion formula (3) gives us a triangular scheme for computing the B-splines. We fix $x \in\left[t_{\mu}, t_{\mu+1}\right)$ and initialize the scheme by setting $B_{\mu, 0}=1$. Then, for $r=1,2, \ldots, d$, and $j=\mu-r, \ldots, \mu$, we set

$$
B_{j, r}=\frac{x-t_{j}}{t_{j+d-r+1}-t_{j}} B_{j, r-1}+\frac{t_{j+d-r+1}-x}{t_{j+d-r+1}-t_{j}} B_{j+1, r-1} .
$$

Here, we are using the fact that both $B_{\mu-r, r-1}$ and $B_{\mu+1, r-1}$ are zero at x. The flow of computations is as follows, where in each column, each value is computed from two values from the previous column.

$$
\begin{array}{ccccc}
B_{\mu, 0} & B_{\mu-1,1} & B_{\mu-2,2} & \cdots & B_{\mu-d, d} \\
& B_{\mu, 1} & B_{\mu-1,2} & \cdots & B_{\mu-d+1, d} \\
& & B_{\mu, 2} & \cdots & B_{\mu-d+2, d} \\
& & & \ddots & \vdots \\
& & & & B_{\mu, d}
\end{array}
$$

1.2 Algorithm 2

Alternatively, we can use recursion on the coefficients c_{j} in (4). We fix x and initialize the algorithm by setting $c_{j}^{0}=c_{j}, j=\mu-d, \ldots, \mu$. Then for $r=1, \ldots, d$, and $j=\mu-d+r, \ldots, \mu$, we set

$$
\begin{equation*}
c_{j}^{r}=\frac{t_{j+d-r+1}-x}{t_{j+d-r+1}-t_{j}} c_{j-1}^{r-1}+\frac{x-t_{j}}{t_{j+d-r+1}-t_{j}} c_{j}^{r-1} . \tag{5}
\end{equation*}
$$

Theorem 1 The last value computed, c_{μ}^{d}, is the value of s at x in (4).

Proof. To prove this, consider the first step of the algorithm. By the B-spline recurrence for the $B_{j, d}$ we have

$$
\begin{aligned}
s(x) & =\sum_{j=\mu-d}^{\mu} c_{j}^{0}\left(\frac{x-t_{j}}{t_{j+d}-t_{j}} B_{j, d-1}(x)+\frac{t_{j+d+1}-x}{t_{j+d+1}-t_{j+1}} B_{j+1, d-1}(x)\right) \\
& =\sum_{j=\mu-d+1}^{\mu}\left(\frac{t_{j+d}-x}{t_{j+d}-t_{j}} c_{j-1}^{0}+\frac{x-t_{j}}{t_{j+d}-t_{j}} c_{j}^{0}\right) B_{j, d-1}(x),
\end{aligned}
$$

where we have used the fact that both $B_{\mu-d, d-1}$ and $B_{\mu+1, d-1}$ are zero at x. Hence by the definition of c_{j}^{1} in (5),

$$
s(x)=\sum_{j=\mu-d+1}^{\mu} c_{j}^{1} B_{j, d-1}(x) .
$$

Continuing in this way we find that for any $r=1, \ldots, d$,

$$
\begin{equation*}
s(x)=\sum_{j=\mu-d+r}^{\mu} c_{j}^{r} B_{j, d-r}(x) \tag{6}
\end{equation*}
$$

The case $r=d$ gives us $s(x)=c_{\mu}^{d}$.
This algorithm can also be arranged in a triangular scheme, as follows. In each column, each value is computed from two values from the previous column.

$$
\begin{array}{ccccc}
c_{\mu-d}^{0} & c_{\mu-d+1}^{1} & \cdots & c_{\mu-1}^{d-1} & c_{\mu}^{d} \\
c_{\mu-d+1}^{0} & c_{\mu-d+2}^{1} & \cdots & c_{\mu}^{d-1} & \\
\vdots & & . \cdot & & \\
c_{\mu-1}^{0} & c_{\mu}^{1} & & & \\
c_{\mu}^{0} & & &
\end{array}
$$

2 Marsden's identity

For each $j=1, \ldots, n$, let us define the so-called dual polynomial

$$
\rho_{j, d}(y)=\left(y-t_{j+1}\right)\left(y-t_{j+2}\right) \cdots\left(y-t_{j+d}\right) .
$$

Then Marsden's identity is as follows.

