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Preface

This is a collection of lecture notes about spline theory which are designed to ac-
company the course ‘Spline methods’ at the University of Oslo. The notes have
developed over several years in conjuction with the two courses ‘Topics in Geometric
Modelling’ and ‘Spline Methods’, taught previously by the Informatics department
and more recently by the Maths department of the University of Oslo. We consider
here a spline to be a piecewise polynomial, and we discuss both spline functions and
spline curves and surfaces.

There are two common approaches to constructing a spline function or curve.
One is to construct it one polynomial piece at a time and to enforce conditions on
the pieces that guarantee that they fit together continuously or smoothly. In this
approach, it is convenient to represent each piece in Bernstein-Bézier form. The
other approach is to use the B-spline representation of the spline, in which the
smoothness between the polynomial pieces is ‘automatic’. The aim is to cover both
approaches in these notes.

Much of the material presented here can be found in the literature. In partic-
ular, books that cover the theory of Bernstein-Bézier polynomials and Bézier curves
are those of Farin [3], H. Prautzsch, W. Boehm and M. Paluszny [6], and Lai and
Schumaker [5]. The reader is encouraged to look at these sources for further as-
pects of the theory. For the theory of B-splines, we refer the reader to the book by
de Boor [2] and the lecture notes by Lyche and K. Mørken used in earlier versions
of the Spline Methods course.
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Chapter 1

Bernstein-Bézier polynomials

We start in this first chapter by studying Bernstein-Bézier polynomials and Bézier
curves.

1.1 Bernstein basis polynomials

Recall that a real polynomial of a real variable x ∈ R of degree k is a function of
the form

p(x) = a0 + a1x+ · · ·+ akx
k =

k∑
i=0

aix
i,

where ai ∈ R, i = 0, 1, . . . , k, and ak 6= 0. We will denote by πd the linear space of
polynomials of degree at most d,

πd =

{
d∑
i=0

aix
i : ai ∈ R, i = 0, 1, . . . , d

}
.

The functions 1, x, . . . , xd form a basis for πd, known as the monomial basis, and
the dimension of the space πd is therefore d + 1. The Bernstein basis polynomials
provide an alternative basis for πd and are defined as

Bd
i (x) =

(
d

i

)
xi(1− x)d−i, i = 0, 1, . . . , d, (1.1)

where (
d

i

)
=

d!

i!(d− i)!
.

3
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Figure 1.1: The cubic Bernstein basis polynomials

The first few examples are
B0

0(x) = 1,

B1
0(x) = 1− x, B1

1(x) = x,

B2
0(x) = (1− x)2, B2

1(x) = 2x(1− x), B2
2(x) = x2,

B3
0(x) = (1− x)3, B3

1(x) = 3x(1− x)2, B3
2(x) = 3x2(1− x), B3

3(x) = x3.

The cubic ones are shown in Figure 1.1.

Let us consider some of their basic properties. For any x ∈ R, they sum to 1
since, by the binomial theorem,

1 = 1d = (x+ (1− x))d =
d∑
i=0

(
d

i

)
xi(1− x)d−i =

d∑
i=0

Bd
i (x).

For x in the interval [0, 1] they are also non-negative. Thus, in the interval [0, 1],
they form a so-called partition of unity. In fact, they are positive in the open interval
(0, 1) and at the endpoints

Bd
i (0) =

{
1, i = 0;

0, i = 1, . . . , d,
and Bd

i (1) =

{
0, i = 0, . . . , d− 1;

1, i = d.
(1.2)

Let us now show that the Bernstein basis polynomials of degree d do indeed form a
basis for the space of polynomials of degree ≤ d.

Theorem 1.1 The set {Bd
i : i = 0, 1, . . . , d} is a basis for πd.
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Since the number of elements in the set is d+ 1, one way to prove the theorem is to
show that any monomial xj, 0 ≤ j ≤ d, is in the span of the Bd

i , i.e., that xj can be
expressed as a linear combination of the Bd

i . This is demonstrated by the following
lemma.

Lemma 1.2 For j = 0, 1, . . . , d,

xj =
(d− j)!
d!

d∑
i=j

i!

(i− j)!
Bd
i (x).

Proof. We use the binomial theorem again:

xj = xj(x+ (1− x))d−j = xj
d−j∑
i=0

(
d− j
i

)
xi(1− x)d−j−i

=
d∑
i=j

(
d− j
i− j

)
xi(1− x)d−i,

which, by the definition of Bd
i (x) gives the result. �

1.2 Recursion

The Bernstein basis polynomials satisfy a recursion formula which provides an ef-
ficient way to compute them. Here and elsewhere we will make the convenient
convention that Bd

−1(x) = 0 and Bd
d+1(x) = 0 for all x ∈ R.

Lemma 1.3 For i = 0, 1, . . . , d,

Bd
i (x) = xBd−1

i−1 (x) + (1− x)Bd−1
i (x). (1.3)

Proof. Suppose 1 ≤ i ≤ d − 1. We will make use of the recursion formula for
binomial coefficients, (

d

i

)
=

(
d− 1

i− 1

)
+

(
d− 1

i

)
.

Using this we can express Bd
i (x) as

Bd
i (x) =

((
d− 1

i− 1

)
+

(
d− 1

i

))
xi(1− x)d−i

= x

(
d− 1

i− 1

)
xi−1(1− x)d−i + (1− x)

(
d− 1

i

)
xi(1− x)d−i−1,
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which is the right hand side of (1.3). In the cases i = 0 and i = d we have

Bd
0(x) = (1− x)d = (1− x)Bd−1

0 (x),

Bd
d(x) = xd = xBd−1

d−1(x),

which agree with (1.3) due to the convention that Bd−1
−1 = Bd−1

d = 0. �

Thus the Bernstein basis polynomials can be evaluated at a given x ∈ [0, 1]
using a triangular scheme. For a fixed x we first set B0

0 = 1. Then, for each
r = 1, 2, . . . , d, we let

Br
i = xBr−1

i−1 + (1− x)Br−1
i , i = 0, 1, . . . , r. (1.4)

The scheme is illustrated below. In each column, each value is computed from two
values from the previous column (except the first and last elements of the column,
which are computed from just one value in the previous column).

1 = B0
0 B1

0 B2
0 · · · Bd

0

B1
1 B2

1 · · · Bd
1

B2
2 · · · Bd

2
. . .

...
Bd
d

1.3 Differentiation

We can also compute derivatives of Bernstein basis polynomials by a recursive for-
mula.

Lemma 1.4 For d ≥ 1 and for i = 0, 1, . . . , d,

(Bd
i )′(x) = d

(
Bd−1
i−1 (x)−Bd−1

i (x)
)
. (1.5)

Proof. Suppose 1 ≤ i ≤ d− 1. By the product rule for differentiation,

(Bd
i )′(x) =

(
d

i

)(
ixi−1(1− x)d−i − (d− i)xi(1− x)d−i−1

)
= d

((
d− 1

i− 1

)
xi−1(1− x)d−i −

(
d− 1

i

)
xi(1− x)d−i−1

)
,

which is the right hand side of (1.5). In the cases i = 0 and i = d,

(Bd
0)′(x) = −d(1− x)d−1 = −dBd−1

0 (x),

(Bd
d)′(x) = dxd−1 = dBd−1

d−1(x),

which agree with (1.5) by the convention that Bd−1
−1 = Bd−1

d = 0. �
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1.4 Integration

There is a simple formula for the integral of a Bernstein basis polynomial over [0, 1].

Theorem 1.5 For d ≥ 0 and for all i = 0, 1, . . . , d,∫ 1

0

Bd
i (x) dx =

1

d+ 1
.

Proof. By the derivative formula (1.5),

(Bd+1
i )′(x) = (d+ 1)

(
Bd
i−1(x)−Bd

i (x)
)

for i = 1, . . . , d. Integrating this equation with respect to x in [0, 1] gives

Bd+1
i (1)−Bd+1

i (0) = (d+ 1)

(∫ 1

0

Bd
i−1(x) dx−

∫ 1

0

Bd
i (x) dx

)
,

and since the left hand side is zero for i = 1, . . . , d, we deduce that∫ 1

0

Bd
i−1(x) dx =

∫ 1

0

Bd
i (x) dx.

Thus the integral over [0, 1] of every Bernstein basis polynomial Bd
i , i = 0, 1, . . . , d,

is the same. Since the Bd
i sum to one, we also deduce that the sum of these integrals

is 1:
d∑
i=0

∫ 1

0

Bd
i (x) dx =

∫ 1

0

d∑
i=0

Bd
i (x) dx =

∫ 1

0

1 dx = 1.

Hence, since there are d + 1 of these integrals, each integral must have the value
1/(d+ 1). �

1.5 Bernstein-Bézier polynomials

We call a polynomial p ∈ πd written in the form

p(x) =
d∑
i=0

ciB
d
i (x), (1.6)

a Bernstein-Bézier polynomial or BB polynomial. The coefficients ci ∈ R are the
BB coefficients of p. Although we are mainly interested in values of p for x ∈ [0, 1],
we note that p(x) is well defined for all x ∈ R.
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Figure 1.2: Quadratic and cubic BB polynomials.

From the BB coefficients we define the control polygon of p as the polygon
passing through the points (ξi, ci), i = 0, 1, . . . , d, where the d + 1 points ξi are the
domain points of p with respect to [a, b], defined as ξi = i/d. The shape of p relects,
to a large extent, the shape of its control polygon. Figure 1.2 shows quadratic and
cubic BB polynomials with their control polygons.

Various properties of BB polynomials follow from properties of the Bernstein
basis polynomials. For example, from (1.2), we obtain the endpoint property,

p(0) = c0, p(1) = cd. (1.7)

Since the values Bd
i (x) sum to one for any x ∈ R, any affine function Φ of p is

the BB polynomial whose coefficients are Φ(ci). This is because, if Φ(x) = αx + β,
then

Φ(p(x)) = α
d∑
i=0

ciB
d
i (x) + β =

d∑
i=0

(αci + β)Bd
i (x) =

d∑
i=0

Φ(ci)B
d
i (x).

Since the Bd
i are, moreover, non-negative in [0, 1], the value p(x), x ∈ [0, 1], is a

convex combination of the coefficients c0, . . . , cd and so

min
0≤i≤d

ci ≤ p(x) ≤ max
0≤i≤d

ci, 0 ≤ x ≤ 1. (1.8)

1.6 Bézier curves

By letting the coefficients of a BB polynomial be vector-valued, the polynomial
becomes a parametric curve, which is commonly known as a Bézier curve. Thus,
if we let c0, c1, . . . , cd ∈ Rk for some Euclidean space Rk, k ≥ 2, then we obtain a
Bézier curve,

p(x) =
d∑
i=0

ciB
d
i (x). (1.9)
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Figure 1.3: Cubic Bézier curves

This is a parametric polynomial curve, and if we restrict x to the interval [0, 1], then
[0, 1] becomes the parameter domain of p and the curve is a mapping, p : [0, 1]→ Rk.
We call c0, c1, . . . , cd the control points of p, and we define the control polygon of p
simply to be the polygon passing through the control points. Figure 1.3 shows
two cubic Bézier curves in the plane with their control polygons. Similar to BB
polynomials, a Bézier curve tends to mimic the shape of its control polygon, which
is why it is a popular choice for designing geometry in an interactive graphical
environment. As the user moves the control points interactively, the shape of the
Bézier curve tends to change in an intuitive and predictable way.

Bézier curves have properties similar to BB polynomials. For example, from (1.2),
we obtain the endpoint property of Bézier curves,

p(0) = c0, p(1) = cd.

