Smoothness, recursion, and derivatives of B-splines

Michael S. Floater

March 1, 2022

In these notes we define B-splines using divided differences. From this definition we deduce the smoothness of B-splines, the recursion formula, and formulas for derivatives. We also deduce a formula for the value of a B-spline at one of its knots.

1 Divided differences

Let us recall some basic facts about divided differences. The divided difference of a function f at the points $x_{0}, x_{1}, \ldots, x_{k}$ is the leading coefficient of the unique polynomial p of degree at most k that interpolates f at these points. We denote it by $\left[x_{0}, x_{1}, \ldots, x_{k}\right] f$ and it is said to have k-th order.

1.1 Distinct points

If the x_{i} are distinct, p is the Lagrange polynomial interpolant to f. We find $\left[x_{0}\right] f=f\left(x_{0}\right)$. For $k \geq 1$, by expressing p as a weighted average of the interpolants to f over the subsets x_{0}, \ldots, x_{k-1} and x_{1}, \ldots, x_{k}, we obtain the recursion

$$
\left[x_{0}, x_{1}, \ldots, x_{k}\right] f=\frac{\left[x_{1}, \ldots, x_{k}\right] f-\left[x_{0}, \ldots, x_{k-1}\right] f}{x_{k}-x_{0}}
$$

The first examples are therefore

$$
\left[x_{0}\right] f=f\left(x_{0}\right), \quad\left[x_{0}, x_{1}\right] f=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

$$
\left[x_{0}, x_{1}, x_{2}\right] f=\frac{\left[x_{1}, x_{2}\right] f-\left[x_{0}, x_{1}\right] f}{x_{2}-x_{0}}=\frac{\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}-\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}}{x_{2}-x_{0}} .
$$

From the Lagrange formula for p, we obtain the alternative formula,

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{k}\right] f=\sum_{i=0}^{k} \frac{f\left(x_{i}\right)}{\prod_{\substack{j=0 \\ j \neq i}}^{k}\left(x_{i}-x_{j}\right)} \tag{1}
\end{equation*}
$$

So, for example, we can write the second order case as

$$
\left[x_{0}, x_{1}, x_{2}\right] f=\frac{f\left(x_{0}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+\frac{f\left(x_{1}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+\frac{f\left(x_{2}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} .
$$

1.2 Arbitrary points

If any of the points $x_{0}, x_{1}, \ldots, x_{k}$ are equal we understand the interpolant p to be the Hermite interpolant to f. By this we mean that if x_{i} has multiplicity m, i.e., x_{i} appears m times in the sequence $x_{0}, x_{1}, \ldots, x_{k}$, then p and all its derivatives up to order $m-1$ agree with f at this point x_{i}. This means that in the special case that all the points are equal, i.e.,

$$
x_{0}=x_{1}=\cdots=x_{k},
$$

then p is the Taylor approximation to f at x_{0}, and so

$$
\left[x_{0}, \ldots, x_{k}\right] f=[\underbrace{x_{0}, \ldots, x_{0}}_{k+1}] f=\frac{f^{(k)}\left(x_{0}\right)}{k!} .
$$

If only some of the points are equal, then in analogy to the case of distinct points, the divided difference can be expressed recursively. If $x_{i} \neq x_{j}$, we can use the recursion

$$
\left[x_{0}, \ldots, x_{k}\right] f=\frac{\left[x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{k}\right] f-\left[x_{0}, \ldots, \hat{x}_{j}, \ldots, x_{k}\right] f}{x_{j}-x_{i}}
$$

where $x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{k}$ means the sequence x_{0}, \ldots, x_{k} with the point x_{i} removed. Thus, for example, we find

$$
\left[x_{0}, x_{0}, x_{1}\right] f=\frac{\left[x_{0}, x_{1}\right] f-\left[x_{0}, x_{0}\right] f}{x_{1}-x_{0}}=\frac{\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}-f^{\prime}\left(x_{0}\right)}{x_{1}-x_{0}}
$$

which is a linear combination of $f\left(x_{0}\right), f^{\prime}\left(x_{0}\right), f\left(x_{1}\right)$:

$$
\left[x_{0}, x_{0}, x_{1}\right] f=c_{00} f\left(x_{0}\right)+c_{01} f^{\prime}\left(x_{0}\right)+c_{10} f\left(x_{1}\right)
$$

where

$$
c_{00}=\frac{-1}{\left(x_{1}-x_{0}\right)^{2}}, \quad c_{01}=\frac{-1}{x_{1}-x_{0}}, \quad c_{10}=\frac{1}{\left(x_{1}-x_{0}\right)^{2}} .
$$

