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In these notes we define B-splines using divided differences. From this
definition we deduce the smoothness of B-splines, the recursion formula, and
formulas for derivatives. We also deduce a formula for the value of a B-spline
at one of its knots.

1 Divided differences

Let us recall some basic facts about divided differences. The divided dif-
ference of a function f at the points x0, x1, . . . , xk is the leading coefficient
of the unique polynomial p of degree at most k that interpolates f at these
points. We denote it by [x0, x1, . . . , xk]f and it is said to have k-th order.

1.1 Distinct points

If the xi are distinct, p is the Lagrange polynomial interpolant to f . We
find [x0]f = f(x0). For k ≥ 1, by expressing p as a weighted average of the
interpolants to f over the subsets x0, . . . , xk−1 and x1, . . . , xk, we obtain the
recursion

[x0, x1, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
,

The first examples are therefore

[x0]f = f(x0), [x0, x1]f =
f(x1)− f(x0)

x1 − x0
,
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[x0, x1, x2]f =
[x1, x2]f − [x0, x1]f

x2 − x0
=

f(x2)−f(x1)
x2−x1

− f(x1)−f(x0)
x1−x0

x2 − x0
.

From the Lagrange formula for p, we obtain the alternative formula,

[x0, x1, . . . , xk]f =
k∑

i=0

f(xi)∏k
j=0
j 6=i

(xi − xj)
. (1)

So, for example, we can write the second order case as

[x0, x1, x2]f =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.

1.2 Arbitrary points

If any of the points x0, x1, . . . , xk are equal we understand the interpolant p to
be the Hermite interpolant to f . By this we mean that if xi has multiplicity
m, i.e., xi appears m times in the sequence x0, x1, . . . , xk, then p and all its
derivatives up to order m− 1 agree with f at this point xi. This means that
in the special case that all the points are equal, i.e.,

x0 = x1 = · · · = xk,

then p is the Taylor approximation to f at x0, and so

[x0, . . . , xk]f = [x0, . . . , x0︸ ︷︷ ︸
k+1

]f =
f (k)(x0)

k!
.

If only some of the points are equal, then in analogy to the case of distinct
points, the divided difference can be expressed recursively. If xi 6= xj, we can
use the recursion

[x0, . . . , xk]f =
[x0, . . . , x̂i, . . . , xk]f − [x0, . . . , x̂j, . . . , xk]f

xj − xi
,

where x0, . . . , x̂i, . . . , xk means the sequence x0, . . . , xk with the point xi re-
moved. Thus, for example, we find

[x0, x0, x1]f =
[x0, x1]f − [x0, x0]f

x1 − x0
=

f(x1)−f(x0)
x1−x0

− f ′(x0)
x1 − x0

,
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which is a linear combination of f(x0), f
′(x0), f(x1):

[x0, x0, x1]f = c00f(x0) + c01f
′(x0) + c10f(x1),

where

c00 =
−1

(x1 − x0)2
, c01 =

−1

x1 − x0
, c10 =

1

(x1 − x0)2
.

In general, it follows from the recursion that for a sequence of distinct
points x0, x1, . . . , xk with multiplicities m0,m1, . . . ,mk, there are coefficients
ci,r such that

[x0, . . . , x0︸ ︷︷ ︸
m0

, . . . , xk, . . . , xk︸ ︷︷ ︸
mk

]f =
k∑

i=0

mi−1∑
r=0

cirf
(r)(xi). (2)

In other words, the divided difference is a linear combination of f and its
derivatives, where the highest order derivative at xi is the multiplicity of xi
minus 1.

1.3 Leibniz rule

Later, we will make use of a convenient formula, called the Leibniz rule,
for the divided difference of a product of two functions. For the product of
functions f and g, the Leibniz rule is

[x0, x1, . . . , xk](fg) =
k∑

i=0

[x0, . . . , xi]f [xi, . . . , xk]g. (3)

It is a generalization of the Leibniz rule for derivatives of a product of func-
tions.

2 B-splines

We can define B-splines as follows. For any integers d ≥ 0 and n ≥ 1, we call
a sequence t = (t1, t2, . . . , tn+d+1), ti ∈ R, a knot vector if ti ≤ ti+1.

For any real number x we write

(x)+ =

{
x, if x > 0,

0 otherwise.
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For j = 1, 2 . . . , n, we define the j-th B-spline Bj,d by the formula

Bj,d(x) = (tj+d+1 − tj)[tj, tj+1, . . . , tj+d+1](· − x)d+. (4)

Here, x is fixed and the divided difference applies to the function

f(y) = (y − x)d+.