Since the Bernstein basis polynomials sum to one for x ∈ [0, 1], every point
p(x) is an affine combination of the control points c0, . . . , cn. From this it follows
that if Φ is an affine map Rk → Rk, then the mapped curve Φ(p) has control points
Φ(ci). So see this, recall that an affine map has the form

Φ(x) = Ax + b, x ∈ Rk,

for some matrix A of dimension k × k and a vector b of length k. Then,

Φ(p(x)) = A
d∑
i=0

ciB
d
i (x) + b =

d∑
i=0

(Aci + b)Bd
i (x) =

d∑
i=0

Φ(ci)B
d
i (x).

Since the Bernstein basis polynomials are non-negative in [0, 1], any point p(x),
with x ∈ [0, 1], is a convex combination of the control points c0, . . . , cd, and so p,
restricted to [0, 1], lies in the convex hull of its control points:

conv{c0, . . . , cd} =

{
d∑
i=0

µici : µ1, . . . , µd ≥ 0,
d∑
i=0

µi = 1

}
.
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This same property also applies to each of the k coordinates of p separately, and so
p restricted to [0, 1] also lies in the bounding box

[α1, β1]× [α2, β2]× · · · × [αk, βk],

where, if the point ci has coordinates ci1, . . . , cik,

αj = min
0≤i≤d

cij and βj = max
0≤i≤d

cij, j = 1, . . . , k.

Bounding boxes are used in various algorithms, and are easier to compute than
convex hulls.

1.7 The de Casteljau algorithm

Consider now how we evaluate a BB polynomial or Bézier curve, by which we mean
how we compute the value of the polynomial or the point on the curve corresponding
to a given input parameter x. The evaluation of a Bézier curve is similar to that of
a BB polynomial, so it is sufficient to focus on the latter case.

Consider the computation of p(x) in (1.6). One way to proceed is to evaluate
the Bernstein basis polynomials Bd

i at x, by the recursion (1.4), and then apply the
formula in (1.6). A more direct method is to use recursion on the coefficients, which
is known as de Casteljau’s algorithm. We initialize the algorithm by setting c0i = ci,
i = 0, 1, . . . , d. Then, for each r = 1, . . . , d, let

cri = (1− x)cr−1i + xcr−1i+1 , i = 0, 1, . . . , d− r. (1.10)

Theorem 1.6 The last value computed, cd0, is the value of p(x) in (1.6).

Proof. Consider the first step of the algorithm. By the recurrence (1.4),

p(x) =
d∑
i=0

c0i (xB
d−1
i−1 (x) + (1− x)Bd−1

i (x))

=
d∑
i=0

c0ixB
d−1
i−1 (x) +

d∑
i=0

c0i (1− x)Bd−1
i (x)

=
d−1∑
i=0

c0i+1xB
d−1
i (x) +

d−1∑
i=0

c0i (1− x)Bd−1
i (x),
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where we used the convention that Bd−1
−1 = Bd−1

d = 0, and hence, by (1.10),

p(x) =
d−1∑
i=0

c1iB
d−1
i (x).

Continuing in this way we find that for any r = 1, . . . , d,

p(x) =
d−r∑
i=0

criB
d−r
i (x). (1.11)

The particular case r = d gives us p(x) = cd0. �

This algorithm can be arranged in a triangular scheme as follows. In each
column, each value is computed from two values from the previous column.

c00 c10 · · · cd−10 cd0
c01 c11 · · · cd−11
... . . .

c0d−1 c1d−1
c0d

Figure 1.4 illustrates the algorithm applied to the cubic BB polynomial of Figure 1.2

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1.4: de Casteljau algorithm, x = 0.6

where x = 0.6.

It it sometimes useful to know that the points in the de Casteljau algorithm
are themselves BB polynomials whose coefficients are subsets of c0, c1, . . . , cd.

Theorem 1.7 The value cri in the de Casteljau algorithm (1.10), viewed as a func-
tion of x, is the BB polynomial

cri =
r∑
j=0

ci+jB
r
j (x). (1.12)
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Proof. We proceed by induction on r ≥ 0. The statement clearly holds when r = 0.
For r ≥ 1, we may suppose that (1.12) holds when r is replaced by r − 1. Thus,
from (1.10), we find

cri = (1− x)cr−1i + xcr−1i+1 = (1− x)
r−1∑
j=0

ci+jB
r−1
j (x) + x

r−1∑
j=0

ci+1+jB
r−1
j (x)

=
r∑
j=0

ci+j((1− x)Br−1
j (x) + xBr−1

j−1(x))

=
r∑
j=0

ci+jB
r
j (x),

using again the convention that Br−1
−1 = Br−1

r = 0.

�

1.8 Derivatives

We may also want to evaluate the derivatives of a BB polynomial or Bézier curve.
Consider the computation of the first derivative of the BB polynomial p in (1.6) at
a point x.

Theorem 1.8 The first derivative of the BB polynomial p in (1.6) is

p′(x) = d
d−1∑
i=0

∆ciB
d−1
i (x),

where ∆ci denotes the forward difference, ∆ci = ci+1 − ci.

Proof. Using Lemma 1.4,

p′(x) =
d∑
i=0

ci(B
d
i )′(x) = d

d∑
i=0

ci(B
d−1
i−1 (x)−Bd−1

i (x))

= d

(
d∑
i=1

ciB
d−1
i−1 (x)−

d−1∑
i=0

ciB
d−1
i (x)

)

= d

(
d−1∑
i=0

ci+1B
d−1
i (x)−

d−1∑
i=0

ciB
d−1
i (x)

)
,

where we used our convention that Bd−1
−1 = Bd−1

d = 0. Putting the two summations
together and using the notation that ∆ci = ci+1 − ci completes the proof. �
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This theorem implies that the derivative, p′(x), is the BB polynomial in πd−1
whose coefficients are d∆ci, i = 0, 1, . . . , d−1. Thus by the endpoint property (1.7),
it follows that

p′(0) = d∆c0, p′(1) = d∆cd−1, (1.13)

from which we conclude that the gradient of p at x = 0 equals the gradient there of
its control polygon, and likewise at x = 1. By (1.8), we also have

d min
0≤i≤d−1

∆ci ≤ p′(x) ≤ d max
0≤i≤d−1

∆ci, 0 ≤ x ≤ 1. (1.14)

1.9 Higher order derivatives

We obtain higher order derivatives of p by applying Theorem 1.8 repeatedly, and by
defining the r-th order forward difference of the coefficients by the recursion

∆rci = ∆r−1ci+1 −∆r−1ci, r ≥ 1,

where ∆0ci = ci. One can show by induction that

∆rc0 =
r∑
i=0

(
r

i

)
(−1)r−ici, (1.15)

so, for example,

∆2ci = ci − 2ci+1 + ci+2,

∆3ci = −ci + 3ci+1 − 3ci+2 + ci+3,

and so on. Thus, one obtains

Theorem 1.9 For r = 0, 1, . . . , d, the r-th derivative of the BB polynomial p in
(1.6) is

p(r)(x) =
dr

dxr
p(x) =

d!

(d− r)!

d−r∑
i=0

∆rciB
d−r
i (x).

The derivatives of p at the points x = 0 and x = 1 have simpler expressions:

Corollary 1.10 For r = 0, 1, . . . , d, the r-th order endpoint derivatives of the BB
polynomial p in (1.6) are

p(r)(0) =
d!

(d− r)!
∆rc0, p(r)(1) =

d!

(d− r)!
∆rcd−r.
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1.10 Integration

There is a simple formula for the integral of a BB polynomial over [0, 1].

Theorem 1.11 The integral of p in (1.6) is the average of its coefficients,∫ 1

0

p(x) dx =
c0 + c1 + · · ·+ cd

d+ 1
.

Proof. Integrating p in (1.6) gives∫ 1

0

p(x) dx =
d∑
i=0

ci

∫ 1

0

Bd
i (x) dx. (1.16)

By Theorem 1.5, ∫ 1

0

Bd
i (x) dx =

h

d+ 1
,

and substituting this into (1.16) gives the result. �

1.11 Exercises

1.1 It is sometimes necessary to convert a polynomial in BB form to monomial
form. Consider a quadratic BB polynomial,

p(x) = c0(1− x)2 + 2c1x(1− x) + c2x
2.

Express p in the monomial form

p(x) = a0 + a1x+ a2x
2.

1.2 Consider a polynomial p(x) of degree ≤ d, for arbitrary d. Show that if

p(x) =
d∑
j=0

ajx
j =

d∑
i=0

ciB
d
i (x),

then

aj =

(
d

j

)
∆jc0.

Hint: use a Taylor approximation to p to show that aj = p(j)(0)/j!.
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1.3 We might also want to convert a polynomial from monomial form to BB form.
Using Lemma 1.2, show that in the notation of the previous question,

ci =
i!

d!

i∑
j=0

(d− j)!
(i− j)!

aj.

1.4 Implement the de Casteljau algorithm for cubic Bézier curves in Matlab or
Python (or some other programming language), taking repeated convex com-
binations. Choose a sequence of four control points and plot both the control
polygon and the Bezier curve, like those in Figure 1.3.

1.5 Show that the graph, g(x) = (x, p(x)) of the BB polynomial p in (1.6) is a
Bézier curve in R2, with control points (ξi, ci), i = 0, 1, . . . , d, where ξi = i/d.
Hint: express x as a linear combination of Bd

0(x), . . . , Bd
d(x).

1.6 Show that the tangent vector p′(x) of the Bézier curve in (1.6) lies in the
convex cone of the vectors ∆ci, i.e., in

cone(∆c0, . . . ,∆cd−1) =

{
d−1∑
i=0

µi∆ci : µ1, . . . , µd−1 ≥ 0

}
.

1.7 Show that the first derivative of p in (1.6) can be expressed (and computed)
as

p′(x) = d(cd−11 − cd−10 ),

where cd−10 , cd−11 are the points of order d−1 in de Casteljau’s algorithm (1.10).

1.8 Show that the Bernstein basis polynomial Bd
i (x) has only one maximum in

[0, 1], namely at x = i/d.

1.9 Give a proof of the forward difference formula, (1.15).

1.10 The Bernstein approximation to a function f : [0, 1] → R of order d is the
polynomial g : [0, 1]→ R defined by

g(x) =
d∑
i=0

f

(
i

d

)
Bd
i (x).

Show that if f is a polynomial of degree m ≤ d then g has degree m.

1.11 Show that the length of the Bézier curve p in (1.9) is bounded by the length
of its control polygon,

length(p) ≤
d−1∑
i=0

‖∆ci‖.
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Chapter 2

Splines in Bernstein-Bézier form

If we tried to model a complex function with a single polynomial, we would need
a polynomial of very high degree. It is usually easier in practice to create a com-
plex function by joining together several polynomials of low degree. The resulting
function is a piecewise polynomial, or spline. To do this it helps to represent the
polynomial pieces in BB form because the conditions for joining BB polynomials
together with a certain order of smoothness are relatively simple.

2.1 BB polynomials on an arbitrary interval

In order to construct a spline whose polynomial pieces are defined on intervals of
arbitrary lengths, we will represent each piece as a BB polynomial, and this requires
defining a BB polynomial over an arbitrary interval [a, b], rather than just over
the ‘canonical’ interval [0, 1]. Any point x ∈ [a, b] can be expressed as a convex
combination of the endpoints a and b,

x = (1− λ)a+ λb, (2.1)

where

λ =
x− a
b− a

.

This is sometimes called the barycentric form of x with respect to [a, b]. The weights

1− λ =
b− x
b− a

and λ =
x− a
b− a

are the barycentric coordinates of x with respect to [a, b].

17
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We call a polynomial p ∈ πd written in the form

p(x) =
d∑
i=0

ciB
d
i (λ), (2.2)

a BB polynomial with respect to the interval [a, b]. The control polygon of p is now
the polygon passing through the points (ξi, ci), i = 0, 1, . . . , d, where the domain
point ξi is

ξi =
d− i
d

a+
i

d
b.

