The Schoenberg-Whitney theorem and total positivity

Michael S. Floater

May 18, 2022

In these notes we use knot insertion to prove the Schoenberg-Whitney theorem and the total positivity of B-splines.

1 Refining B-splines by inserting a knot

Let us recall how a spline is refined by adding a new knot. Let \mathbf{t} be a knotvector, $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right)$, and let $B_{j}=B_{j, d}, j=1,2, \ldots, n$, denote the j-th B-spline of degree d. Suppose that we add a new knot z to some interval $\left[t_{\mu}, t_{\mu+1}\right)$, thus forming the refined knot vector

$$
\tilde{\mathbf{t}}=\left(t_{1}, t_{2}, \ldots, t_{\mu}, z, t_{\mu+1}, \ldots, t_{n+d+1}\right)
$$

Let $\tilde{B}_{1}, \ldots, \tilde{B}_{n+1}$ denote the B-splines on the knot vector $\tilde{\mathbf{t}}$. As we observed earlier,

$$
B_{j}=\tilde{B}_{j}, \quad j=1, \ldots, \mu-d-1
$$

and

$$
B_{j}=\tilde{B}_{j+1}, \quad j=\mu+1, \ldots, n
$$

We further showed that for $j=\mu-d, \ldots, \mu$,

$$
B_{j}= \begin{cases}\tilde{B}_{j}+\frac{t_{j+d+1}-z}{t_{j+d+1}-t_{j+1}} \tilde{B}_{j+1}, & j=\mu-d \\ \frac{z-t_{j}}{t_{j+d}-t_{j}} \tilde{B}_{j}+\frac{t_{j+d+1}-z}{t_{j+d+1}-t_{j+1}} \tilde{B}_{j+1}, & \mu-d<j<\mu \\ \frac{z-t_{j}}{t_{j+d}-t_{j}} \tilde{B}_{j}+\tilde{B}_{j+1}, & j=\mu .\end{cases}
$$

It follows that for $j=1, \ldots, n$,

$$
\begin{equation*}
B_{j}=\alpha_{j} \tilde{B}_{j}+\beta_{j} \tilde{B}_{j+1} \tag{1}
\end{equation*}
$$

where $\alpha_{j}, \beta_{j} \geq 0$ and

$$
\begin{array}{ll}
\alpha_{j}>0 & \text { if } t_{j}<z \\
\beta_{j}>0 & \text { if } t_{j+d+1}>z .
\end{array}
$$

2 Schoenberg-Whitney theorem and total positivity

The Schoenberg-Whitney theorem provides a condition on a sequence of interpolation points that guarantees that the interpolation problem has a unique solution. We will show

Theorem 1 (Schoenberg-Whitney) For an increasing sequence of points $x_{1}<x_{2}<\cdots<x_{n}$, the matrix

$$
A=\left[B_{j}\left(x_{i}\right)\right]_{i, j=1, \ldots, n}
$$

is non-singular if and only if $B_{i}\left(x_{i}\right)>0$ for all $i=1, \ldots, n$.
Notice that if the multiplicity of all the knots is at most d then this condition is the same as the condition that $t_{i}<x_{i}<t_{i+d+1}$ for all i. However, we often choose the knot vector to have the first $d+1$ knots equal, and the last $d+1$ knots equal. Then the condition $B_{1}\left(x_{1}\right)>0$ is equivalent to $t_{1} \leq$ $x_{1}<t_{d+2}$, and the condition $B_{n}\left(x_{n}\right)>0$ is equivalent to $t_{n}<x_{n} \leq t_{n+d+1}$. This allows the case that $x_{1}=t_{1}$ and $x_{n}=t_{d+n+1}$. Therefore, the theorem can be applied to show that, for example, C^{2} cubic spline interpolation with free end conditions is uniquely solvable.

In fact, will will also show that the matrix A is totally positive by which we mean that every minor of A is non-negative. Thus, we can prove both the Schoenberg-Whitney theorem and total positivity by proving the following more general theorem:

Theorem 2 For any increasing sequence of points $x_{1}<x_{2}<\cdots<x_{m}$, where $m \leq n$, and any increasing sequence $\mathbf{j}=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ with $1 \leq j_{1}<$ $j_{m} \leq n$, the matrix

$$
A(\mathbf{j})=\left[B_{j_{k}}\left(x_{i}\right)\right]_{i, k=1, \ldots, m}
$$

has non-negative determinant. The determinant is positive if and only if $B_{j_{i}}\left(x_{i}\right)>0$ for all $i=1, \ldots, m$.

Proof. Suppose first that for some $p, B_{j_{p}}\left(x_{p}\right)=0$. Then there are two possible cases, either $x_{p} \leq t_{j_{p}}$ or $x_{p} \geq t_{j_{p}+d+1}$. If $x_{p} \leq t_{j_{p}}$ then $B_{j_{k}}\left(x_{i}\right)=0$ for all $i \leq p$ and $k \geq p$. Then the first p rows of $A(\mathbf{j})$ are linearly dependent and $A(\mathbf{j})$ is singular. If on the other hand $x_{p} \geq t_{j_{p}+d+1}$ then $B_{j_{k}}\left(x_{i}\right)=0$ for all $i \geq p$ and $k \leq p$. The first p columns of $A(\mathbf{j})$ are linearly dependent and $A(\mathbf{j})$ is again singular.

