
LECTURE NOTES ON SPLINES

Michael S. Floater

c© Draft date March 31, 2022



Contents

Contents i

Preface 1
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Preface

This is a collection of working lecture notes about spline theory, with a view to data
fitting and geometric modelling. We consider a spline to be a piecewise polynomial.
In the first chapter we study Bernstein-Bézier (BB) polynomials and Bézier curves.
In the second chapter we see how some important examples of splines can be con-
tructed by representing each polynomial piece in BB form and enforcing conditions
on the pieces that guarantee that they fit together continuously or smoothly.
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Chapter 1

Bernstein-Bézier polynomials

In this chapter we study Bernstein-Bézier polynomials and Bézier curves.

1.1 Bernstein basis polynomials

Recall that a real polynomial of a real variable x ∈ R of degree k, is a function of
the form

p(x) = a0 + a1x+ · · ·+ akx
k =

k∑
i=0

aix
i,

where ai ∈ R, i = 0, 1, . . . , k, and ak 6= 0. We will denote by πd the linear space of
polynomials of degree at most d,

πd =

{
d∑

i=0

aix
i : ai ∈ R, i = 0, 1, . . . , d

}
.

The functions 1, x, . . . , xd form a basis for πd, known as the monomial basis, and
the dimension of the space πd is therefore d + 1. The Bernstein basis polynomials
provide an alternative basis for πd and are defined as

Bd
i (x) =

(
d

i

)
xi(1− x)d−i, i = 0, 1, . . . , d, (1.1)

where (
d

i

)
=

d!

i!(d− i)!
.

The first few examples are
B0

0(x) = 1,

3
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Figure 1.1: The cubic Bernstein basis polynomials

B1
0(x) = 1− x, B1

1(x) = x,

B2
0(x) = (1− x)2, B2

1(x) = 2x(1− x), B2
2(x) = x2,

B3
0(x) = (1− x)3, B3

1(x) = 3x(1− x)2, B3
2(x) = 3x2(1− x), B3

3(x) = x3.

The cubic ones are shown in Figure 1.1.

Let us consider some of their basic properties. For any x ∈ R, they sum to 1
since, by the binomial theorem,

1 = 1d = (x+ (1− x))d =
d∑

i=0

(
d

i

)
xi(1− x)d−i =

d∑
i=0

Bd
i (x).

For x in the interval [0, 1] they are also non-negative. Thus, in the interval [0, 1],
they form a so-called partition of unity. In fact, they are positive in the open interval
(0, 1) and at the endpoints

Bd
i (0) =

{
1 i = 0;

0 i = 1, . . . , d,
and Bd

i (1) =

{
0 i = 0, . . . , d− 1;

1 i = n.
(1.2)

Let us now show that the Bernstein basis polynomials of degree d do indeed form a
basis for πd.

Theorem 1.1.1 The set

Bd := {Bd
i : i = 0, 1, . . . , d}

of Bernstein basis polynomials is a basis for the space of polynomials πd.
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Since the number of elements of Bd is d+1, one way to prove the theorem is to show
that any monomial xj, 0 ≤ j ≤ d, is in the span of Bd, i.e., that xj can be expressed
as a linear combination of the Bd

i . This is demonstrated by the following lemma.

Lemma 1.1.2 For j = 0, 1, . . . , d,

xj =
1(
d
j

) d∑
i=j

(
i

j

)
Bd

i (x). (1.3)

Proof. We use the binomial theorem again:

xj = xj(x+ (1− x))d−j = xj
d−j∑
i=0

(
d− j
i

)
xi(1− x)d−j−i

=
d∑

i=j

(
d− j
i− j

)
xi(1− x)d−i =

d∑
i=j

(
d−j
i−j

)(
d
i

) Bd
i (x), (1.4)

which can be rewritten as (1.3). �

1.2 Recursion

The Bernstein basis polynomials satisfy a recursion formula which provides an ef-
ficient way to compute them. Here and elsewhere we will make the convenient
convention that Bd

−1(x) = 0 and Bd
d+1(x) = 0 for all x ∈ R.

Lemma 1.2.1 For i = 0, 1, . . . , d,

Bd
i (x) = xBd−1

i−1 (x) + (1− x)Bd−1
i (x). (1.5)

Proof. Suppose 1 ≤ i ≤ d − 1. We will make use of the recursion formula for
binomial coefficients, (

d

i

)
=

(
d− 1

i− 1

)
+

(
d− 1

i

)
.