In general, it follows from the recursion that for a sequence of distinct points $x_{0}, x_{1}, \ldots, x_{k}$ with multiplicities $m_{0}, m_{1}, \ldots, m_{k}$, there are coefficients $c_{i, r}$ such that

$$
\begin{equation*}
[\underbrace{x_{0}, \ldots, x_{0}}_{m_{0}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{m_{k}}] f=\sum_{i=0}^{k} \sum_{r=0}^{m_{i}-1} c_{i r} f^{(r)}\left(x_{i}\right) . \tag{2}
\end{equation*}
$$

In other words, the divided difference is a linear combination of f and its derivatives, where the highest order derivative at x_{i} is the multiplicity of x_{i} minus 1.

1.3 Leibniz rule

Later, we will make use of a convenient formula, called the Leibniz rule, for the divided difference of a product of two functions. For the product of functions f and g, the Leibniz rule is

$$
\begin{equation*}
\left[x_{0}, x_{1}, \ldots, x_{k}\right](f g)=\sum_{i=0}^{k}\left[x_{0}, \ldots, x_{i}\right] f\left[x_{i}, \ldots, x_{k}\right] g \tag{3}
\end{equation*}
$$

It is a generalization of the Leibniz rule for derivatives of a product of functions.

2 B-splines

We can define B-splines as follows. For any integers $d \geq 0$ and $n \geq 1$, we call a sequence $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{n+d+1}\right), t_{i} \in \mathbb{R}$, a knot vector if $t_{i} \leq t_{i+1}$.

For any real number x we write

$$
(x)_{+}= \begin{cases}x, & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

For $j=1,2 \ldots, n$, we define the j-th B-spline $B_{j, d}$ by the formula

$$
\begin{equation*}
B_{j, d}(x)=\left(t_{j+d+1}-t_{j}\right)\left[t_{j}, t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d} \tag{4}
\end{equation*}
$$

Here, x is fixed and the divided difference applies to the function

$$
f(y)=(y-x)_{+}^{d} .
$$

3 Smoothness

Suppose that the knots defining $B_{j, d}$ have the following multiplicities,

$$
\left(t_{j}, t_{j+1}, \ldots, t_{j+d+1}\right)=(\underbrace{\tau_{0}, \ldots, \tau_{0}}_{m_{0}}, \ldots, \underbrace{\tau_{k}, \ldots, \tau_{k}}_{m_{k}}),
$$

where $\tau_{0}<\tau_{1}<\cdots<\tau_{k}$. Then we can write $B_{j, d}$ as

$$
\begin{equation*}
B_{j, d}(x)=B[\underbrace{\tau, \ldots, \tau_{0}}_{m_{0}}, \ldots, \underbrace{\tau_{k}, \ldots, \tau_{k}}_{m_{k}}](x) . \tag{5}
\end{equation*}
$$

Theorem 1 The B-spline $B_{j, d}$ in (5) has smoothness of order $C^{d-m_{i}}$ at τ_{i}, $i=0,1, \ldots, k$.

Proof. Since

$$
\frac{d^{r}}{d y^{r}}(y-x)_{+}^{d}=\frac{d!}{(d-r)!}\left(y_{i}-x\right)_{+}^{d-r},
$$

it follows from (2) that there are coefficients $c_{i, r}$, independent of x, such that

$$
\begin{equation*}
B_{j, d}(x)=\left(t_{j+d+1}-t_{j}\right) \sum_{i=0}^{k} \sum_{r=0}^{m_{i}-1} \frac{d!}{(d-r)!} c_{i, r}\left(\tau_{i}-x\right)_{+}^{d-r} \tag{6}
\end{equation*}
$$

Since $\left(\tau_{i}-x\right)_{+}^{d-r}$, as a function of x, has smoothness C^{d-r-1} at τ_{i}, it follows that $B_{j, d}$ has smoothness of order $C^{d-\left(m_{i}-1\right)-1}=C^{d-m_{i}}$ at τ_{i}.

4 Recursion

From the divided difference definition of B-splines we obtain the recursion formula. For this we will make use of the Leibniz rule (3).