The endpoint property is now

p(a) = c0, p(b) = cd. (2.3)

2.1.1 The de Casteljau algorithm

The de Castelaju algorithm of Chapter 1 generalizes in a simple way. We initialize
the algorithm by setting c0i = ci, i = 0, 1, . . . , d. Then, for each r = 1, . . . , d, let

cri = (1− λ)cr−1i + λcr−1i+1 , i = 0, 1, . . . , d− r. (2.4)

The last value computed, cd0, is the value of p(x) in (2.2).

Analogous to Theorem 1.7, we can express the points in (2.4) as

cri =
r∑
j=0

ci+jB
r
j (λ). (2.5)

2.1.2 Derivatives

The derivative formulas are similar to the [0, 1] case, the only difference being that
we must divide by the factor b− a each time we differentiate, due to the fact that

d

dx
λ =

1

b− a
.

Thus, defining h = b− a, we find by the chain rule that

p′(x) =
1

h

d

dλ
p(x),

and more generally,

p(r)(x) =
1

hr
dr

dλr
p(x),

for r = 0, 1, . . . , d. Therefore, applying the derivative formulas from the previous
chapter we deduce
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Theorem 2.1 Let h = b − a. For r = 0, 1, . . . , d, the r-th derivative of the BB
polynomial p in (2.2) is

p(r)(x) =
d!

(d− r)!
1

hr

d−r∑
i=0

∆rciB
d−r
i (λ).

In particular, the endpoint derivatives are as follows.

Corollary 2.2 The r-th endpoint derivatives of the BB polynomial p in (2.2) are

p(r)(a) =
d!

(d− r)!
1

hr
∆rc0, p(r)(b) =

d!

(d− r)!
1

hr
∆rcd−r.

We can use these formulas to join BB polynomials together smoothly.

2.2 Joining polynomial pieces together

Suppose that we want to construct a spline s consisting of two polynomials pieces p
and q of degree at most d, over two consecutive intervals [a, b] and [b, c], respectively.
Thus we want to define

s(x) =

{
p(x), a ≤ x < b;

q(x), b ≤ x < c;

Then s is continuous at the breakpoint x = b if p(b) = q(b). We can represent both
p and q as BB polynomials,

p(x) =
d∑
i=0

ciB
d
i (λ), q(x) =

d∑
i=0

eiB
d
i (µ),

for coefficients ci, ei ∈ R, and where λ = (x − a)/(b − a) and µ = (x − b)/(c − b).
Then, by the endpoint property of BB polynomials, the condition for the continuity
of s is that the last coefficient of p equals the first coefficient of q, i.e.,

cd = e0. (2.6)

More generally, if we want to ensure that s has Cr continuity, we require that the
endpoint derivatives of p and q at x = b of all orders up to r are equal, i.e, that

p(k)(b) = q(k)(b), k = 0, 1, . . . , r.

We have already derived formulas for these quantities in Corollary 2.2 and so, if we
agree beforehand that s will have certain derivatives up to some order r at x = b it is



20 CHAPTER 2. SPLINES IN BERNSTEIN-BÉZIER FORM

easy to find the coefficients of p and q needed to match these derivatives. This is the
approach we will use for example to ensure C1 continuity between cubic polynomial
pieces in Section 2.4. However, there is an another approach to ensuring continuity
between BB polynomials. To obtain Cr continuity between p and q above, it is
sufficient to express the first r+ 1 coefficients of q directly in terms of the last r+ 1
coefficients of p. The starting point for this comes from Corollary 2.2:

Theorem 2.3 The spline s has Cr continuity, r = 0, 1, . . . , d, if and only if

1

(b− a)k
∆kcd−k =

1

(c− b)k
∆ke0, k = 0, 1, . . . r.

Now it remains to express e0, e1, . . . , er as functions of cd−r, cd−r+1, . . . , cd. For
example, the condition for C1 continuity is (2.6) combined with the condition

cd − cd−1
b− a

=
e1 − e0
c− b

.

This equation and (2.6) uniquely determine the two coefficients e0 and e1 from the
coefficients cd and cd−1,

e0 = cd, e1 = (1− α)cd−1 + αcd, (2.7)

where

α =
c− a
b− a

.

The coefficient α is easy to remember because it is the local coordinate of the point
c with respect to the interval [a, b], analogous to λ being the local coordinate of x.
Notice, however, that while both λ and 1 − λ are non-negative for x ∈ [a, b], the
coefficient (1− α) is negative because c > b.

Setting r = 2 in Theorem 2.3, a lengthier calculation shows that the condition
for C2 continuity of s can be expressed as the two equations in (2.7) plus the equation

e2 = (1− α)2cd−2 + 2(1− α)αcd−1 + α2cd. (2.8)

These conditions generalize as follows:

Theorem 2.4 The spline s has Cr continuity, r = 0, 1, . . . , d, if and only if

ei =
i∑

j=0

cd−i+jB
i
j(α), i = 0, 1, . . . , r.

We will postpone the proof of this till later (using blossoming).



2.3. LINEAR SPLINE INTERPOLATION 21

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 2.1: Piecewise linear interpolant.

2.3 Linear spline interpolation

As a first example of contructing a spline to match given data, let us consider
piecewise linear interpolation. Suppose that x1, x2, . . . , xm ∈ R is an increasing
sequence of points and that y1, y2, . . . , ym ∈ R are associated values. We let a = x1
and b = xm and we would like to find a spline g : [a, b] → R such that in each
interval [xi, xi+1], i = 1, 2, . . . ,m− 1, g is a linear polynomial, and such that

g(xi) = yi, i = 1, 2, . . . ,m. (2.9)

The solution to this is simple. For each i = 1, 2, . . . ,m − 1, we let gi be the linear
polynomial

gi(x) =
xi+1 − x
xi+1 − xi

yi +
x− xi
xi+1 − xi

yi+1. (2.10)

We then define g by g(x) = gi(x) for xi ≤ x ≤ xi+1. So gi is the i-th polynomial
piece of g. Since gi−1 and gi have the common value yi at xi for all i = 2, . . . ,m− 1,
it follows that g is continuous, and we write g ∈ C[a, b].

We can alternatively express gi using linear BB polynomials:

gi(x) = yiB
1
0(λi) + yi+1B

1
1(λi),

where λi = (x− xi)/(xi+1 − xi).
Figure 2.1 shows an example of piecewise linear interpolation, with three linear

pieces. The data is

(x1, x2, x3, x4) = (0, 2, 4, 5),

(y1, y2, y3, y4) = (0, 0.8, 0.3, 0.6). (2.11)
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In some applications the values yi will be function values yi = f(xi), i =
1, . . . ,m, for some function f : [a, b] → R. In this case, we can ask “what is the
difference between f and g?” Equivalently, if we let e = f − g be the error function
on [a, b], we can ask “what is the size of e in some sense?” Of course e is zero at the
interpolation points xi, but not in general in between. One way to measure the size
of e is to use the max norm or infinity norm of e, defined as

‖e‖ = max
a≤x≤b

|e(x)|.

Under the assumption that f is smooth enough, the max norm of the error is pro-
portional to h2 where h is the mesh size

h = max
i=1,...,m−1

hi,

and hi = xi+1 − xi.

Theorem 2.5 If f ∈ C2[a, b] then

‖f − g‖ ≤ 1

8
h2‖f ′′‖.

Proof. Let x ∈ [xi, xi+1]. Since gi(xi) = f(xi) and gi(xi+1) = f(xi+1), the Newton
error formula for linear polynomial interpolation tells us that

f(x)− gi(x) = (x− xi)(x− xi+1)
f ′′(ξi)

2!
,

for some point ξi ∈ (xi, xi+1). The maximum of the function (x − xi)(xi+1 − x)
over x ∈ [xi, xi+1] is attained at x = (xi + xi+1)/2, and has the value h2i /4 there.
Therefore,

|f(x)− g(x)| = (x− xi)(xi+1 − x)
|f ′′(ξi)|

2!
≤ h2i

8
‖f ′′‖ ≤ h2

8
‖f ′′‖.

Taking the maximum of |f(x)− g(x)| over x in all of [a, b] gives the result. �

This theorem shows that if a and b and f are fixed, and if we increase the
number of points xi sampled from [a, b] in such a way that h→ 0, then the associated
splines g will converge to f , and at the rate of O(h2). For example, if we double the
number of existing intervals [xi, xi+1] by adding a new interpolation point at each
midpoint (xi + xi+1)/2 then the error will approximately go down by a factor of 4.
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2.4 Cubic Hermite spline interpolation

We obtain a smoother spline by using polynomial pieces of higher degree. A popular
choice of degree is three. We can build a cubic spline g : [a, b] → R which is
continuously differentiable by letting its pieces gi be cubic polynomials and such
that g matches both the values yi in (2.9), and slopes, i.e., first derivatives,

g′(xi) = si, i = 1, 2, . . . ,m. (2.12)

Theorem 2.6 There is a unique C1 cubic spline g satisfying the interpolation con-
ditions (2.9) and (2.12). We can express the i-th piece of g as

gi(x) =
3∑
j=0

cjB
3
j (λi), (2.13)

where

c0 = yi, c1 = yi +
hi
3
si, c2 = yi+1 −

hi
3
si+1, c3 = yi+1, (2.14)

and λi = (x− xi)/hi and hi = xi+1 − xi.

Proof. Let gi be a BB polynomial of the form (2.13). By Corollary 2.2,

gi(xi) = c0, g′i(xi) =
3

hi
(c1 − c0), gi(xi+1) = c3, g′i(xi+1) =

3

hi
(c3 − c2).

Using the interpolation conditions (2.9) and (2.12), and solving for the coefficients
c0, c1, c2, c3 gives (2.14).

To show the uniqueness of the solution, suppose g̃i ∈ π3 also matches the four
interpolation conditions at xi and xi+1. Then the difference p = g̃i − gi is also in π3
and

p(xj) = p′(xj) = 0, j = i, i+ 1.

So p is a cubic with at least four roots counting multiplicities and the Fundamental
Theorem of Algebra implies that p = 0. �

Figure 2.2 shows an example of cubic Hermite interpolation, with three cubic
pieces. The data is as in (2.11) together with the derivative data

(s1, s2, s3, s4) = (0, 0.1,−0.1, 0.1). (2.15)

As in the previous section, in some applications the values yi will be function
values yi = f(xi), and the values si could be slopes, si = f ′(xi). If f is smooth
enough, the error is now proportional to h4, which means that the convergence of
these cubic splines to f will be faster than linear splines.
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Figure 2.2: Cubic Hermite interpolant (left), BB control polygons (right).

Theorem 2.7 If f ∈ C4[a, b] then

‖f − g‖ ≤ 1

384
h4‖f (4)‖.

Proof. Let x ∈ [xi, xi+1]. Since gi(xj) = f(xj) and g′i(xj) = f ′(xj) for j = i, i + 1,
the Newton error formula for cubic Hermite polynomial interpolation implies that

f(x)− gi(x) = (x− xi)2(x− xi+1)
2f

(4)(ξi)

4!
,

for some point ξi ∈ (xi, xi+1). Therefore,

|f(x)− g(x)| = ((x− xi)(xi+1 − x))2
|f (4)(ξi)|

4!
≤
(
h2i
4

)2 ‖f (4)‖
24

≤ h4

384
‖f (4)‖.

�

2.5 C2 cubic spline interpolation

Another approach to constructing a cubic spline g to fit data values y1, . . . , ym is to
force g to have C2 continuity at the interior points x2, . . . , xm−1. If we then count
degrees of freedom we find that we need to place two extra conditions on g to ensure
the uniqueness of g. One way to do this is to fix the first derivative of g at the two
endpoints x1 and xm. Thus we will construct a spline g ∈ C2[a, b] which, as before,
has cubic pieces and interpolates the values yi, but in addition satisfies the Hermite
end conditions

g′(x1) = s1 and g′(xm) = sm. (2.16)
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Theorem 2.8 There is a unique C2 cubic spline g satisfying the interpolation con-
ditions (2.9) and (2.16).

