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In these notes we use knot insertion to prove the Schoenberg-Whitney
theorem and the total positivity of B-splines.

1 Refining B-splines by inserting a knot

Let us recall how a spline is refined by adding a new knot. Let t be a knot-
vector, t = (t1,%2,...,tnyat1), and let B; = Bj 4, j = 1,2,...,n, denote the
j-th B-spline of degree d. Suppose that we add a new knot z to some interval
[tu,t,+1), thus forming the refined knot vector

E = (tl,tQ, c. 7tu7zﬁtu+17 .. 7tn+d+l)~

Let By, ..., Bnﬂ denote the B-splines on the knot vector t. As we observed
earlier, )
Bj:Bj, ]:1,7M—d—1,

and )
Bj:Bj—l—h j:M+1,,n

We further showed that for j = pu—d, ..., u,

(= livdy1 — 2 = :
Bj"’%Bj—&-l; J=np—d
j+d+1 — jgrl
2 — 1 - . — 2z ~
By={ U By N TE B p—d<j<p
tj;_d_—t ?fj Livas1 — tj+1
——B; + Bj1, J=p
\tj+d_tj




It follows that for j =1,...,n,
Bj = a;B; + f;Bji1, (1)
where o, 8; > 0 and

Qj > 0 if tj < Zz,
5] >0 if tj+d+1 > Z.

2 Schoenberg-Whitney theorem and total pos-
itivity
The Schoenberg-Whitney theorem provides a condition on a sequence of

interpolation points that guarantees that the interpolation problem has a
unique solution. We will show

Theorem 1 (Schoenberg-Whitney) For an increasing sequence of points
T < Ty < -+ < x,, the matrix

A = [Bj(@i)lij=1,..n
is non-singular if and only if Bi(x;) >0 for alli=1,...,n.

Notice that if the multiplicity of all the knots is at most d then this
condition is the same as the condition that ¢; < x; < ;4441 for all i. However,
we often choose the knot vector to have the first d + 1 knots equal, and the
last d + 1 knots equal. Then the condition B;(z1) > 0 is equivalent to ¢; <
x1 < tqio, and the condition B, (x,) > 0 is equivalent to ¢, < z, < tpigi1-
This allows the case that 1 = t; and x,, = t41,4+1. Therefore, the theorem
can be applied to show that, for example, C? cubic spline interpolation with
free end conditions is uniquely solvable.

In fact, will will also show that the matrix A is totally positive by which
we mean that every minor of A is non-negative. Thus, we can prove both the
Schoenberg-Whitney theorem and total positivity by proving the following
more general theorem:

Theorem 2 For any increasing sequence of points v1 < Ty < -++ < Tpy,
where m < n, and any increasing sequence j = (J1,J2, -+, jm) with 1 < j; <
Im < n, the matriz

A(j) = [Bjk (Iz)]zkzzlm
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has non-negative determinant. The determinant is positive if and only if
Bj,(x;) >0 foralli=1,...,m.

Proof. Suppose first that for some p, B; (r,) = 0. Then there are two
possible cases, either z, < t; or x, > t; yq41. If v, <t;, then Bj (z;) =0
for all i < p and k > p. Then the first p rows of A(j) are linearly dependent
and A(j) is singular. If on the other hand x, > t; 1441 then B;, (z;) = 0 for
all 7 > p and k < p. The first p columns of A(j) are linearly dependent and
A(j) is again singular.

It remains to consider the case that Bj (z;) > 0 for all ¢ = 1,...,m.
Suppose that there are at least d + 1 knots in t between each consecutive
pair of interpolation points z; and x;11. Since z; belongs to [t;,,tj,+4+1], any
other point x,, p # i, cannot belong to [t;,, t;,+a+1]. Thus Bj,(z,) = 0if p # 1,
and A(j) is a diagonal matrix and since its diagonal elements are positive, it
is non-singular with positive determinant.

Otherwise, we use induction on the number of knots between pairs of
points z,, and z,11. Suppose that between some pair of points x, and xp;1,
there are less than d + 1 knots of t. We now form a new knot vector t by
adding a new knot z to t between x, and x,.;. Then, recalling (1), and by
the linearity of the determinant of A(j) with respect to its columns,

det A() = > vedet A(j+e), (2)
ec{0,1}™
where € = (€1, €2, ..., 6y), and
H k)0, + Ekﬁ]k) > 0,

and ~ .
A(G+€) = [Bjitep (Ti)]ik=1,..m-

Any j + € in (2) is a non-decreasing subsequence of (1,2,...,n+1). If
any two consecutive elements of j + € are equal then two of the columns of

A(j + €) are equal and det A(j + €) = 0. Therefore, we can remove such e
from the sum in (2), and we have
det A(j) = Z Yedet A(j + €). (3)
ec{0,1}™

j+e increasing
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By the induction hypothesis, all the determinants in the sum in (3) are non-
negative, and this implies, by induction, that det A(j) > 0. To show that
det A(j) > 0 we must show that there is at least one € € {0,1}™ for which
j + € is increasing, 7. > 0, and det fl(j + €) > 0. Indeed this is true for

€ = (e],...,€), where

r m

* _ _ * _ _ *
e =--=¢€¢ =0, €pr1 =" =€, =1L

To see this observe that j+ €* is clearly increasing. Next, suppose 1 < k < p.
Then, since t;, < xp < tj, 1441, it follows that ¢, < x, < 2, < z and so
aj, > 0. Also, since Bj, (z;) > 0 and since z, < z, it follows that Bj, () > 0.
The other case is that p +1 < & < m. Then, since t;, < x < tj, 1441, it
follows that t;, y4+1 > T > 2,41 > 2z and so §;, > 0. Also, since B, (x)) > 0
and since xy > z, it follows that Bjk+1(a:k) > (0. Therefore, v¢+ > 0 and, by
the induction hypothesis, det A(j 4+ €*) > 0, as claimed. O



