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In these notes we use knot insertion to prove the Schoenberg-Whitney
theorem and the total positivity of B-splines.

1 Refining B-splines by inserting a knot

Let us recall how a spline is refined by adding a new knot. Let t be a knot-
vector, t = (t1, t2, . . . , tn+d+1), and let Bj = Bj,d, j = 1, 2, . . . , n, denote the
j-th B-spline of degree d. Suppose that we add a new knot z to some interval
[tµ, tµ+1), thus forming the refined knot vector

t̃ = (t1, t2, . . . , tµ, z, tµ+1, . . . , tn+d+1).

Let B̃1, . . . , B̃n+1 denote the B-splines on the knot vector t̃. As we observed
earlier,

Bj = B̃j, j = 1, . . . , µ− d− 1,

and
Bj = B̃j+1, j = µ+ 1, . . . , n.

We further showed that for j = µ− d, . . . , µ,

Bj =


B̃j +

tj+d+1 − z
tj+d+1 − tj+1

B̃j+1, j = µ− d;

z − tj
tj+d − tj

B̃j +
tj+d+1 − z
tj+d+1 − tj+1

B̃j+1, µ− d < j < µ;

z − tj
tj+d − tj

B̃j + B̃j+1, j = µ.
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It follows that for j = 1, . . . , n,

Bj = αjB̃j + βjB̃j+1, (1)

where αj, βj ≥ 0 and

αj > 0 if tj < z,

βj > 0 if tj+d+1 > z.

2 Schoenberg-Whitney theorem and total pos-

itivity

The Schoenberg-Whitney theorem provides a condition on a sequence of
interpolation points that guarantees that the interpolation problem has a
unique solution. We will show

Theorem 1 (Schoenberg-Whitney) For an increasing sequence of points
x1 < x2 < · · · < xn, the matrix

A = [Bj(xi)]i,j=1,...,n

is non-singular if and only if Bi(xi) > 0 for all i = 1, . . . , n.

Notice that if the multiplicity of all the knots is at most d then this
condition is the same as the condition that ti < xi < ti+d+1 for all i. However,
we often choose the knot vector to have the first d + 1 knots equal, and the
last d + 1 knots equal. Then the condition B1(x1) > 0 is equivalent to t1 ≤
x1 < td+2, and the condition Bn(xn) > 0 is equivalent to tn < xn ≤ tn+d+1.
This allows the case that x1 = t1 and xn = td+n+1. Therefore, the theorem
can be applied to show that, for example, C2 cubic spline interpolation with
free end conditions is uniquely solvable.

In fact, will will also show that the matrix A is totally positive by which
we mean that every minor of A is non-negative. Thus, we can prove both the
Schoenberg-Whitney theorem and total positivity by proving the following
more general theorem:

Theorem 2 For any increasing sequence of points x1 < x2 < · · · < xm,
where m ≤ n, and any increasing sequence j = (j1, j2, . . . , jm) with 1 ≤ j1 <
jm ≤ n, the matrix

A(j) = [Bjk(xi)]i,k=1,...,m
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has non-negative determinant. The determinant is positive if and only if
Bji(xi) > 0 for all i = 1, . . . ,m.

Proof. Suppose first that for some p, Bjp(xp) = 0. Then there are two
possible cases, either xp ≤ tjp or xp ≥ tjp+d+1. If xp ≤ tjp then Bjk(xi) = 0
for all i ≤ p and k ≥ p. Then the first p rows of A(j) are linearly dependent
and A(j) is singular. If on the other hand xp ≥ tjp+d+1 then Bjk(xi) = 0 for
all i ≥ p and k ≤ p. The first p columns of A(j) are linearly dependent and
A(j) is again singular.

It remains to consider the case that Bji(xi) > 0 for all i = 1, . . . ,m.
Suppose that there are at least d + 1 knots in t between each consecutive
pair of interpolation points xi and xi+1. Since xi belongs to [tji , tji+d+1], any
other point xp, p 6= i, cannot belong to [tji , tji+d+1]. Thus Bji(xp) = 0 if p 6= i,
and A(j) is a diagonal matrix and since its diagonal elements are positive, it
is non-singular with positive determinant.

Otherwise, we use induction on the number of knots between pairs of
points xp and xp+1. Suppose that between some pair of points xp and xp+1,
there are less than d + 1 knots of t. We now form a new knot vector t̃ by
adding a new knot z to t between xp and xp+1. Then, recalling (1), and by
the linearity of the determinant of A(j) with respect to its columns,

detA(j) =
∑

ε∈{0,1}m
γε det Ã(j + ε), (2)

where ε = (ε1, ε2, . . . , εm), and

γε =
m∏
k=1

(
(1− εk)αjk + εkβjk

)
≥ 0,

and
Ã(j + ε) = [B̃jk+εk(xi)]i,k=1,...,m.

Any j + ε in (2) is a non-decreasing subsequence of (1, 2, . . . , n + 1). If
any two consecutive elements of j + ε are equal then two of the columns of
Ã(j + ε) are equal and det Ã(j + ε) = 0. Therefore, we can remove such ε
from the sum in (2), and we have

detA(j) =
∑

ε∈{0,1}m
j+ε increasing

γε det Ã(j + ε). (3)
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By the induction hypothesis, all the determinants in the sum in (3) are non-
negative, and this implies, by induction, that detA(j) ≥ 0. To show that
detA(j) > 0 we must show that there is at least one ε ∈ {0, 1}m for which
j + ε is increasing, γε > 0, and det Ã(j + ε) > 0. Indeed this is true for
ε∗ = (ε∗1, . . . , ε

∗
m), where

ε∗1 = · · · = ε∗p = 0, ε∗p+1 = · · · = ε∗m = 1.

To see this observe that j+ε∗ is clearly increasing. Next, suppose 1 ≤ k ≤ p.
Then, since tjk ≤ xk ≤ tjk+d+1, it follows that tjk ≤ xk ≤ xp < z and so
αjk > 0. Also, since Bjk(xk) > 0 and since xk < z, it follows that B̃jk(xk) > 0.
The other case is that p + 1 ≤ k ≤ m. Then, since tjk ≤ xk ≤ tjk+d+1, it
follows that tjk+d+1 ≥ xk ≥ xp+1 > z and so βjk > 0. Also, since Bjk(xk) > 0
and since xk > z, it follows that B̃jk+1(xk) > 0. Therefore, γε∗ > 0 and, by
the induction hypothesis, det Ã(j + ε∗) > 0, as claimed. 2
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