Proof. One approach to solving this problem is to let g be the cubic Hermite spline
of the previous section, and to compute the interior slopes s2, . . . , sm−1 so as to
ensure that g has C2 continuity at the points x2, . . . , xm−1. In this approach we
have m − 2 variables and m − 2 conditions. To ensure the C2 continuity of g, we
require

g′′i−1(xi) = g′′i (xi), i = 2, . . . ,m− 1.

From Corollary 2.2, in the notation of (2.13),

g′′i (xi) =
6

h2i
(c0 − 2c1 + c2) =

6

hi

(
yi+1 − yi

hi
− 2si + si+1

3

)
. (2.17)

Similarly, writing gi−1 as

gi−1(x) =
3∑
j=0

c̃jB
3
j (λi−1),

we find

g′′i−1(xi) =
6

h2i−1
(c̃1 − 2c̃2 + c̃3) =

6

hi−1

(
−yi − yi−1

hi−1
+
si−1 + 2si

3

)
. (2.18)

Equating (2.17) and (2.18) and rearranging gives

αisi−1 + 2si + βisi+1 = bi, (2.19)

where

αi =
hi

hi−1 + hi
, βi =

hi−1
hi−1 + hi

,

and

bi =
3

hi−1 + hi

(
hi
yi − yi−1
hi−1

+ hi−1
yi+1 − yi

hi

)
.

This gives us the linear system of equations
2 β2
α3 2 β3

. . . . . . . . .

αm−2 2 βm−2
αm−1 2




s2
s3
...

sm−2
sm−1

 =


b2 − α2s1

b3
...

bm−2
bm−1 − βm−1sm

 ,
The matrix is tridiagonal and strictly diagonally dominant (in its rows) and therefore
has a unique solution. �
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Figure 2.3: C2 cubic spline interpolant.

Figure 2.3 shows an example of C2 cubic interpolation, with three cubic pieces.
The data is as in (2.11) together with the same end derivatives, s1 = 0, s4 = 0.1, as
we used in the C1 Hermite case (2.15).

2.6 Minimization of second derivatives

The C2 cubic spline interpolant g has a remarkable property, that it has the least
second derivative of all C2 interpolants in the L2 sense.

Theorem 2.9 Let g be the C2 cubic spline interpolant solving (2.9) and (2.16), and
let h be any C2 function satisfying the same interpolation conditions. Then∫ b

a

(g′′(x))2 dx ≤
∫ b

a

(h′′(x))2 dx, (2.20)

with equality if and only if h = g.

Proof. Let e = h− g. Then e ∈ C2[a, b] and

e(xi) = 0, i = 1, . . . ,m, and e′(x1) = e′(xm) = 0. (2.21)

Then h = g + e and so∫
(h′′)2 =

∫
(g′′)2 + 2

∫
g′′e′′ +

∫
(e′′)2, (2.22)

and therefore ∫
(h′′)2 −

∫
(g′′)2 ≥ 2

∫
φe′′,
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where φ = g′′, which is piecewise linear. We now compute the integral on the right:∫ b

a

φe′′ =
m−1∑
i=1

∫ xi+1

xi

φe′′

=
m−1∑
i=1

{[
φe′
]xi+1

xi
−
∫ xi+1

xi

φ′e′
}

=
m−1∑
i=1

{
φ(xi+1)e

′(xi+1)− φ(xi)e
′(xi)− φ′|[xi,xi+1]

∫ xi+1

xi

e′
}

= φ(xm)e′(xm)− φ(x1)e
′(x1)−

m−1∑
i=1

{
φ′|[xi,xi+1](e(xi+1)− e(xi))

}
. (2.23)

So, by (2.21), this integral is zero and this proves the inequality (2.20). To complete
the proof, suppose that the integrals in (2.20) are equal. Then by (2.22),

∫
(e′′)2 = 0.

This implies that e is a linear function, e(x) = a0 + a1x. Since e(x1) = e(xm) = 0,
this means that e = 0, and we conclude that h = g. �

2.7 Natural end conditions

An alternative to imposing the Hermite end conditions (2.16) is to impose the so-
called natural end conditions, which demand that the second derivative og g is zero
at the endpoints, i.e.,

g′′(x1) = g′′(xm) = 0. (2.24)

There is again a unique solution. To see this, we now treat all the slopes s1, s2, . . . , sm
as unknowns. The requirement of C2 continuity at the interior points x2, . . . , xm−1
gives us again the m − 2 equations (2.19). In addition, using equations (2.17) and
(2.18), the end conditions (2.24) expand to

2s1 + s2 = b1, sm−1 + 2sm = bm,

where

b1 = 3

(
y2 − y1
h1

)
, bm = 3

(
ym − ym−1
hm−1

)
.

We thus have m equations in the m unknowns s1, . . . , sm,
2 1
α2 2 β2

. . . . . . . . .

αm−1 2 βm−1
1 2




s1
s2
...

sm−1
sm

 =


b1
b2
...

bm−1
bm

 .
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Figure 2.4: Cubic spline interpolant with natural end conditions.

This is again a strictly row diagonally dominant system of equations, and thus has
a unique solution.

Figure 2.4 shows an example, with the data again as in (2.11).

The minimization property of Theorem 2.9 also holds for this natural spline:
see Exercise 2.5.

2.8 Exercises

2.1 Prove equation (2.8).

2.2 Implement the de Casteljau algorithm for a planar Bézier curve of arbitrary
degree d over a general interval [a, b]. Use the routine to make a program to
plot the quadratic spline curve s : [0, 2]→ R2, with pieces

p(t) =
2∑
i=0

ciB
2
i (t), 0 ≤ t ≤ 1,

q(t) =
2∑
i=0

diB
2
i (t− 1), 1 < t ≤ 2,

where c0 = (−1, 1), c1 = (−1, 0), c2 = (0, 0), and d0 = (0, 0), d1 = (1, 0),
d2 = (2, 1).

2.3 What is the order of continuity of s in Exercise 2.2 at the breakpoint t = 1?

2.4 The curvature of a parametric curve r(t) in R2 can be expressed as

κ(t) =
r′(t)× r′′(t)

‖r′(t)‖3
,
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where (a1, a2)× (b1, b2) := a1b2− a2b1. What are the curvatures of p and q in
Exercise 2.2 at the breakpoint t = 1? What can you say about the smoothness
of s?

2.5 Show that the minimization property of Theorem 2.9 also holds for the natural
spline of Section 2.7.
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Chapter 3

B-splines

In the previous chapter we saw several examples of spline functions and curves,
where we represented each local polynomial piece as a BB polynomial. It turns out
that there is an alternative way of representing a spline, as a linear combination
of so-called B-splines. An advantage of this representation is that the smoothness
of the spline is ‘automatic’ in the sense that it simply inherits the smoothness of
the B-splines. B-splines have several properties in common with Bernstein basis
polynomials, including non-negativity and the partition of unity property, and, like
BB polynomials and Bézier curves, splines tend to mimic the shape of their B-spline
control polygon, thus providing a convenient way to contruct and modify a spline.

3.1 Divided differences

We will define B-splines using divided differences, so we start by recalling some of
their basic properties. More divided difference theory can be found in [4] and [1].

The divided difference of a function f at the points x0, x1, . . . , xk is the coeffi-
cient of xk of the unique polynomial p(x) of degree at most k that interpolates f at
these points. In other words, it is the coefficient ck, the ‘leading coefficient’, in the
representation

p(x) =
k∑
i=0

cix
i (3.1)

of this interpolating polynomial. We denote it by [x0, x1, . . . , xk]f and it is said to
have k-th order.

We note that in the special case that f is itself a polynomial of degree less
than k, then p = f and ck = 0 and so [x0, . . . , xk]f = 0.

31
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3.1.1 Distinct points

If the xi are distinct, p is the Lagrange polynomial interpolant to f . We find
[x0]f = f(x0). For k ≥ 1, we can express p in terms of two polynomials, p0 and p1,
of degree at most k−1, as follows: we let p0 be the interpolant to f at x0, x1, . . . , xk−1
and we let p1 be the interpolant to f at x1, x2, . . . , xk. One can then easily check
that

p(x) =
xk − x
xk − x0

p0(x) +
x− x0
xk − x0

p1(x), (3.2)

and then, by considering the coefficient of xk of the right hand side we deduce the
recursion

[x0, x1, . . . , xk]f =
[x1, . . . , xk]f − [x0, . . . , xk−1]f

xk − x0
.

The first examples are therefore

[x0]f = f(x0), [x0, x1]f =
f(x1)− f(x0)

x1 − x0
,

[x0, x1, x2]f =
[x1, x2]f − [x0, x1]f

x2 − x0
=

f(x2)−f(x1)
x2−x1 − f(x1)−f(x0)

x1−x0
x2 − x0

.

We can also derive an explicit formula for the divided difference from the Lagrange
form of p,

p(x) =
k∑
i=0

Li(x)f(xi), Li(x) =
k∏
j=0
j 6=i

x− xj
xi − xj

. (3.3)

By considering the coefficient of xk of p, we deduce the formula

[x0, x1, . . . , xk]f =
k∑
i=0

f(xi)∏k
j=0
j 6=i

(xi − xj)
. (3.4)

So, for example, we can write a second order divided difference as

[x0, x1, x2]f =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.

3.1.2 Arbitrary points

If any of the points x0, x1, . . . , xk are equal we understand the interpolant p to be
the Hermite interpolant to f . By this we mean that if xi has multiplicity m, i.e.,
xi appears m times in the sequence x0, x1, . . . , xk, then p and all its derivatives up
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to order m − 1 agree with f at this point xi. We will always assume that f has
sufficiently many derivatives at the points xi for this to make sense. In the special
case that all the points are equal, x0 = x1 = · · · = xk, the Hermite interpolant p is
the Taylor approximation to f at x0,

p(x) =
k∑
i=0

f (i)(x0)

i!
xi,

and so

[x0, . . . , xk]f = [x0, . . . , x0︸ ︷︷ ︸
k+1

]f =
f (k)(x0)

k!
. (3.5)

If only some of the points are equal, then in analogy to the case of distinct
points, the divided difference can be expressed recursively. One can show that as
along as x0 and xk are distinct then equation (3.2) holds regardless of whether the
remaining points are distinct or not. More generally, suppose that xi and xj are
distinct and let p0 be the interpolant of degree ≤ k− 1 to f at all points except xj,
and let p1 be the interpolant of degree ≤ k − 1 to f at all points except xi. Then
one can show that

p(x) =
xj − x
xj − xi

p0(x) +
x− xi
xj − xi

p1(x). (3.6)

Then, by taking the coefficient of xk on both sides, we have

[x0, . . . , xk]f =
[x0, . . . , x̂i, . . . , xk]f − [x0, . . . , x̂j, . . . , xk]f

xj − xi
,

where x0, . . . , x̂i, . . . , xk means the sequence x0, . . . , xk with the point xi removed.
For example, if x0 6= x1,

[x0, x0, x1]f =
[x0, x1]f − [x0, x0]f

x1 − x0
=

f(x1)−f(x0)
x1−x0 − f ′(x0)

x1 − x0
,

which is a linear combination of f(x0), f
′(x0), f(x1):

[x0, x0, x1]f = c00f(x0) + c01f
′(x0) + c10f(x1),

where

c00 =
−1

(x1 − x0)2
, c01 =

−1

x1 − x0
, c10 =

1

(x1 − x0)2
.

In general, it follows from the recursion that for a sequence of distinct points
x0, x1, . . . , xk with multiplicities m0,m1, . . . ,mk, there are coefficients ci,r, indepen-
dent of f , such that

[x0, . . . , x0︸ ︷︷ ︸
m0

, . . . , xk, . . . , xk︸ ︷︷ ︸
mk

]f =
k∑
i=0

mi−1∑
r=0

cirf
(r)(xi). (3.7)
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In other words, the divided difference is a linear combination of f and its derivatives
at x0, x1, . . . , xk, where the highest order derivative at xi is mi − 1.