Using this we can express Bd
i (x) as

Bd
i (x) =

((
d− 1

i− 1

)
+

(
d− 1

i

))
xi(1− x)d−i

= x

(
d− 1

i− 1

)
xi−1(1− x)d−i + (1− x)

(
d− 1

i

)
xi(1− x)d−i−1,
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which is the same as (1.5). In the cases i = 0 and i = d we have

Bd
0(x) = (1− x)d = (1− x)Bd−1

0 (x),

Bd
d(x) = xd = xBd−1

d−1(x),

which agree with (1.5) due to the convention that Bd−1
−1 = Bd−1

d = 0. �

Thus the Bernstein basis polynomials can be evaluated at a given x ∈ [0, 1]
using a triangular scheme. For a fixed x we first set B0

0 = 1. Then, for each
r = 1, 2, . . . , d, we let

Br
i = xBr−1

i−1 + (1− x)Br−1
i , i = 0, 1, . . . , r. (1.6)

The scheme is illustrated below. In each column, each value is computed from two
values from the previous column.

1 = B0
0 B1

0 B2
0 · · · Bd

0

B1
1 B2

1 · · · Bd
1

B2
2 · · · Bd

2
. . .

...
Bd

d

1.3 Differentiation

We can also compute derivatives of Bernstein basis polynomials by a recursive for-
mula.

Lemma 1.3.1 For d ≥ 1 and for i = 0, 1, . . . , d,

(Bd
i )′(x) = d

(
Bd−1

i−1 (x)−Bd−1
i (x)

)
. (1.7)

Proof. Suppose 1 ≤ i ≤ d− 1. By the product rule for differentiation,

Bd
i )′(x) =

(
d

i

)(
ixi−1(1− x)d−i − (d− i)xi(1− x)d−i−1

)
= d

((
d− 1

i− 1

)
xi−1(1− x)d−i −

(
d− 1

i

)
xi(1− x)d−i−1

)
,

which is the right hand side of (1.7). In the cases i = 0 and i = d,

(Bd
0)′(x) = −d(1− x)d−1 = −dBd−1

0 (x),

(Bd
d)′(x) = dxd−1 = dBd−1

d−1(x),

which agree with (1.7) by the convention that Bd−1
−1 = Bd−1

d = 0. �
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1.4 Integration

There is a simple formula for the integral of a Bernstein basis polynomial over [0, 1].

Theorem 1.4.1 For d ≥ 0 and for all i = 0, 1, . . . , d,∫ 1

0

Bd
i (x) dx =

1

d+ 1
.

Proof. By the derivative formula (1.7),

(Bd+1
i )′(x) = (d+ 1)

(
Bd

i−1(x)−Bd
i (x)

)
for i = 1, . . . , d. Integrating this equation with respect x in [0, 1] gives

Bd+1
i (1)−Bd+1

i (0) = (d+ 1)

(∫ 1

0

Bd
i−1(x) dx−

∫ 1

0

Bd
i (x) dx

)
,

and since the left hand side is zero for i = 1, . . . , d, we deduce that∫ 1

0

Bd
i−1(x) dx =

∫ 1

0

Bd
i (x) dx.

Thus the integral over [0, 1] of every Bernstein basis polynomial Bd
i , i = 0, 1, . . . , d,

is the same. Since the Bd
i sum to one, we also deduce that the sum of these integrals

is 1:
d∑

i=0

∫ 1

0

Bd
i (x) dx =

∫ 1

0

d∑
i=0

Bd
i (x) dx =

∫ 1

0

1 dx = 1.

Hence, since there are d + 1 of these integrals, each integral must have the value
1/(d+ 1). �

1.5 Bernstein-Bézier polynomials

Let [a, b] be some real interval. Any point x ∈ [a, b] can be expressed as a convex
combination of the endpoints a and b,

x = (1− λ)a+ λb, (1.8)

where

λ =
x− a
b− a

.
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Figure 1.2: Quadratic and cubic BB polynomials on [0, 1].

This is sometimes called the barycentric form of x with respect to [a, b]. The weights

1− λ =
b− x
b− a

and λ =
x− a
b− a

are the barycentric coordinates of x with respect to [a, b].