Theorem 2 For any $x \in\left[t_{d+1}, t_{n+1}\right]$ and for any $y \in \mathbb{R}$,

$$
\begin{equation*}
(y-x)^{d}=\sum_{j=1}^{n} \rho_{j, d}(y) B_{j, d}(x) \tag{7}
\end{equation*}
$$

To prove this theorem, it is sufficient to show a local form of the theorem.
Theorem 3 If $x \in\left[t_{\mu}, t_{\mu+1}\right)$, for some $\mu \in\{d+1, \ldots, n\}$, then for any $y \in \mathbb{R}$,

$$
\begin{equation*}
(y-x)^{d}=\sum_{j=\mu-d}^{\mu} \rho_{j, d}(y) B_{j, d}(x) \tag{8}
\end{equation*}
$$

Proof. The proof uses Algorithm 2 applied to the initial data $c_{j}=\rho_{j, d}(y)$, $j=\mu-d, \ldots, \mu$. Consider the first step of the algorithm. With $r=1$ in (5),

$$
\begin{aligned}
c_{j}^{1} & =\frac{t_{j+d}-x}{t_{j+d}-t_{j}} c_{j-1}^{0}+\frac{x-t_{j}}{t_{j+d}-t_{j}} c_{j}^{0} \\
& =\frac{t_{j+d}-x}{t_{j+d}-t_{j}} \rho_{j-1, d}(y)+\frac{x-t_{j}}{t_{j+d}-t_{j}} \rho_{j, d}(y) \\
& =\left(\frac{t_{j+d}-x}{t_{j+d}-t_{j}}\left(y-t_{j}\right)+\frac{x-t_{j}}{t_{j+d}-t_{j}}\left(y-t_{j+d}\right)\right) \rho_{j, d-1}(y),
\end{aligned}
$$

and a simple calculation shows that

$$
\frac{t_{j+d}-x}{t_{j+d}-t_{j}}\left(y-t_{j}\right)+\frac{x-t_{j}}{t_{j+d}-t_{j}}\left(y-t_{j+d}\right)=y-x
$$

This shows that

$$
c_{j}^{1}=(y-x) \rho_{j, d-1}(y) .
$$

In the next step of the algorithm, with $r=2$ in (5), we find, similarly, that

$$
c_{j}^{2}=(y-x)^{2} \rho_{j, d-2}(y) .
$$

Continuing in this way, we find that for all $r=1, \ldots, d$,

$$
\begin{equation*}
c_{j}^{r}=(y-x)^{r} \rho_{j, d-r}(y) . \tag{9}
\end{equation*}
$$

The case $d=r$ gives $c_{\mu}^{d}=(y-x)^{d}$, which, by Theorem 1, proves (8).

3 Linear independence of B-splines

We can use Marsden's identity to show that the B-splines $B_{1, d}, \ldots B_{n, d}$ are linearly independent with respect to the interval $\left[t_{d+1}, t_{n+1}\right]$. To this end, suppose that there are coefficients c_{j} such that

$$
\begin{equation*}
\sum_{j=1}^{n} c_{j} B_{j, d}(x)=0, \quad t_{d+1} \leq x \leq t_{n+1} \tag{10}
\end{equation*}
$$

The task is show that $c_{1}=\cdots=c_{n}=0$.
From (10), for any $\mu, d+1 \leq \mu \leq n$,

$$
\sum_{j=\mu-d}^{\mu} c_{j} B_{j, d}(x)=0, \quad t_{\mu} \leq x \leq t_{\mu+1}
$$