3.1.3 Leibniz rule

Later, we will make use of a convenient formula, called the Leibniz rule, for the
divided difference of a product of two functions. For the product of functions f
and g, the Leibniz rule is

[x0, x1, . . . , xk](fg) =
k∑
i=0

[x0, . . . , xi]f [xi, . . . , xk]g. (3.8)

The name ‘Leibniz rule’ is due to the fact that in the case that x0 = · · · = xk,
equation (3.8) reduces to the well known Leibniz formula for the k-th derivative of
fg (due to (3.5)).

3.2 B-splines

We define B-splines as follows. For any integers d ≥ 0 and n ≥ 1, we call a sequence
t = (t1, t2, . . . , tn+d+1), ti ∈ R, a knot vector if ti ≤ ti+1, and ti < ti+d+1. For any
real number x we write

x+ =

{
x, if x > 0,

0 otherwise.

For i = 1, 2 . . . , n, we define the i-th B-spline Bi,d,t by the formula

Bi,d,t(x) = (ti+d+1 − ti)[ti, ti+1, . . . , ti+d+1](· − x)d+, x ∈ R. (3.9)

Here, the divided difference [ti, , . . . , ti+d+1] applies to the function

f(t) =
(
(t− x)+

)d
, (3.10)

with x fixed. We will sometimes use the alternative notation

Bi,d,t(x) = B[ti, ti+1, . . . , ti+d+1](x),

and sometimes just write Bi,d or Bi,t or even Bi if it is clear from the context what d
and t are.

In the coming sections we will explore many properties of B-splines. One
property that is simple to derive is the following.
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Lemma 3.1 If x 6∈ [ti, ti+d+1] then Bi,d(x) = 0.

Proof. If x > ti+d+1, the function f(t) in (3.10) is zero for all t ∈ [ti, ti+d+1] and so
[ti, . . . , ti+d+1]f = 0. If x < ti then f(t) = (t− x)d for t ∈ [ti, ti+d+1]. Since (t− x)d

is a polynomial in t of degree d, [ti, . . . , ti+d+1]f = 0. �

It follows from this that in a non-empty knot interval [tµ, tµ+1] there are only
d+ 1 B-splines that can be non-zero, specifically, Bµ−d,d, . . . , Bµ,d.

Another property that follows easily from the definition is that of translation
invariance. For any y ∈ R,

B[ti + y, . . . , ti+d+1 + y](x) = B[ti, . . . , ti+d+1](x− y). (3.11)

This is a simple consequence of (3.9) because with f(t) as in (3.10),

[ti + y, . . . , ti+d+1 + y]f = [ti, . . . , ti+d+1]g,

where g(t) = f(t+ y), which means that

g(t) = ((t+ y)− x)d+ = (t− (x− y))d+.

3.3 Piecewise polynomials and smoothness

We next observe that B-splines are piecewise polynomials (splines), and we deter-
mine their order of smoothness. We will do this in two parts, first considering
distinct knots, then multiple knots.

3.3.1 Distinct knots

Suppose that the knots ti, . . . , ti+d+1 are distinct. From the divided difference for-
mula (3.4) we can write Bi,d as

Bi,d(x) =
i+d+1∑
j=i

aj(tj − x)d+, (3.12)

where aj = (ti+d+1 − ti)/
∏i+d+1

k=i
k 6=j

(tj − tk). Using this formula we deduce

Theorem 3.2 Suppose ti, . . . , ti+d+1 are distinct. Then Bi,d is a piecewise polyno-
mial of degree d with smoothness of order Cd−1.
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Proof. This follows from the fact that (tj − x)d+, viewed as a function of x, is a
polynomial of degree d for x in any knot interval [tk, tk+1], and has order of continuity
Cd−1 at x = tj. �

Consider now the simplest example, that d = 0. Then equation (3.12) implies that

Bi,0(x) = −(ti − x)0+ + (ti+1 − x)0+,

and so Bi,0(x) = 0 for x < ti and x > ti+1 and Bi,0(x) = 1 for ti < x < ti+1. So Bi,0

is discontinuous at x = ti and x = ti+1, which confirms what the theorem claims in
this case, that the smoothness is C−1. In order to avoid ambiguity, we can simply
make a convention that at each knot, the B-splines Bi,0 are either right continuous
or left continuous. For example, if we agree that they are right continuous at every
knot we have

Bi,0(x) =

{
1, if x ∈ [ti, ti+1);

0, otherwise.

For distinct knots, when d ≥ 1, the B-splines Bi,d are continuous. When d = 1,
equation (3.12) implies that

Bi,1(x) =
1

hi
(ti − x)+ −

(
1

hi
+

1

hi+1

)
(ti+1 − x)+ +

1

hi+1

(ti+2 − x)+.

To write down simpler formulas for Bi,d when d = 1, and even d = 2, it will be
better to use the recursion formula which we will derive in Section 3.4.

3.3.2 Multiple knots

Suppose that the knots defining Bi,d have the multiplicities

(ti, ti+1, . . . , ti+d+1) = (τ0, . . . , τ0︸ ︷︷ ︸
m0

, . . . , τk, . . . , τk︸ ︷︷ ︸
mk

), (3.13)

where τ0 < τ1 < · · · < τk. Since

dr

dtr
(t− x)d+ =

d!

(d− r)!
(t− x)d−r+ ,

it follows from (3.7) that there are coefficients aj,r, independent of x, such that

Bi,d(x) =
k∑
j=0

mj−1∑
r=0

aj,r(τj − x)d−r+ . (3.14)
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Theorem 3.3 If ti, . . . , ti+d+1 have the multiplicities in (3.13) then Bi,d is a piece-
wise polynomial of degree d with smoothness of order Cd−mj at τj, j = 0, 1, . . . , k.

Proof. This follows from the fact that (τj−x)d−r+ , as a function of x, is a polynomial
of degree d−r for x in any knot interval [tk, tk+1], and has order of continuity Cd−r−1

at x = τj. �

The theorem implies that Bi,d is a continuous function on R if the maximum
multiplicity of its knots is d. This further implies that if the maximum multiplicity
of its knots is d, then Bi,d(ti) = Bi,d(ti+d+1) = 0.

If Bi,d has a knot of multiplicity d+ 1 then it is discontinuous there. Just as in
the d = 0 case, we can avoid ambiguity by making the convention that all B-splines
(of any degree) at any particular knot are right continuous, or that they are all left
continuous.

3.4 Recursion

In order to derive simple formulas for B-splines of low degree, and in order to evaluate
B-splines of arbitrary degree it is preferable to use the recursion formula, which we
now derive. The recursion formula also shows that B-splines are non-negative.

Theorem 3.4 For d ≥ 1,

Bi,d(x) =
x− ti
ti+d − ti

Bi,d−1(x) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x). (3.15)

We will assume in the proof that ti < ti+d and ti+1 < ti+d+1, so that the division
in (3.15) is well defined. We will discuss how to handle the cases ti = ti+d and
ti+1 = ti+d+1 in Subsection 3.5.3.

Proof. Starting from the definition (3.9), we use the fact that f(t) = (t − x)d+ can
be written as the product f(t) = g(t)h(t), where g(t) = t− x and h(t) = (t− x)d−1+ .
We then apply the divided difference [ti, ti+1, . . . , ti+d+1] to this product, and use
the Leibniz rule (3.8). Since

[ti]g = ti − x,
[ti, ti+1]g = 1,

[ti, . . . , tj]g = 0, j ≥ i+ 2,
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we find

[ti, . . . , ti+d+1]f = (ti − x)[ti, . . . , ti+d+1]h+ [ti+1, . . . , ti+d+1]h. (3.16)

Since

[ti, . . . , ti+d+1]h =
[ti+1, . . . , ti+d+1]h− [ti, . . . , ti+d]h

ti+d+1 − ti
, (3.17)

multiplying both sides of (3.16) by ti+d+1 − ti gives

Bi,d(x) = (ti − x)([ti+1, . . . , ti+d+1]h− [ti, . . . , ti+d]h)

+ (ti+d+1 − ti)[ti+1, . . . , ti+d+1]h

= (x− ti)[ti, . . . , ti+d]h+ (ti+d+1 − x)[ti+1, . . . , ti+d+1]h. (3.18)

By the definition of Bi,d−1 and Bi+1,d−1, and assuming that ti < ti+d and ti+1 <
ti+d+1, we can rewrite (3.18) in the form of (3.15). �

A simple but important consequence of the recursion formula is that, by in-
duction on d, Bi,d(x) > 0 for all x ∈ (ti, ti+d+1). This implies that Bi,d(x) ≥ 0 for
x ∈ R and that the support of Bi,d is [ti, ti+d+1].

3.5 Examples

Let us now consider some examples of B-splines.

3.5.1 Distinct knots

A linear B-spline depends on three knots and has continuity C0 when they are
distinct. With d = 1, the recursion formula gives

Bi,1(x) =

{
(x− ti)/(ti+1 − ti+1), if x ∈ [ti, ti+1);

(ti+2 − x)/(ti+2 − ti+1), if x ∈ [ti+1, ti+2).

A quadratic B-spline depends on four knots and has continuity C1 when they are
distinct. With d = 2, two steps of the recursion formula gives

Bi,2(x) =


(x−ti)2

(ti+2−ti)(ti+1−ti) , if x ∈ [ti, ti+1);
(x−ti)(ti+2−x)

(ti+2−ti)(ti+2−ti+1)
+ (ti+3−x)(x−ti+1)

(ti+3−ti+1)(ti+2−ti+1)
if x ∈ [ti+1, ti+2);

(ti+3−x)2
(ti+3−ti+1)(ti+3−ti+2)

, if x ∈ [ti+2, ti+3).
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Figure 3.1: Linear, quadratic, cubic, and quartic B-splines.

Figure 3.1 shows linear, quadratic, cubic, and quartic B-splines with distinct knots.
Figure 3.2 shows the five cubic B-splines defined on the knot interval

t = (0.0, 1.1, 2.4, 3, 4, 5.2, 6.0, 7.2, 8).

Here, d = 3, n = 5, and t has length n+ d+ 1 = 9.

3.5.2 Uniform B-splines

The B-splines on a uniform knot vector are sometimes of special interest, and are
simply shifts of a single B-spline. Let the knots be ti = i for all integers i ∈ Z. We
call the B-spline

Md(x) = B0,d(x) = B[0, 1, . . . , d+ 1](x), x ∈ R,

the cardinal B-spline of degree d, which has continuity Cd−1 at the knots. All the
uniform B-splines are translates of Md because, due to (3.11),

Bi,d(x) = B[i, i+ 1, . . . , i+ d+ 1](x) = B[0, 1, . . . , d+ 1](x− i) = Md(x− i).
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Figure 3.2: Cubic B-splines on distinct knots, n = 5.

In particular, for d ≥ 1, B1,d−1(x) = B[1, . . . , d + 1](x) = Md−1(x − 1) and the
recursion formula implies that

Md(x) =
x

d
Md−1(x) +

d+ 1− x
d

Md−1(x− 1).

3.5.3 Multiple knots

Let us next suppose that we have an arbitrary knot vector and consider what hap-
pens in the recursion formula if ti = ti+d or ti+1 = ti+d+1, or both. Suppose first
that ti = ti+d. If x 6= ti then

[ti, . . . , ti+d](· − x)d−1+ = 0, (3.19)

and the first term on the right hand side of (3.18) disappears. Moreover, in the
case that x = ti we can simply define this term to be zero. A similar consideration
applies to the case that ti+1 = ti+d+1. So a more precise version of the recurrence is
as follows. We now allow the possibility that ti = ti+d+1 in t. The only restriction
on t is that it is non-decreasing. We define

s1(x) =
x− ti
ti+d − ti

Bi,d−1(x), and s2(x) =
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x).