We call a polynomial p ∈ πd written in the form

p(x) =
d∑

i=0

ciB
d
i (λ), (1.9)

a Bernstein-Bézier polynomial or BB polynomial. The coefficients ci ∈ R are the
BB coefficients of p with respect to [a, b]. In the special case that [a, b] = [0, 1], a
BB polynomial is simply

p(x) =
d∑

i=0

ciB
d
i (x). (1.10)

Although we are mainly interested in values of p for x ∈ [a, b], we note that both λ
and p(x) are well defined for all x ∈ R.

From the BB coefficients we define the control polygon of p as the polygon
passing through the points (ξi, ci), i = 0, 1, . . . , d, where the d + 1 points ξi are the
domain points of p with respect to [a, b], defined as

ξi =
d− i
d

a+
i

d
b.

The shape of p relects, to a large extent, the shape of its control polygon. Figure 1.2
shows quadratic and cubic BB polynomials on [0, 1] with their control polygons.

Various properties of BB polynomials follow from properties of the Bernstein
basis polynomials. For example, from (1.2), we obtain the endpoint property,

p(a) = c0, p(b) = cd. (1.11)
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Figure 1.3: Cubic Bézier curves

Since the Bd
i (λ) sum to one for any λ ∈ R, any affine function Φ of p is the BB

polynomial on [a, b] whose coefficients are Φ(ci). This is because, if Φ(x) = αx+ β,
then

Φ(p(x)) = α
d∑

i=0

ciB
d
i (λ) + β =

d∑
i=0

(αci + β)Bd
i (λ) =

d∑
i=0

Φ(ci)B
d
i (λ).

Since the Bd
i are, moreover, non-negative in [0, 1], the value p(x), x ∈ [a, b], is a

convex combination of the coefficients c0, . . . , cd and so

min
0≤i≤d

ci ≤ p(x) ≤ max
0≤i≤d

ci, a ≤ x ≤ b. (1.12)

1.6 Bézier curves

By letting the coefficients of a BB polynomial be vector-valued, the polynomial
becomes a parametric curve, which is commonly known as a Bézier curve. Thus,
if we let c0, c1, . . . , cd ∈ Rk for some Euclidean space Rk, k ≥ 2, then we obtain a
Bézier curve,

p(x) =
d∑

i=0

ciB
d
i (λ), (1.13)

where, as before, λ = (x − a)/(b − a). This is a parametric polynomial curve, and
if we restrict x to the interval [a, b], then [a, b] becomes the parameter domain of p
and the curve p is a mapping, p : [a, b] → Rk. We call c0, c1, . . . , cd the control
points of p, and we define the control polygon of p simply to be the polygon passing
through the control points. The shape of the curve p is independent of the choice
of parameter domain [a, b], since it is a reparameterization of the Bézier curve

p(x) =
d∑

i=0

ciB
d
i (x). (1.14)
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Figure 1.3 shows two cubic Bézier curves in the plane with their control polygons.
Similar to BB polynomials, a Bézier curve tends to mimic the shape of its control
polygon, which is why it is a popular choice for designing geometry in an interactive
graphical environment. As the user moves the control points interactively, the shape
of the Bézier curve tends to change in an intuitive and predictable way.

Bézier curves have properties similar to BB polynomials. For example, from (1.2),
we obtain the endpoint property of Bézier curves,

p(a) = c0, p(b) = cd.

Since the Bernstein basis polynomials sum to one for x ∈ [0, 1], every point
p(x) is an affine combination of the control points c0, . . . , cn. From this it follows
that if Φ is an affine map Rk → Rk, then the mapped curve Φ(p) has control points
Φ(ci). So see this, recall that an affine map has the form

Φ(x) = Ax + b, x ∈ Rd,

for some matrix A of dimension k × k and a vector b of length k. Then,

Φ(p(x)) = A
d∑

i=0

ciB
d
i (λ) + b =

d∑
i=0

(Aci + b)Bd
i (λ) =

d∑
i=0

Φ(ci)B
d
i (λ).

Since the Bernstein basis polynomials are non-negative in [0, 1], any point p(x),
with x ∈ [a, b], is a convex combination of the control points c0, . . . , cd, and so p,
restricted to [a, b], lies in the convex hull of its control points:

conv{c0, . . . , cd} =

{
d∑

i=0

µici : µ1, . . . , µd ≥ 0,
d∑

i=0

µi = 1

}
.