We will have $c_{\mu-d}=\cdots=c_{\mu}=0$ if the B-splines $B_{\mu-d, d}, \ldots, B_{\mu, d}$ are linearly independent. Since there are $d+1$ of these, it is sufficient to show that we can express any monomial $x^{r}, 0 \leq r \leq d$ as a linear combination of them. To do this we use the local form (8) of Marsden's identity. First we differentiate it $d-r$ times with respect to y, giving

$$
\frac{d!}{r!}(y-x)^{r}=\sum_{j=\mu-d}^{\mu} \rho_{j, d}^{(d-r)}(y) B_{j, d}(x),
$$

and then we let $y=0$, giving

$$
\frac{d!}{r!}(-1)^{r} x^{r}=\sum_{j=\mu-d}^{\mu} \rho_{j, d}^{(d-r)}(0) B_{j, d}(x) .
$$

Rearranging this gives

$$
\begin{equation*}
x^{r}=\sum_{j=\mu-d}^{\mu} c_{j r} B_{j, d}(x), \tag{11}
\end{equation*}
$$

where

$$
c_{j r}=(-1)^{r} \frac{r!}{d!} \rho_{j, d}^{(d-r)}(0)
$$

Thus we have indeed now shown that $B_{\mu-d, d}, \ldots, B_{\mu, d}$ are linearly independent and so $c_{\mu-d}=\cdots=c_{\mu}=0$. By considering all μ, it follows that $c_{1}=\cdots=c_{n}=0$, as claimed.

We can obtain an explicit formula for $c_{j r}$ as follows. By the product rule for differentiation of a product of d functions, we have

$$
\rho_{j, d}^{(d-r)}(y)=(d-r)!\sum_{j+1 \leq j_{1}<\cdots<j_{r} \leq j+d}\left(y-t_{j_{1}}\right) \cdots\left(y-t_{j_{r}}\right) .
$$

The sum is over all possible products of r of the d factors of $\rho_{j, d}(y)$. It follows that

$$
\rho_{j, d}^{(d-r)}(0)=(-1)^{r}(d-r)!\sum_{j+1 \leq j_{1}<\cdots<j_{r} \leq j+d} t_{j_{1}} \cdots t_{j_{r}},
$$

and therefore,

$$
c_{j r}=\frac{1}{\binom{d}{r}} \sum_{j+1 \leq j_{1}<\cdots<j_{r} \leq j+d} t_{j_{1}} \cdots t_{j_{r}}
$$

The sum here is over all possible products of r of the d interior knots t_{j+1}, \ldots, t_{j+d} in the support of $B_{j, d}$. The binomial coefficient $\binom{d}{r}$ is the number of these products. Thus, $c_{j r}$ is simply the average of all these products.

We can also express (11) as

$$
\begin{equation*}
x^{r}=\sum_{j=1}^{n} c_{j r} B_{j, d}(x) . \tag{12}
\end{equation*}
$$

Some examples are

$$
\begin{aligned}
1 & =\sum_{j=1}^{n} B_{j, d}(x) \\
x & =\sum_{j=1}^{n} t_{j, d}^{*} B_{j, d}(x), \\
x^{2} & =\sum_{j=1}^{n} t_{j, d}^{* *} B_{j, d}(x), \\
x^{d} & =\sum_{j=1}^{n} t_{j+1} \cdots t_{j+d} B_{j, d}(x),
\end{aligned}
$$

where

$$
t_{j, d}^{*}=\frac{t_{j+1}+\cdots+t_{j+d}}{d}
$$

$$
t_{j, d}^{* *}=\frac{t_{j+1} t_{j+2}+t_{j+1} t_{j+3}+\cdots+t_{j+d-1} t_{j+d}}{\binom{d}{2}}
$$

The first example shows that the B-splines sum to one at every x.