Then

Bi,d(x) =


0, if ti = ti+d+1;

s1(x), if ti < ti+d and ti+1 = ti+d+1;

s2(x), if ti = ti+d and ti+1 < ti+d+1;

s1(x) + s2(x), otherwise.

(3.20)
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Figure 3.3: The B-splines B[0, 0, 1, 2], B[0, 0, 1, 1], and B[0, 1, 1, 2].

There still remains the possibility that ti < ti+d and ti+1 < ti+d+1, but that Bi,d−1
and Bi+1,d−1 are discontinuous at x. This happens if ti < ti+1 = · · · = ti+d < ti+d+1

and x = ti+1. Fortunately, the formula (3.20) is still correct if we keep to the
convention that all B-splines at a knot are right continuous (or left continuous).

Figure 3.3 shows some quadratic B-splines with double knots, and illustrates
the fact that they are C1 at simple knots and C0 at double knots.

3.5.4 Bernstein polynomials

The Bernstein basis polynomials are examples of B-splines with multiple knots. In
fact, for i = 0, 1, . . . , d, the i-th Bernstein basis polynomial with respect to the
interval [0, 1] can be expressed as the B-spline

Bd
i (x) =

(
d

i

)
xi(1− x)d−i = B[0, . . . , 0︸ ︷︷ ︸

d+1−i

, 1, . . . , 1︸ ︷︷ ︸
i+1

](x), x ∈ [0, 1]. (3.21)

To see this, observe that it is clearly true when d = 0. For d ≥ 1, we can use
induction on d. Assuming that (3.21) holds if d is replaced by d − 1, the B-spline
recursion formula implies that

B[0, . . . , 0︸ ︷︷ ︸
d+1−i

, 1, . . . , 1︸ ︷︷ ︸
i+1

](x) = xB[0, . . . , 0︸ ︷︷ ︸
d+1−i

, 1, . . . , 1︸ ︷︷ ︸
i

](x) + (1− x)B[0, . . . , 0︸ ︷︷ ︸
d−i

, 1, . . . , 1︸ ︷︷ ︸
i+1

](x)

= xBd−1
i−1 (x) + (1− x)Bd−1

i (x).

But the right hand side is simply Bd
i (x) by Lemma 1.3 (the recursion for Bernstein

basis polynomials).

3.6 Value of a B-spline at a knot

A useful property of a B-spline is that its value at one of its knots equals the value
there of the B-spline of lower degree resulting from removing that knot from the
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knot vector.

Theorem 3.5 For any j = i, i+ 1, . . . , i+ d+ 1,

B[ti, . . . , ti+d+1](tj) = B[ti, . . . , tj−1, tj+1, . . . , ti+d+1](tj).

Proof. See Exercise 3.9. �

A corollary of this is:

Corollary 3.6 If z = ti+1 = · · · = ti+d < ti+d+1 then Bi,d(z) = 1 and Bj,d(z) = 0
for all j 6= i.

Proof. From Theorem 3.5,

Bi,d(z) = B[ti, ti+d+1](z) = 1,

and for j 6= i, one can similarly use the theorem to show that Bj,d(z) = 0. �

3.7 Closed knot vector

It is often useful in practice to use a knot vector t in which t1 = · · · = td+1 and
tn+1 = · · · = tn+d+1, and all remaining knots have multiplicity at most d. In this
case we will say that t is a closed knot vector with respect to the degree d. If
we further make the convention that B1,d is right continuous at td+1 and Bn,d is
left continuous at tn+1, all the B-splines Bi,d are continuous on the whole closed
interval I = [td+1, tn+1]. As we will see, the advantage of the closed knot vector is
that B1,d(td+1) = 1 and Bi,d(td+1) = 0 for all i > 1, and similarly, Bn,d(tn+1) = 1
and Bi,d(tn+1) = 0 for all i < n. Figure 3.4 illustrates this, showing the five cubic
B-splines defined on the closed knot vector t = (3, 3, 3, 3, 4, 5.2, 5.2, 5.2, 5.2).

3.8 Linear combinations of B-splines

Having now defined B-splines, we can form spline functions and spline curves as
linear combinations of B-splines.
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Figure 3.4: Cubic B-splines on a closed knot vector.

3.8.1 Spline functions

Consider again a knot vector t = (ti)
n+d+1
i=1 where d ≥ 0 and n ≥ 1. We can define

n B-splines of degree d on t, specifically B1,d, . . . , Bn,d. For any coefficients ci ∈ R,
i = 1, . . . , n, the linear combination

s(x) =
n∑
i=1

ciBi,d(x) (3.22)

is a spline function, or simply a spline, s : R→ R, i.e., a piecewise polynomial whose
pieces are of degree at most d. We will denote by Sd,t the linear space of all such
splines,

Sd,t = span(B1,d, . . . , Bn,d) =
{ n∑

i=1

ciBi,d | ci ∈ R, i = 1, . . . , n
}
.

We define the control polygon of s in (3.22) to be the piecewise linear function
passing through the points (t∗i , ci), i = 1, . . . , n, where t∗i is the knot average

t∗i =
ti+1 + · · ·+ ti+d

d
.

We will often restrict the spline function s to the interval I := [td+1, tn+1]. The
reason for this is that for x ∈ I, the B-splines sum to 1:

n∑
i=1

Bi,d(x) = 1, x ∈ I,
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and therefore form a partition of unity there. This will be shown in the next chapter.
This means that

min
i
ci ≤ s(x) ≤ max

i
ci, x ∈ I.

In the special case that t is a closed knot vector, the spline s in (3.22) will
have the endpoint property that

s(td+1) = c1, and s(tn+1) = cn.

3.8.2 Spline curves

Spline curves are defined in a similar way to spline functions, except that the coeffi-
cients are replaced by points in Rk for some k ≥ 2. For points ci ∈ Rk, i = 1, . . . , n,
the linear combination

s(x) =
n∑
i=1

ciBi,d(x) (3.23)

is a parametric spline curve, and we call the points ci the control points of s. The
control polygon of s is simply the polygon in Rk passing through c1, . . . , cn. The
restriction of s to the parameter interval I = [td+1, tn+1] lies in the convex hull of
the control polygon.

In the special case that t is a closed knot vector, the spline curve s will have
the endpoint property that

s(td+1) = c1, and s(tn+1) = cn.

3.9 Evaluation

Let us consider now how to compute the value s(x) of the spline function in (3.22),
given some x ∈ I. First we locate an index µ ∈ {d+ 1, . . . , n} such that [tµ, tµ+1] is
non-empty and contains x. Then s(x) is given by the local summation,

s(x) =

µ∑
i=µ−d

ciBi,d(x) (3.24)

because all the B-splines other than Bµ−d,d, . . . , Bµ,d are zero at x. Then there are
two ways of evaluating s at x, i.e, calculating the value s(x).
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3.9.1 Algorithm 1: B-spline recursion

The first algorithm is to use the B-spline recursion directly to compute the d + 1
values Bi,d(x), i = µ − d, . . . , d, and then to multiply them by the coefficients ci,
i = µ−d, . . . , µ and sum them up. The recursion formula (3.15) gives us a triangular
scheme for computing the B-splines. We fix x ∈ [tµ, tµ+1] and initialize the scheme
by setting Bµ,0 = 1. Then, for r = 1, 2, . . . , d, and i = µ− r, . . . , µ, we set

Bi,r =
x− ti
ti+r − ti

Bi,r−1 +
ti+r+1 − x
ti+r+1 − ti+1

Bi+1,r−1.

Here, we are using the fact that both Bµ−r,r−1 and Bµ+1,r−1 are zero at x. The flow
of computations is as follows, where in each column, each value is computed from
two values from the previous column.

Bµ,0 Bµ−1,1 Bµ−2,2 · · · Bµ−d,d
Bµ,1 Bµ−1,2 · · · Bµ−d+1,d

Bµ,2 · · · Bµ−d+2,d

. . .
...

Bµ,d

3.9.2 Algorithm 2: de Boor algorithm

Alternatively, we can use recursion on the coefficients cj in (3.24). This is de Boor’s
algorithm, and it generalizes de Casteljau’s algorithm. We fix x and initialize the
algorithm by setting c0i = ci, i = µ − d, . . . , µ. Then for r = 1, . . . , d, and i =
µ− d+ r, . . . , µ, we set

cri =
ti+d−r+1 − x
ti+d−r+1 − ti

cr−1i−1 +
x− ti

ti+d−r+1 − ti
cr−1i . (3.25)

Theorem 3.7 The last value computed, cdµ, is the value of s at x in (3.24).

Proof. To prove this, consider the first step of the algorithm. By the B-spline
recurrence for the Bi,d we have

s(x) =

µ∑
i=µ−d

c0i

(
x− ti
ti+d − ti

Bi,d−1(x) +
ti+d+1 − x
ti+d+1 − ti+1

Bi+1,d−1(x)

)

=

µ∑
i=µ−d+1

(
ti+d − x
ti+d − ti

c0i−1 +
x− ti
ti+d − ti

c0i

)
Bi,d−1(x),
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where we have used the fact that both Bµ−d,d−1 and Bµ+1,d−1 are zero at x. Hence
by the definition of c1i in (3.25),

s(x) =

µ∑
i=µ−d+1

c1iBi,d−1(x).

Continuing in this way we find that for any r = 1, . . . , d,

s(x) =

µ∑
i=µ−d+r

criBi,d−r(x). (3.26)

The case r = d gives us s(x) = cdµ. �

This algorithm can also be arranged in a triangular scheme, as follows. In each
column, each value is computed from two values from the previous column.

c0µ−d c1µ−d+1 · · · cd−1µ−1 cdµ
c0µ−d+1 c1µ−d+2 · · · cd−1µ

... . . .

c0µ−1 c1µ
c0µ

3.10 Exercises

3.1 Suppose that x0, x1, x2 are distinct, and let fi = f(xi), i = 0, 1, 2, for some
function f . Show by direct calculation that the recursive formula

[x0, x1, x2]f =

f2−f1
x2−x1 −

f1−f0
x1−x0

x2 − x0

can be expressed as

[x0, x1, x2]f =
2∑
i=0

fi∏
j 6=i(xi − xj)

.

3.2 Show that if f(x) = 1/x and that x0, x1, . . . , xk 6= 0 then

[x0, . . . , xk]f =
(−1)k

x0x1 · · · xk
.
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3.3 Prove the Leibniz rule for divided differences:

[x0, x1, . . . , xk](fg) =
k∑
i=0

[x0, . . . , xi]f [xi, . . . , xk]g.

Hint: let p and q be the polynomials of degree ≤ k that interpolate f and g
respectively at x0, x1, . . . , xk, and express p and q as

p(x) =
k∑
i=0

(x− x0) · · · (x− xi−1)[x0, . . . , xi]f,

q(x) =
k∑
j=0

(x− xj+1) · · · (x− xk)[xj, . . . , xk]g.

Now consider the polynomial pq.

3.4 Use the recursion formula (Theorem 3.4) to show that

a) B[0, 0, 0, 1](x) = (1− x)2B[0, 1](x),

b) B[0, 0, 1, 2](x) = x(2− 3
2
x)B[0, 1](x) + 1

2
(2− x)2B[1, 2](x),

c) B[0, 1, 1, 2](x) = x2B[0, 1](x) + (2− x)2B[1, 2](x).

3.5 a) Prove Theorem 3.5, and b) use it to show that for distinct knots,

Bi,2(ti+1) =
ti+1 − ti
ti+2 − ti

, Bi,2(ti+2) =
ti+3 − ti+2

ti+3 − ti+1

.