It remains to consider the case that $B_{j_{i}}\left(x_{i}\right)>0$ for all $i=1, \ldots, m$. Suppose that there are at least $d+1$ knots in \mathbf{t} between each consecutive pair of interpolation points x_{i} and x_{i+1}. Since x_{i} belongs to $\left[t_{j_{i}}, t_{j_{i}+d+1}\right]$, any other point $x_{p}, p \neq i$, cannot belong to $\left[t_{j_{i}}, t_{j_{i}+d+1}\right]$. Thus $B_{j_{i}}\left(x_{p}\right)=0$ if $p \neq i$, and $A(\mathbf{j})$ is a diagonal matrix and since its diagonal elements are positive, it is non-singular with positive determinant.

Otherwise, we use induction on the number of knots between pairs of points x_{p} and x_{p+1}. Suppose that between some pair of points x_{p} and x_{p+1}, there are less than $d+1$ knots of \mathbf{t}. We now form a new knot vector $\tilde{\mathbf{t}}$ by adding a new knot z to \mathbf{t} between x_{p} and x_{p+1}. Then, recalling (1), and by the linearity of the determinant of $A(\mathbf{j})$ with respect to its columns,

$$
\begin{equation*}
\operatorname{det} A(\mathbf{j})=\sum_{\epsilon \in\{0,1\}^{m}} \gamma_{\epsilon} \operatorname{det} \tilde{A}(\mathbf{j}+\boldsymbol{\epsilon}), \tag{2}
\end{equation*}
$$

where $\boldsymbol{\epsilon}=\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{m}\right)$, and

$$
\gamma_{\epsilon}=\prod_{k=1}^{m}\left(\left(1-\epsilon_{k}\right) \alpha_{j_{k}}+\epsilon_{k} \beta_{j_{k}}\right) \geq 0
$$

and

$$
\tilde{A}(\mathbf{j}+\boldsymbol{\epsilon})=\left[\tilde{B}_{j_{k}+\epsilon_{k}}\left(x_{i}\right)\right]_{i, k=1, \ldots, m}
$$

Any $\mathbf{j}+\boldsymbol{\epsilon}$ in (2) is a non-decreasing subsequence of $(1,2, \ldots, n+1)$. If any two consecutive elements of $\mathbf{j}+\boldsymbol{\epsilon}$ are equal then two of the columns of $\tilde{A}(\mathbf{j}+\boldsymbol{\epsilon})$ are equal and $\operatorname{det} \tilde{A}(\mathbf{j}+\boldsymbol{\epsilon})=0$. Therefore, we can remove such $\boldsymbol{\epsilon}$ from the sum in (2), and we have

$$
\begin{equation*}
\operatorname{det} A(\mathbf{j})=\sum_{\substack{\boldsymbol{\epsilon} \in\{0,1\}^{m} \\ \mathbf{j}+\epsilon \text { increasing }}} \gamma_{\boldsymbol{\epsilon}} \operatorname{det} \tilde{A}(\mathbf{j}+\boldsymbol{\epsilon}) . \tag{3}
\end{equation*}
$$

By the induction hypothesis, all the determinants in the sum in (3) are nonnegative, and this implies, by induction, that $\operatorname{det} A(\mathbf{j}) \geq 0$. To show that $\operatorname{det} A(\mathbf{j})>0$ we must show that there is at least one $\boldsymbol{\epsilon} \in\{0,1\}^{m}$ for which $\mathbf{j}+\boldsymbol{\epsilon}$ is increasing, $\gamma_{\boldsymbol{\epsilon}}>0$, and $\operatorname{det} \tilde{A}(\mathbf{j}+\boldsymbol{\epsilon})>0$. Indeed this is true for $\boldsymbol{\epsilon}^{*}=\left(\epsilon_{1}^{*}, \ldots, \epsilon_{m}^{*}\right)$, where

$$
\epsilon_{1}^{*}=\cdots=\epsilon_{p}^{*}=0, \quad \epsilon_{p+1}^{*}=\cdots=\epsilon_{m}^{*}=1 .
$$

To see this observe that $\mathbf{j}+\boldsymbol{\epsilon}^{*}$ is clearly increasing. Next, suppose $1 \leq k \leq p$. Then, since $t_{j_{k}} \leq x_{k} \leq t_{j_{k}+d+1}$, it follows that $t_{j_{k}} \leq x_{k} \leq x_{p}<z$ and so $\alpha_{j_{k}}>0$. Also, since $B_{j_{k}}\left(x_{k}\right)>0$ and since $x_{k}<z$, it follows that $\tilde{B}_{j_{k}}\left(x_{k}\right)>0$. The other case is that $p+1 \leq k \leq m$. Then, since $t_{j_{k}} \leq x_{k} \leq t_{j_{k}+d+1}$, it follows that $t_{j_{k}+d+1} \geq x_{k} \geq x_{p+1}>\tilde{\tilde{c}}$ and so $\beta_{j_{k}}>0$. Also, since $B_{j_{k}}\left(x_{k}\right)>0$ and since $x_{k}>z$, it follows that $\tilde{B}_{j_{k}+1}\left(x_{k}\right)>0$. Therefore, $\gamma_{\epsilon^{*}}>0$ and, by the induction hypothesis, $\operatorname{det} \tilde{A}\left(\mathbf{j}+\boldsymbol{\epsilon}^{*}\right)>0$, as claimed.