This same convex hull property also applies to each the d coordinates of p separately,
and so p restricted to [a, b] also lies in the bounding box

[α1, β1]× [α2, β2]× · · · × [αk, βk],

where, if the point ci has coordinates ci1, . . . , cik,

αj = min
0≤i≤d

cij and βj = max
0≤i≤d

cij, j = 1, . . . , k.

Bounding boxes are used in various algorithms, and are easier to compute than
convex hulls.
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1.7 The de Casteljau algorithm

Consider now how we evaluate a BB polynomial or Bézier curve, by which we mean
how we compute the value of the polynomial or the point on the curve corresponding
to a given input parameter x. The evaluation of a Bézier curve is similar to that of
a BB polynomial, so it is sufficient to focus on the latter case.

Consider p(x) in (1.9). First we compute λ = (x− a)/(b− a). Then one way
to proceed is to evaluate the Bernstein basis polynomials Bd

i at λ, by the recursion
(1.6), and then apply the formula in (1.9). A more direct method is to use recursion
on the coefficients, which is known as de Casteljau’s algorithm. We initialize the
algorithm by setting c0i = ci, i = 0, 1, . . . , d. Then, for each r = 1, . . . , d, let

cri = (1− λ)cr−1i + λcr−1i+1 , i = 0, 1, . . . , d− r. (1.15)

Theorem 1.7.1 The last value computed, cd0, is the value of p(x) in (1.9).

Proof. Consider the first step of the algorithm. By the recurrence (1.6),

p(x) =
d∑

i=0

c0i (λB
d−1
i−1 (λ) + (1− λ)Bd−1

i (λ))

=
d∑

i=0

c0iλB
d−1
i−1 (λ) +

d∑
i=0

c0i (1− λ)Bd−1
i (λ)

=
d−1∑
i=0

c0i+1λB
d−1
i (λ) +

d−1∑
i=0

c0i (1− λ)Bd−1
i (λ),

where we used the convention that Bd−1
−1 = Bd−1

d = 0, and hence, by (1.15),

p(x) =
d−1∑
i=0

c1iB
d−1
i (λ).

Continuing in this way we find that for any r = 1, . . . , d,

p(x) =
d−r∑
i=0

criB
d−r
i (λ). (1.16)

The particular case r = d gives us p(x) = cd0. �
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This algorithm can be arranged in a triangular scheme as follows. In each
column, each value is computed from two values from the previous column.

c00 c10 · · · cd−10 cd0
c01 c11 · · · cd−11
... . . .

c0d−1 c1d−1
c0d

Figure 1.4 illustrates the algorithm applied to the cubic BB polynomial of Figure 1.2
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Figure 1.4: de Casteljau algorithm, x = 0.6

where x = 0.6.

It it sometimes useful to know that the points in the de Casteljau algorithm
are themselves BB polynomials whose coefficients are subsets of c0, c1, . . . , cd.

Theorem 1.7.2 The value cri in the de Casteljau algorithm (1.15), viewed as a
function of x, is the BB polynomial

cri =
r∑

j=0

ci+jB
r
j (λ). (1.17)

Proof. We proceed by induction on r ≥ 0. The statement clearly holds when r = 0.
For r ≥ 1, we may suppose that (1.17) holds when r is replaced by r − 1. Thus,
from (1.15), we find

cri = (1− λ)cr−1i + λcr−1i+1 = (1− λ)
r−1∑
j=0

ci+jB
r−1
j (λ) + λ

r−1∑
j=0

ci+1+jB
r−1
j (λ)

=
r∑

j=0

ci+j((1− λ)Br−1
j (λ) + λBr−1

j−1(λ))

=
r∑

j=0

ci+jB
r
j (λ),
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using again the convention that Br−1
−1 = Br−1

r = 0.

�

1.8 Derivatives

We may also want to evaluate the derivatives of a BB polynomial or Bézier curve.
Consider the computation of the first derivative of the BB polynomial p in (1.9) at
a point x.

Theorem 1.8.1 The first derivative of the BB polynomial p in (1.9) is

p′(x) =
d

h

d−1∑
i=0

∆ciB
d−1
i (λ),

where h = b− a and ∆ci denotes the forward difference, ∆ci = ci+1 − ci.

Proof. By the chain rule,

d

dx
Bd

i (λ) = (Bd
i )′(λ)

dλ

dx
= (Bd

i )′(λ)/h.