3.6 Show that

B[a, . . . , a︸ ︷︷ ︸
d

, b](x) =

(
b− x
b− a

)d
B[a, b](x),

B[a, b, . . . , b︸ ︷︷ ︸
d

](x) =

(
x− a
b− a

)d
B[a, b](x).

Use this to show that

B[a, b, . . . , b︸ ︷︷ ︸
d

, c](x) =

(
x− a
b− a

)d
B[a, b](x) +

(
c− x
c− b

)d
B[b, c](x).

Show that this B-spline is continuous on R.
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3.7 Show that

Bi,d(x) = (−1)d+1(ti+d+1 − ti)[ti, ti+1, . . . , ti+d+1](x− ·)d+, x ∈ R.

Hint: use the fact that

(t− x)d+ − (−1)d+1(x− t)d+ = (t− x)d−1.

Use this to show that for distinct knots,

Bi,d(x) = (ti+d+1 − ti)
i+d+1∑
j=i

(x− tj)d+∏i+d+1
k=i
k 6=j

(tk − tj)
.

3.8 Use the recursion formula to show that (for d ≥ 1)

n∑
i=1

Bi,d(x) = 1, x ∈ [td+1, tn+1].

3.9 Prove Theorem 3.5. Hint: show first that the case j = i follows from (3.16).
For any other j, derive an analogy of (3.16) by first expressing [ti, . . . , ti+d+1]
in the form

[tj, ti, . . . , tj−1, tj+1, . . . , ti+d+1].

3.10 Given a knot vector t = (ti)
n+d+1
i=1 and a real number x, with x ∈ [td+1, tn+1],

write a routine to determine an index µ such that x ∈ [tµ, tµ+1] with [tµ, tµ+1]
non-empty. A call to this routine is always needed before running Algorithms 1
and 2 of Section 3.9. By letting µ be an input parameter as well as an output
parameter you can minimze the searching for example during plotting when
the routine is called with many values of x in the same knot interval.

3.11 Implement Algorithm 1 of Section 3.9 in your favourite programming language.

3.12 Implement Algorithm 2 of Section 3.9 in your favourite programming language.

3.13 Suppose that d = 3 and that the knot vector is

t = (0, 1, 2, 3, 4).

With this knot vector we can only associate one cubic B-spline, B1,3. There-
fore, if we want to compute B1,3(x) for some x ∈ (0, 4), Algorithms 1 and 2 of
Section 3.9 do not apply. Show, however, that by augmenting the knot vector
to

t̂ = (0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4),

we can compute B1,3 in the interval (0, 4) using Algorithm 2.



Chapter 4

Further properties of B-splines

In this chapter we derive further properties of B-splines and splines. In particular,
we show that all piecewise polynomials can be represented as linear combinations of
B-splines, and that the B-splines are linearly independent. The main tool for this is
Marsden’s identity. We also discuss the evaluation of derivatives.

4.1 Marsden’s identity

As in the previous chapter, let t = (t1, t2, . . . , tn+d+1) be a knot vector for some
d ≥ 0 and n ≥ 1. For each i = 1, . . . , n, let us define the so-called dual polynomial

ρi,d(y) = (y − ti+1)(y − ti+2) · · · (y − ti+d).

Then Marsden’s identity is as follows.

Theorem 4.1 For any x ∈ [td+1, tn+1] and for any y ∈ R,

(y − x)d =
n∑
i=1

ρi,d(y)Bi,d(x). (4.1)

To prove this theorem, it is sufficient to derive the local form of the equation:

Theorem 4.2 If x belongs to some non-empty interval [tµ, tµ+1], for some µ ∈
{d+ 1, . . . , n}, then for any y ∈ R,

(y − x)d =

µ∑
i=µ−d

ρi,d(y)Bi,d(x). (4.2)

49
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Proof. The proof uses Algorithm 2 of Section 3.9 applied to the initial data ci =
ρi,d(y), i = µ − d, . . . , µ. Consider the first step of the algorithm. With r = 1 in
(3.25),

c1i =
ti+d − x
ti+d − ti

c0i−1 +
x− ti
ti+d − ti

c0i

=
ti+d − x
ti+d − ti

ρi−1,d(y) +
x− ti
ti+d − ti

ρi,d(y)

=

(
ti+d − x
ti+d − ti

(y − ti) +
x− ti
ti+d − ti

(y − ti+d)
)
ρi,d−1(y),

and a simple calculation shows that

ti+d − x
ti+d − ti

(y − ti) +
x− ti
ti+d − ti

(y − ti+d) = y − x. (4.3)

This shows that
c1i = (y − x)ρi,d−1(y).

In the next step of the algorithm, with r = 2 in (3.25), we find, similarly, that

c2i = (y − x)2ρi,d−2(y).

Continuing in this way, we find that for all r = 1, . . . , d,

cri = (y − x)rρi,d−r(y). (4.4)

The case d = r gives cdµ = (y − x)d, which, by Theorem 3.7, proves (4.2). �

4.2 Linear independence of B-splines

We can use Marsden’s identity to show that the B-splines B1,d, . . . Bn,d are linearly
independent with respect to the interval [td+1, tn+1]. To this end, suppose that there
are coefficients c1, . . . , cn such that

n∑
i=1

ciBi,d(x) = 0, td+1 ≤ x ≤ tn+1. (4.5)

The task is show that c1 = · · · = cn = 0. From (4.5), for any non-empty [tµ, tµ+1],
d+ 1 ≤ µ ≤ n,

µ∑
i=µ−d

ciBi,d(x) = 0, tµ ≤ x ≤ tµ+1.
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We will have cµ−d = · · · = cµ = 0 if the B-splines Bµ−d,d, . . . , Bµ,d are linearly
independent. Since there are d + 1 of these, it is sufficient to show that we can
express any monomial xr, 0 ≤ r ≤ d, as a linear combination of them. To do this
we use the local form (4.2) of Marsden’s identity. First we differentiate (4.2) d − r
times with respect to y, giving

d!

r!
(y − x)r =

µ∑
i=µ−d

ρ
(d−r)
i,d (y)Bi,d(x),

and then we let y = 0, giving

d!

r!
(−1)rxr =

µ∑
i=µ−d

ρ
(d−r)
i,d (0)Bi,d(x).

Rearranging this gives

xr =

µ∑
i=µ−d

ci,rBi,d(x), (4.6)

where

ci,r = (−1)r
r!

d!
ρ
(d−r)
i,d (0).

Thus we have shown that Bµ−d,d, . . . , Bµ,d are linearly independent on the knot
interval [tµ, tµ+1] and so cµ−d = · · · = cµ = 0. By considering all µ, it follows that
c1 = · · · = cn = 0, as claimed, and so we conclude that B1,d, . . . , Bn,d are indeed
linearly independent on [td+1, tn+1].

4.2.1 Monomials as splines

We can obtain a more explicit formula for xr in (4.6) by deriving a closed formula for
the coefficients ci,r. By the product rule for differentiating a product of d functions,
we have

ρ
(d−r)
i,d (y) = (d− r)!

∑
i+1≤i1<···<ir≤i+d

(y − ti1) · · · (y − tir).

The sum is over all possible products of r of the d factors of ρi,d(y). It follows that

ρ
(d−r)
i,d (0) = (−1)r(d− r)!

∑
i+1≤i1<···<ir≤i+d

ti1 · · · tir ,

and therefore,

ci,r =
1(
d
r

) ∑
i+1≤i1<···<ir≤i+d

ti1 · · · tir .
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The sum here is over all possible products of r of the d interior knots ti+1, . . . , ti+d
in the support of Bi,d. The binomial coefficient

(
d
r

)
is the number of these products,

and hence ci,r is simply the average of all these products.

From (4.6) we also have the global version,

xr =
n∑
i=1

ci,rBi,d(x), td+1 ≤ x ≤ tn+1. (4.7)

Some examples are

1 =
n∑
i=1

Bi,d(x),

x =
n∑
i=1

t∗iBi,d(x),

x2 =
n∑
i=1

t∗∗i Bi,d(x),

xd =
n∑
i=1

ti+1 · · · ti+dBi,d(x),

where

t∗∗i =
ti+1ti+2 + ti+1ti+3 + · · ·+ ti+d−1ti+d(

d
2

) .

The first example shows that the B-splines sum to one.

4.3 B-splines as a basis for splines

With a little more work, we can show that any spline s (a piecewise polynomial)
can be represented by B-splines. Roughly speaking, it is just a matter of choosing
the right knot vector: there should be a knot ti at each break point of s and the
multiplicity of ti should reflect the order of continuity of s at ti.

First, let’s be precise about what we mean by a spline (piecewise polynomial).
Let [a, b] be a real interval and let ∆ = (ξi)

N
i=1 be a partition of [a, b],

a = ξ1 < ξ2 < · · · < ξN = b,
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and let r = (ri)
N−1
i=2 be a sequence of integers with ri ≥ −1. For any d ≥ 0 we define

Sr
d(∆) = {s : [a, b]→ R : s|(ξi,ξi+1) ∈ πd, i = 1, . . . , N − 1,

s(k) is continuous at ξi, k = 0, 1, . . . , ri, i = 2, . . . , N − 1}.

Since any linear combination of functions in Sr
d(∆) is also in Sr

d(∆), we see that
Sr
d(∆) is a linear space. A basis for Sr

d(∆) can be constructed using truncated
powers.

Lemma 4.3 Any s ∈ Sr
d(∆) can be expressed in the truncated power form

s(x) =
d∑

k=0

ckx
k +

N−1∑
i=2

d∑
k=ri+1

ci,k(x− ξi)k+. (4.8)

Proof. Let pi denote the polynomial in πd representing s in (ξi, ξi+1), i = 1, . . . , N−1.
Then let

ck =
p
(k)
1 (0)

k!
, k = 0, . . . , d,

ci,k =
p
(k)
i (ξi)− p(k)i−1(ξi)

k!
, k = ri + 1, . . . , d, i = 2, . . . , N − 1.

We now claim that s is as in (4.8). Indeed, letting x ∈ (ξ1, ξ2) in (4.8) implies

s(x) =
d∑

k=0

ckx
k = p1(x),

and letting x ∈ (ξj, ξj+1) in (4.8) for some j = 2, . . . , N − 1 gives

s(x) =
d∑

k=0

ckx
k +

j∑
i=2

d∑
k=ri+1

ci,k(x− ξi)k = p1(x) +

j∑
i=2

(pi(x)− pi−1(x)) = pj(x),

since p
(k)
i (ξi) = p

(k)
i−1(ξi) for k = 0, 1, . . . , r. �

Lemma 4.4 The truncated power form of s in (4.8) is unique.

Proof. It is sufficient to show that if

s̃(x) :=
d∑

k=0

ckx
k +

N−1∑
i=2

d∑
k=ri+1

ci,k(x− ξi)k+ = 0, x ∈ (a, b),
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then the coefficients ck and ci,k are zero. To see this, observe that for x ∈ (ξ1, ξ2),

0 = s̃(x) =
d∑

k=0

ckx
k,

which implies that c0 = · · · = cd = 0. It then follows that for x ∈ (ξ2, ξ3),

0 = s̃(x) =
d∑

k=r2+1

c2,k(x− ξ2)k,

which implies that c2,r2+1 = · · · = c2,d = 0, and continuing in this way shows that
all the ci,k in s̃ are zero. �

By Lemmas 4.3 and 4.4, we conclude that the functions xk, k = 0, . . . , d, and
(x − ξi)

k
+, k = ri + 1, . . . , d, i = 2, . . . , N − 1, form a basis of Sr

d(∆). Thus, the
dimension of the space Sr

d(∆) is

n := d+ 1 +
N−1∑
i=2

(d− ri). (4.9)

We can now show that any spline in Sr
d(∆) can be represented in terms of

B-splines.