3 Smoothness

Suppose that the knots defining Bj,d have the following multiplicities,

(tj, tj+1, . . . , tj+d+1) = (τ0, . . . , τ0︸ ︷︷ ︸
m0

, . . . , τk, . . . , τk︸ ︷︷ ︸
mk

),

where τ0 < τ1 < · · · < τk. Then we can write Bj,d as

Bj,d(x) = B[τ, . . . , τ0︸ ︷︷ ︸
m0

, . . . , τk, . . . , τk︸ ︷︷ ︸
mk

](x). (5)

Theorem 1 The B-spline Bj,d in (5) has smoothness of order Cd−mi at τi,
i = 0, 1, . . . , k.

Proof. Since
dr

dyr
(y − x)d+ =

d!

(d− r)!
(yi − x)d−r+ ,

it follows from (2) that there are coefficients ci,r, independent of x, such that

Bj,d(x) = (tj+d+1 − tj)
k∑

i=0

mi−1∑
r=0

d!

(d− r)!
ci,r(τi − x)d−r+ . (6)

Since (τi − x)d−r+ , as a function of x, has smoothness Cd−r−1 at τi, it follows
that Bj,d has smoothness of order Cd−(mi−1)−1 = Cd−mi at τi. 2
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4 Recursion

From the divided difference definition of B-splines we obtain the recursion
formula. For this we will make use of the Leibniz rule (3).

Theorem 2 For d ≥ 1,

Bj,d(x) =
x− tj
tj+d − tj

Bj,d−1(x) +
tj+d+1 − x
tj+d+1 − tj+1

Bj+1,d−1(x). (7)

Proof. Starting from the definition (4), we use the fact that (· − x)d+ can be
written as the product

(· − x)d+ = (· − x)(· − x)d−1+ .

We then apply the divided difference [tj, tj+1, . . . , tj+d+1] to this product, and
use the Leibniz rule. Since

[tj](· − x) = tj − x, [tj, tj+1](· − x) = 1,

and [tj, . . . , tk](· − x) = 0 for any k ≥ j + 2, we find

[tj, . . . , tj+d+1](· − x)d+ = (tj − x)[tj, . . . , tj+d+1](· − x)d−1+

+ [tj+1, . . . , tj+d+1](· − x)d−1+ . (8)

Since

[tj, . . . , tj+d+1] =
[tj+1, . . . , tj+d+1]− [tj, . . . , tj+d]

tj+d+1 − tj
, (9)

multiplying both sides of (13) by tj+d+1 − tj gives

Bj,d(x) = (tj − x)([tj+1, . . . , tj+d+1](· − x)d−1+ − [tj, . . . , tj+d](· − x)d−1+ )

+ (tj+d+1 − tj)[tj+1, . . . , tj+d+1](· − x)d−1+

= (x− tj)[tj, . . . , tj+d](· − x)d−1+

+ (tj+d+1 − x)[tj+1, . . . , tj+d+1](· − x)d−1+ ,

which, by the definition of Bj,d−1 and Bj+1,d−1, gives the result. 2
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5 Derivatives

Theorem 3 For d ≥ 1,

B′j,d(x) = d

(
Bj,d−1(x)

tj+d − tj
− Bj+1,d−1(x)

tj+d+1 − tj+1

)
. (10)

Proof. Due to the recursion (9), we can express Bj,d in (4) in the form

Bj,d(x) = [tj+1, . . . , tj+d+1](· − x)d+ − [tj, . . . , tj+d](· − x)d+. (11)

Differentiating this with respect to x gives

B′j,d(x) = d([tj+1, . . . , tj+d+1](· − x)d−1+ − [tj, . . . , tj+d](· − x)d−1+ ),

which, again by the definition of Bj,d−1 and Bj+1,d−1, yields the result. 2

6 Value of a B-spline at a knot

Another useful property of a B-spline is that its value at one of its knots
equals the value there of a B-spline of lower degree, more precisely, of the
B-spline resulting from removing the knot.

Theorem 4 For any i = j, j + 1, . . . , j + d+ 1,

B[tj, . . . , tj+d+1](ti) = B[tj, . . . , ti−1, ti+1, . . . , tj+d+1](ti).

Proof. Similar to the proof of the recursion formula, we apply the divided
difference [tj, . . . , tj+d+1] to the product

(· − x)d+ = (· − x)(· − x)d−1+ ,

and use the Leibniz rule. However, using the fact that [tj, . . . , tj+d+1] is
symmetric with respect to its points, we are at liberty to order these points
differently before applying the rule. By ordering them so that ti goes first,
followed by the rest, the rule gives

[ti, tj, . . . , ti−1,ti+1, . . . , tj+d+1](· − x)d+

= (ti − x)[ti, tj, . . . , ti−1, ti+1, . . . , tj+d+1](· − x)d−1+

+ [tj, . . . , ti−1, ti+1, . . . , tj+d+1](· − x)d−1+ . (12)
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Therefore, letting x = ti,

[ti, tj, . . . , ti−1,ti+1, . . . , tj+d+1](· − ti)d+
= [tj, . . . , ti−1, ti+1, . . . , tj+d+1](· − ti)d−1+ , (13)

and dividing both sides by tt+d+1 − tj gives the result. 2
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