Then, using Lemma 1.3.1,

p′(x) =
1

h

d∑
i=0

ci(B
d
i )′(λ) =

d

h

d∑
i=0

ci(B
d−1
i−1 (λ)−Bd−1

i (λ))

=
d

h

(
d∑

i=1

ciB
d−1
i−1 (λ)−

d−1∑
i=0

ciB
d−1
i (λ)

)

=
d

h

(
d−1∑
i=0

ci+1B
d−1
i (λ)−

d−1∑
i=0

ciB
d−1
i (λ)

)
,

where we used our convention that Bd−1
−1 = Bd−1

d = 0. Putting the two summations
together and using the notation that ∆ci = ci+1 − ci completes the proof. �

This theorem implies that the derivative, p′(x), is the BB polynomial in πd−1
on [a, b] whose coefficients are (d/h)∆ci, i = 0, 1, . . . , d − 1. Thus by the endpoint
property (1.11), it follows that

p′(a) =
d

h
∆c0, p′(b) =

d

h
∆cd−1. (1.18)

By (1.12), we also have

d

h
min

0≤i≤d−1
∆ci ≤ p′(x) ≤ d

h
max

0≤i≤d−1
∆ci, a ≤ x ≤ b. (1.19)
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1.9 Higher order derivatives

We obtain higher order derivatives of p by applying Theorem 1.8.1 repeatedly, and
by defining the r-th order forward difference of the coefficients by the recursion

∆rci = ∆r−1ci+1 −∆r−1ci, r ≥ 1,

where ∆0ci = ci. One can show by induction that

∆rc0 =
r∑

i=0

(
r

i

)
(−1)r−ici, (1.20)

so, for example,

∆2ci = ci − 2ci+1 + ci+2,

∆3ci = −ci + 3ci+1 − 3ci+2 + ci+3,

and so on. Thus, one obtains

Corollary 1.9.1 The r-th derivative of the BB polynomial p in (1.9) is

p(r)(x) =
dr

dxr
p(x) =

d!

(d− r)!
1

hr

d−r∑
i=0

∆rciB
d−r
i (λ).

Thus the derivatives of p at the endpoints of [a, b] have simple expressions in terms
of the coefficients:

Corollary 1.9.2 The r-th order endpoint derivatives of the BB polynomial p in
(1.9) are

p(r)(a) =
d!

(d− r)!
1

hr
∆rc0, p(r)(b) =

d!

(d− r)!
1

hr
∆rcd−r.

1.10 Integration

There is a simple formula for the integral of a BB polynomial over its domain.

Theorem 1.10.1 The integral of the BB polynomial p in (1.9) is the length h of
the interval [a, b] times the average of its coefficients,∫ b

a

p(x) dx = h
c0 + c1 + · · ·+ cd

d+ 1
.
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Proof. Integrating p in (1.9) gives∫ b

a

p(x) dx =
d∑

i=0

ci

∫ b

a

Bd
i (λ) dx. (1.21)

Then, by changing the variable of integration from x to λ,∫ b

a

Bd
i (λ) dx = h

∫ 1

0

Bd
i (λ) dλ,

and therefore, by Theorem 1.4.1,∫ b

a

Bd
i (λ) dx =

h

d+ 1
.

Substituting this into (1.21) gives the result. �

1.11 Exercises

1. It is sometimes necessary to convert a polynomial in BB form to monomial
form. Consider a quadratic BB polynomial on the interval [0, 1], i.e., a poly-
nomial

p(x) = c0(1− x)2 + 2c1x(1− x) + c2x
2.

Express p in the monomial form

p(x) = a0 + a1x+ a2x
2.

2. Consider a polynomial p(x) of degree ≤ d, for arbitrary d. Show that if

p(x) =
d∑

j=0

ajx
j =

d∑
i=0

ciB
d
i (x),

then

aj =

(
d

j

)
∆jc0.

Hint: use a Taylor approximation to p to show that aj = p(j)(0)/j!.

3. We might also want to convert a polynomial from monomial form to BB form.
Using equation (1.4), show that in the notation of the previous question,

ci =
1(
d
i

) i∑
j=0

(
d− j
i− j

)
aj.
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4. Show that the graph, g(x) = (x, p(x)) of the BB polynomial p in (1.9) is a
Bézier curve in R2, with control points (ξi, ci), i = 0, 1, . . . , d. Hint: express x
as a linear combination of the Bd

i (λ).