Theorem 2 For $d \geq 1$,

$$
\begin{equation*}
B_{j, d}(x)=\frac{x-t_{j}}{t_{j+d}-t_{j}} B_{j, d-1}(x)+\frac{t_{j+d+1}-x}{t_{j+d+1}-t_{j+1}} B_{j+1, d-1}(x) . \tag{7}
\end{equation*}
$$

Proof. Starting from the definition (4), we use the fact that $(\cdot-x)_{+}^{d}$ can be written as the product

$$
(\cdot-x)_{+}^{d}=(\cdot-x)(\cdot-x)_{+}^{d-1} .
$$

We then apply the divided difference $\left[t_{j}, t_{j+1}, \ldots, t_{j+d+1}\right]$ to this product, and use the Leibniz rule. Since

$$
\left[t_{j}\right](\cdot-x)=t_{j}-x, \quad\left[t_{j}, t_{j+1}\right](\cdot-x)=1,
$$

and $\left[t_{j}, \ldots, t_{k}\right](\cdot-x)=0$ for any $k \geq j+2$, we find

$$
\begin{align*}
{\left[t_{j}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d} } & =\left(t_{j}-x\right)\left[t_{j}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1} \\
& +\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1} . \tag{8}
\end{align*}
$$

Since

$$
\begin{equation*}
\left[t_{j}, \ldots, t_{j+d+1}\right]=\frac{\left[t_{j+1}, \ldots, t_{j+d+1}\right]-\left[t_{j}, \ldots, t_{j+d}\right]}{t_{j+d+1}-t_{j}} \tag{9}
\end{equation*}
$$

multiplying both sides of (13) by $t_{j+d+1}-t_{j}$ gives

$$
\begin{aligned}
B_{j, d}(x) & =\left(t_{j}-x\right)\left(\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1}-\left[t_{j}, \ldots, t_{j+d}\right](\cdot-x)_{+}^{d-1}\right) \\
& +\left(t_{j+d+1}-t_{j}\right)\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1} \\
& =\left(x-t_{j}\right)\left[t_{j}, \ldots, t_{j+d}\right](\cdot-x)_{+}^{d-1} \\
& +\left(t_{j+d+1}-x\right)\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1}
\end{aligned}
$$

which, by the definition of $B_{j, d-1}$ and $B_{j+1, d-1}$, gives the result.

5 Derivatives

Theorem 3 For $d \geq 1$,

$$
\begin{equation*}
B_{j, d}^{\prime}(x)=d\left(\frac{B_{j, d-1}(x)}{t_{j+d}-t_{j}}-\frac{B_{j+1, d-1}(x)}{t_{j+d+1}-t_{j+1}}\right) . \tag{10}
\end{equation*}
$$

Proof. Due to the recursion (9), we can express $B_{j, d}$ in (4) in the form

$$
\begin{equation*}
B_{j, d}(x)=\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d}-\left[t_{j}, \ldots, t_{j+d}\right](\cdot-x)_{+}^{d} . \tag{11}
\end{equation*}
$$

Differentiating this with respect to x gives

$$
B_{j, d}^{\prime}(x)=d\left(\left[t_{j+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1}-\left[t_{j}, \ldots, t_{j+d}\right](\cdot-x)_{+}^{d-1}\right),
$$

which, again by the definition of $B_{j, d-1}$ and $B_{j+1, d-1}$, yields the result.

6 Value of a B-spline at a knot

Another useful property of a B-spline is that its value at one of its knots equals the value there of a B-spline of lower degree, more precisely, of the B-spline resulting from removing the knot.

Theorem 4 For any $i=j, j+1, \ldots, j+d+1$,

$$
B\left[t_{j}, \ldots, t_{j+d+1}\right]\left(t_{i}\right)=B\left[t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right]\left(t_{i}\right)
$$

Proof. Similar to the proof of the recursion formula, we apply the divided difference $\left[t_{j}, \ldots, t_{j+d+1}\right]$ to the product

$$
(\cdot-x)_{+}^{d}=(\cdot-x)(\cdot-x)_{+}^{d-1},
$$

and use the Leibniz rule. However, using the fact that $\left[t_{j}, \ldots, t_{j+d+1}\right]$ is symmetric with respect to its points, we are at liberty to order these points differently before applying the rule. By ordering them so that t_{i} goes first, followed by the rest, the rule gives

$$
\begin{align*}
& {\left[t_{i}, t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d}} \\
& \quad=\left(t_{i}-x\right)\left[t_{i}, t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1} \\
& \quad+\left[t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right](\cdot-x)_{+}^{d-1} \tag{12}
\end{align*}
$$

Therefore, letting $x=t_{i}$,

$$
\begin{align*}
& {\left[t_{i}, t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right]\left(\cdot-t_{i}\right)_{+}^{d}} \\
& \quad=\left[t_{j}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{j+d+1}\right]\left(\cdot-t_{i}\right)_{+}^{d-1} \tag{13}
\end{align*}
$$

and dividing both sides by $t_{t+d+1}-t_{j}$ gives the result.