5. Show that the tangent vector p′(x) of the Bézier curve in (1.9) lies in the
convex cone of the vectors ∆ci, i.e., in

cone(∆c0, . . . ,∆cd−1) =

{
d−1∑
i=0

µi∆ci : µ1, . . . , µd−1 ≥ 0

}
.

6. Show that the first derivative of p in (1.9) can be expressed (and computed)
as

p′(x) =
d

h
(cd−11 − cd−10 ),

where cd−10 , cd−11 are the points of order d−1 in de Casteljau’s algorithm (1.15).

7. Show that the length of the Bézier curve p in (1.14) is bounded by the length
of its control polygon,

length(p) ≤
d−1∑
i=0

‖∆ci‖.



Chapter 2

Splines in Bernstein-Bézier form

If we tried to model a complex function with a single polynomial, we would need
a polynomial of very high degree. It is usually easier in practice to create a com-
plex function by joining together several polynomials of low degree. The resulting
function is a piecewise polynomial, or spline. To do this it helps to represent the
polynomial pieces in BB form because the conditions for joining BB polynomials
together with a certain order of smoothness are relatively simple.

2.1 Linear spline

As a first example of contructing a spline to match given data, let us consider
piecewise linear interpolation. Suppose that x1, x2, . . . , xm ∈ R is an increasing
sequence of points and that y1, y2, . . . , ym ∈ R are associated values. We let a = x1
and b = xm and we would like to find a spline g : [a, b] → R such that in each
interval [xi, xi+1], i = 1, 2, . . . ,m− 1, g is a linear polynomial, and such that

g(xi) = yi, i = 1, 2, . . . ,m. (2.1)

The solution to this is simple. For each i = 1, 2, . . . ,m − 1, we let gi be the linear
polynomial

gi(x) =
xi+1 − x
xi+1 − xi

yi +
x− xi
xi+1 − xi

yi+1. (2.2)

We then define g by g(x) = gi(x) for xi ≤ x ≤ xi+1. So gi is the i-th polynomial
piece of g. Since gi−1 and gi have the common value yi at xi for all i = 2, . . . ,m− 1,
it follows that g is continuous, and we write g ∈ C[a, b].

We can alternatively express gi using linear BB polynomials:

gi(x) = yiB
1
0(λi) + yi+1B

1
1(λi),

17
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Figure 2.1: Piecewise linear interpolant.

where λi = (x− xi)(xi+1 − xi).
Figure 2.1 shows an example of piecewise linear interpolation, with three linear

pieces. The data is

(x1, x2, x3, x4) = (0, 2, 4, 5),

(y1, y2, y3, y4) = (0, 0.8, 0.3, 0.6). (2.3)

In some applications the values yi will be function values yi = f(xi), i =
1, . . . ,m, for some function f : [a, b] → R. In this case, we can ask what is the
difference between f and g? Equivalently, if we let e = f − g be the error function
on [a, b], we can ask what is the size of e in some sense? Of course e is zero at the
interpolation points xi, but not in general in between. One way to measure the size
of e is to use the max norm or infinity norm of e, defined as

‖e‖ = max
a≤x≤b

|e(x)|.

Under the assumption that f is smooth enough, the max norm of the error is pro-
portional to h2 where h is the mesh size

h = max
i=1,...,m−1

hi,

and hi = xi+1 − xi.

Theorem 2.1.1 If f ∈ C2[a, b] then

‖f − g‖ ≤ 1

8
h2‖f ′′‖.
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Proof. Let x ∈ [xi, xi+1]. Since gi(xi) = f(xi) and gi(xi+1) = f(xi+1), the Newton
error formula for linear polynomial interpolation tells us that

f(x)− gi(x) = (x− xi)(x− xi+1)
f ′′(ξi)

2!
,

for some point ξi ∈ (xi, xi+1). The maximum of the function (x − xi)(xi+1 − x)
over x ∈ [xi, xi+1] is attained at x = (xi + xi+1)/2, and has the value h2i /4 there.
Therefore,

|f(x)− g(x)| = (x− xi)(xi+1 − x)
|f ′′(ξi)|

2!
≤ h2i

8
‖f ′′‖ ≤ h2

8
‖f ′′‖,

and taking the maximum of |e(x)| over x ∈ [a, b] gives the result. �

This theorem shows that if a and b and f are fixed, and if we increase the
number of points xi sampled from [a, b] in such a way that h→ 0, then the associated
splines g will converge to f , and at the rate of O(h2). For example, if we double the
number of existing intervals [xi, xi+1] by adding a new interpolation point at each
midpoint (xi + xi+1)/2 then the error will approximately go down by a factor of 4.

2.2 Cubic Hermite spline

We obtain a smoother spline by using polynomial pieces of higher degree. A popular
choice of degree is three. We can build a cubic spline g : [a, b] → R which is
continuously differentiable by letting its pieces gi be cubic polynomials and such
that g matches both the values yi in (2.1), and first derivatives

g′(xi) = si, i = 1, 2, . . . ,m. (2.4)

Theorem 2.2.1 There is a unique C1 cubic spline g satisfying the interpolation
conditions (2.1) and (2.4). We can express the i-th piece of g as

gi(x) =
3∑

j=0

cjB
3
j (λi), (2.5)

where

c0 = yi, c1 = yi +
hi
3
si, c2 = yi+1 −

hi
3
si+1, c3 = yi+1, (2.6)

and λi = (x− xi)/hi and hi = xi+1 − xi.
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Figure 2.2: Cubic Hermite interpolant (left), BB control polygons (right).

Proof. Let gi be a BB polynomial of the form (2.5). By Corollary 1.9.2,

gi(xi) = c0, g′i(xi) =
3

hi
(c1 − c0), gi(xi+1) = c3, g′i(xi+1) =

3

hi
(c3 − c2).

Using the interpolation conditions (2.1) and (2.4), and solving for the coefficients
c0, c1, c2, c3 gives (2.6).

To show the uniqueness of the solution, suppose g̃i ∈ π3 also matches the four
interpolation conditions at xi and xi+1. Then the difference p = g̃i − gi is also in π3
and

p(xj) = p′(xj) = 0, j = i, i+ 1.

So p is a cubic with at least four roots counting multiplicities and the Fundamental
Theorem of Algebra implies that p = 0. �

Figure 2.2 shows an example of cubic Hermite interpolation, with three cubic
pieces. The data is as in (2.3) together with the derivative data

(y1, y2, y3, y4) = (0, 0.1,−0.1, 0.1). (2.7)

As in the previous section, in some applications the values yi will be function
values yi = f(xi), and the values si could be slopes, si = f ′(xi). If f is smooth
enough, the error is now proportional to h4, which means that the convergence of
these cubic splines to f will be faster than linear splines.

Theorem 2.2.2 If f ∈ C4[a, b] then

‖f − g‖ ≤ 1

384
h4‖f (4)‖.
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Proof. Let x ∈ [xi, xi+1]. Since gi(xj) = f(xj) and g′i(xj) = f ′(xj) for j = i, i + 1,
the Newton error formula for cubic Hermite polynomial interpolation implies that

f(x)− gi(x) = (x− xi)2(x− xi+1)
2f

(4)(ξi)

4!
,

for some point ξi ∈ (xi, xi+1). Therefore,

|f(x)− g(x)| = ((x− xi)(xi+1 − x))2
|f (4)(ξi)|

4!
≤
(
h2i
4

)2 ‖f (4)‖
24

≤ h4

384
‖f (4)‖.

�

2.3 C2 cubic spline

Another approach to constructing a cubic spline g to fit data values y1, . . . , ym is to
force g to have C2 continuity at the interior points x2, . . . , xm−1. If we then count
degrees of freedom we find that we need to place two extra conditions on g to ensure
the uniqueness of g. One way to do this is to fix the first derivative of g at the two
endpoints x1 and xm. Thus we will construct a spline g ∈ C2[a, b] which, as before,
has cubic pieces and interpolates the values yi, but in addition satisfies the Hermite
end conditions

g′(x1) = s1 and g′(xm) = sm. (2.8)

Theorem 2.3.1 There is a unique C2 cubic spline g satisfying the interpolation
conditions (2.1) and (2.8).

Proof. One approach to solving this problem is to let g be the cubic Hermite spline
of the previous section, and to compute the interior slopes s2, . . . , sm−1 so as to
ensure that g has C2 continuity at the points x2, . . . , xm−1. In this approach we
have m − 2 variables and m − 2 conditions. To ensure the C2 continuity of g, we
require

g′′i−1(xi) = g′′i (xi), i = 2, . . . ,m− 1.

From Corollary 1.9.2, in the notation of (2.5),

g′′i (xi) =
6

h2i
(c0 − 2c1 + c2) =

6

hi

(
[xi, xi+1]f −

2si + si+1

3

)
, (2.9)

where [xi, xi+1]f is the divided difference,

[xi, xi+1]f =
f(xi+1)− f(xi)

hi
.



22 CHAPTER 2. SPLINES IN BERNSTEIN-BÉZIER FORM

Similarly, writing gi−1 as

gi−1(x) =
3∑

j=0

c̃jB
3
j (λi−1),

we find

g′′i−1(xi) =
6

h2i−1
(c̃1 − 2c̃2 + c̃3) =

6

hi−1

(
−[xi−1, xi]f +

si−1 + 2si
3

)
. (2.10)

Equating (2.9) and (2.10) and rearranging gives

hi
hi−1 + hi

si−1 + 2si +
hi−1

hi−1 + hi
si+1 = 3

(
hi[xi−1, xi]f + hi−1[xi, xi+1]f

hi−1 + hi

)
. (2.11)

These equations for i = 2, . . . ,m− 1 constitute a linear system of m− 2 equations
in the m− 2 unknowns s2, . . . , sm−1, which is strictly row diagonally dominant, and
hence has a unique solution. �

2.4 Minimization of second derivatives

The C2 cubic spline interpolant g has a remarkable property, that it has the least
second derivative of all C2 interpolants in the L2 sense.

Theorem 2.4.1 Let g be the C2 cubic spline interpolant solving (2.1) and (2.8),
and let h be any C2 function satisfying the same conditions. Then∫ b

a

(g′′(x))2 dx ≤
∫ b

a

(h′′(x))2 dx, (2.12)

with equality if and only if h = g.

Proof. Let e = h− g. Then e ∈ C2[a, b] and

e(xi) = 0, i = 1, . . . ,m, and e′(x1) = e′(xm) = 0. (2.13)

Then h = g + e and so∫
(h′′)2 =

∫
(g′′)2 + 2

∫
g′′e′′ +

∫
(e′′)2, (2.14)
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and therefore ∫
(h′′)2 −

∫
(g′′)2 ≥ 2

∫
φe′′,

where φ = g′′, which is piecewise linear. We now compute the integral on the right:∫ b

a

φe′′ =
m−1∑
i=1

∫ xi+1

xi

φe′′

=
m−1∑
i=1

{[
φe′
]xi+1

xi

−
∫ xi+1

xi

φ′e′
}

=
m−1∑
i=1

{
φ(xi+1)e

′(xi+1)− φ(xi)e
′(xi)− φ′|[xi,xi+1]

∫ xi+1

xi

e′
}

= φ(xm)e′(xm)− φ(x1)e
′(x1)−

m−1∑
i=1

{
φ′|[xi,xi+1](e(xi+1)− e(xi))

}
. (2.15)

So, by (2.13), this integral is zero and this proves the inequality (2.12). To complete
the proof, suppose that the integrals in (2.12) are equal. Then by (2.14),

∫
(e′′)2 = 0.

This implies that e is a linear function, e(x) = a0 + a1x. Since e(x1) = e(xm) = 0,
this means that e = 0, and we conclude that h = g. �

2.5 Natural end conditions

An alternative to imposing the Hermite end conditions (2.8) is to impose the so-
called natural end conditions, which demand that the second derivative og g is zero
at the endpoints, i.e.,

g′′(x1) = g′′(xm) = 0. (2.16)

There is again a unique solution. To see this, we now treat all the slopes s1, s2, . . . , sm
as unknowns. The requirement of C2 continuity at the interior points x2, . . . , xm−1
gives us again the m − 2 equations (2.11). In addition, using equations (2.9) and
(2.10), the end conditions (2.16) expand to

2s1 + s2 = 3[x1, x2]f,

and
sm−1 + 2sm = 3[xm−1, xm]f.

We thus have m equations in the m unknowns s1, . . . , sm, and this is again a strictly
row diagonally dominant system of equations, and thus has a unique solution, which
we call the natural spline interpolant.
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The minimization property of Theorem 2.4 also holds for this natural spline.
To see this, we just need to make a small change to the proof of Theorem 2.4.
In that proof we have, as before, e(xi) = 0 for all i = 1, . . . ,m but now have
φ(x1) = φ(xm) = 0. Thus, the integral

∫
φe′′ in (2.15) is again zero.