Theorem 4.5 (Curry-Schoenberg) Let Sr
d(∆) be a space of piecewise polynomi-

als, let n be as in (4.9), and let t = (ti)
n+d+1
i=1 be any knot vector such that

(td+2, . . . , tn) = (ξ2, . . . , ξ2︸ ︷︷ ︸
d−r2

, ξ3, . . . , ξ3︸ ︷︷ ︸
d−r3

, . . . , ξN−1, . . . , ξN−1︸ ︷︷ ︸
d−rN−1

),

and such that td+1 ≤ a and b ≤ tn+1. Then

Sr
d(∆) = Sd,t|[a,b],

where Sd,t|[a,b] is the space obtained from Sd,t by restricting its functions to [a, b].

Proof. By the construction of the knot vector, the B-splines in Sd,t satisfy the
smoothness properties of Sr

d(∆) and therefore Sd,t|[a,b] ⊂ Sr
d(∆). Moreover, since

td+1 ≤ a < td+2 and tn < b ≤ tn+1, the B-splines in Sd,t are linearly independent
in [a, b], and therefore the space Sd,t|[a,b] has dimension n. But since n is also the
dimension of Sr

d(∆), we conclude that Sd,t|[a,b] = Sr
d(∆). �
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4.4 Derivatives

If it is often important to be able to compute derivatives of B-splines and splines.
The key to computing these is the following formula for the first derivative of Bi,d,
which has many similarities to the recursion formula (3.15).

Theorem 4.6 For d ≥ 1,

B′i,d(x) = d

(
Bi,d−1(x)

ti+d − ti
− Bi+1,d−1(x)

ti+d+1 − ti+1

)
. (4.10)

Proof. Due to the recursion (3.17), we can express Bi,d in (3.9) in the form

Bi,d(x) = [ti+1, . . . , ti+d+1](· − x)d+ − [ti, . . . , ti+d](· − x)d+. (4.11)

Differentiating this with respect to x gives

B′i,d(x) = d(−[ti+1, . . . , ti+d+1](· − x)d−1+ + [ti, . . . , ti+d](· − x)d−1+ ),

which, by the definition of Bi,d−1 and Bi+1,d−1, yields the result. �

We can apply this to find the first derivative of the spline

s(x) =
n∑
i=1

ciBi,d(x).

Differentiation gives

s′(x) =
n∑
i=1

ciB
′
i,d(x) = d

µ∑
i=1

ci

(
Bi,d−1(x)

ti+d − ti
− Bi+1,d−1(x)

ti+d+1 − ti+1

)
= d

n∑
i=2

(
ci − ci−1
ti+d − ti

)
Bi,d−1(x).

Both Algorithms 1 and 2 of Section 3.9 can now easily be adapted to compute
s′(x) for a given x in a knot interval [tµ, tµ+1].

Higher order derivatives are easily obtained by differentiating (4.10). For d ≥ 1
and r ≥ 1,

B
(r)
i,d (x) = d

(
B

(r−1)
i,d−1 (x)

ti+d − ti
−

B
(r−1)
i+1,d−1(x)

ti+d+1 − ti+1

)
. (4.12)
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4.5 Exercises

4.1 Prove (4.3).

4.2 Derive the following alternative formula for the r-th derivative of the B-spline
Bi,d (where d ≥ 1):

B
(r)
i,d (x) =

d

d− r

(
x− ti
ti+d − ti

B
(r)
i,d−1(x) +

ti+d+1 − x
ti+d+1 − ti+1

B
(r)
i+1,d−1(x)

)
.

Hint: differentiate (3.15) r times and use (4.12).



Chapter 5

Knot insertion

As we have seen in numerial examples, the shape of a spline curve tends to mimic
the shape of its control polygon. Examples also indicate that a spline curve is a kind
of smoothed out version of its control polygon. This makes modelling with a spline
curve easy: the designer can adjust an existing spline curve by moving the control
points: the change in the curve will be reflected by the change in the polygon in an
intuitive (and local) way.

Another useful aspect of spline curves in B-spline form is that there is a simple
way to add degrees of freedom, i.e., add control points, to an existing spline curve
without changing the curve: what we do is to add knots to the knot vector and cal-
culate what the new control points should be so that the spline curve is unchanged.
Once this refinement of the knot vector has been carried out, the designer will have
more control points available to manipulate the spline curve.

In this chapter we study how to find the control points of the spline curve with
respect to the refined knot vector from the previous control points. To understand
this we focus on what happens to a single B-spline when we add one knot to the knot
vector: we can can express the B-spline as a linear combination of two B-splines on
the new knot vector.

As well as being of practical use in geometric modelling, knot insertion is also
a useful tool for deriving further theoretical properties of splines. One such property
is the variation diminishing property of splines in B-spline form: the number of sign
changes in a spline function is bounded by the number of sign changes in its control
polygon. For spline curves this translates to the number of times the spline curve
crosses a straight line: it is bounded by the number of times its control polygon
crosses the line. This variation dimishing property makes precise the intuitive idea
that the spline curve is a smoothed out version of its control polygon.

57
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5.1 B-spline refinement

Given a knot vector t = (t1, t2, . . . , tn+d+1), for some d ≥ 0 and n ≥ 1, there are
n B-splines of degree d, B1,t, . . . , Bn,t. Suppose we now add a new knot z to some
non-empty knot interval [tµ, tµ+1], where 1 ≤ µ ≤ n + d, to form the refined knot
vector

τ = (τ1, . . . , τn+d+2) = (t1, t2, . . . , tµ, z, tµ+1, . . . , tn+d+1). (5.1)

We then ask, how can we represent the ‘old’ B-splines, B1,t, . . . , Bn,t in terms of the
‘new’ B-splines, B1,τ , . . . , Bn+1,τ? Observe first that

Bi,d,t = Bi,d,τ , i = 1, . . . , µ− d− 1, (5.2)

since z is not among the knots that define these B-splines, and similarly,

Bi,d,t = Bi+1,d,τ , i = µ+ 1, . . . , n, (5.3)

for the same reason. Thus, it remains to consider the B-splines Bi,t with i =
µ−d, . . . , µ. As we will see, in this case Bi,t can be expressed as a linear combination
of Bi,τ and Bi+1,τ . To this end, we will first derive a refinement formula for divided
differences.

Lemma 5.1 Consider a divided difference [x0, x1, . . . , xk]f in which x0 and xk are
distinct, and let z ∈ R. Then

[x0, . . . , xk]f =
z − x0
xk − x0

[x0, . . . , xk−1, z]f +
xk − z
xk − x0

[x1, . . . , xk, z]f. (5.4)

Proof. We have

[x1, . . . , xk]f − [x0, . . . , xk−1]f =

([x1, . . . , xk−1, z]f − [x0, . . . , xk−1]f) + ([x1, . . . , xk]f − [x1, . . . , xk−1, z]f)

= (z − x0)[x0, . . . , xk−1, z]f + (xk − z)[x1, . . . , xk, z]f,

and dividing by xk − x0 gives (5.4). �

From this lemma we obtain the refinement of the B-splines Bµ−d,t, . . . , Bµ,t.

Theorem 5.2

Bµ−d,t = Bµ−d,τ +
tµ+1 − z

tµ+1 − tµ−d+1

Bµ−d+1,τ ,

Bi,t =
z − ti
ti+d − ti

Bi,τ +
ti+d+1 − z
ti+d+1 − ti+1

Bi+1,τ , i = µ− d+ 1, . . . , µ− 1,

Bµ,t =
z − tµ
tµ+d − tµ

Bµ,τ +Bµ+1,τ .
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Proof. Let i ∈ {µ− d, . . . , µ}. By Lemma 5.1, for any smooth enough function f ,

(ti+d+1 − ti)[ti, . . . , ti+d+1]f = (z − ti)[ti, . . . , ti+d, z]f
+ (ti+d+1 − z)[ti+1, . . . , ti+d+1, z]f.

We now apply this equation to the function f(t) = (t − x)d+. Then the left hand
side becomes Bi,t(x), and on the right hand side,

[ti, . . . , ti+d, z]f =


Bi,τ (x)

z − ti
, i = µ− d;

Bi,τ (x)

ti+d − ti
, i > µ− d,

and

[ti+1, . . . , ti+d+1, z]f =


Bi+1,τ (x)

ti+d+1 − ti+1

, i < µ;

Bi+1,τ (x)

ti+d − z
, i = µ.

�

5.2 Spline refinement

Suppose now that s is a spline function

s(x) =
n∑
i=1

ciBi,t(x), x ∈ I, (5.5)

for some coefficients c1, . . . , cn ∈ R, where I = [td+1, tn+1]. If we add a knot z to I
to form the refined knot vector τ in (5.1), we can represent s with respect to τ due
to Theorem 5.2. In other words, we can find coefficients b1, . . . , bn+1 such that

s(x) =
n+1∑
i=1

biBi,τ (x), x ∈ I. (5.6)

The algorithm for computing the bi is known as Boehm’s algorithm.

Theorem 5.3 The coefficients bi in (5.6) are

bi =


ci if 1 ≤ i ≤ µ− d;
ti+d − z
ti+d − ti

ci−1 +
z − ti
ti+d − ti

ci; if µ− d+ 1 ≤ i ≤ µ,

ci−1 if µ+ 1 ≤ i ≤ n+ 1.

(5.7)
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Proof. We convert the sum in (5.5) into the form (5.6) by expressing each B-spline
Bi,t as a linear combination of the B-splines Bi,τ . Consider the terms in (5.5) for
i = µ− d, . . . , µ. By Theorem 5.2,

µ∑
i=µ−d

ciBi,t = cµ−d

(
Bµ−d,τ +

tµ+1 − z
tµ+1 − tµ−d+1

Bµ−d+1,τ

)

+

µ−1∑
i=µ−d+1

ci

(
z − ti
ti+d − ti

Bi,τ +
ti+d+1 − z
ti+d+1 − ti+1

Bi+1,τ

)
+ cµ

(
z − tµ
tµ+d − tµ

Bµ,τ +Bµ+1,τ

)
=

µ+1∑
i=µ−d

biBi,τ ,

with bi defined in (5.7). Combining this with equations (5.2) and (5.3) gives the
result. �

5.3 Variation diminishing property

In this section we use Boehm’s algorithm to show that the number of sign changes in
a spline function is bounded by the number of sign changes in its B-spline coefficient
vector. Let us start by defining what we mean by sign changes.

Definition 5.4 Let c = (ci)
n
i be a vector of real numbers. The number of sign

changes of c (zeros ignored) is denoted by S−(c). The number of sign changes of
a function f on an interval I is denoted by S−I (f), provided this number is finite.
It is the largest integer r such that there is an increasing sequence of real numbers
x1 < x2 < · · · < xr+1 in I such that S−(f(x1), f(x2), . . . , f(xr+1)) = r.

For example,

S−(1,−2) = 1,

S−(1, 0,−1, 3, 2) = 2,

S−(1,−1, 3, 2) = 2.

We start by showing that the number of sign changes in the coefficients cannot
increase when we insert one knot.
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Lemma 5.5 Let

s(x) =
n∑
i=1

ciBi,t(x) =
n+1∑
i=1

biBi,τ (x), x ∈ I,

where τ is the knot vector formed from the knot vector t by adding one knot to t in
I. Then b has no more sign changes than c, i.e., S−(b) ≤ S−(c).

Proof. By Boehm’s algorithm, we can express the coefficients bi in the form

bi = (1− αi)ci−1 + αici, i = 1, 2, . . . , n+ 1,

where 0 ≤ αi ≤ 1, and where we have defined for convenience c0 = cn+1 = 0. Since
1− αi and αi are both non-negative it follows that bi is either zero or has the same
sign as either ci−1 or ci. Therefore,

S−(c) = S−(b1, c1, b2, c2, b3, . . . , bn, cn, bn+1) ≥ S−(b).

The inequality on the right follows from the fact that when we remove an element
from a vector, the number of sign changes cannot increase. �

By adding knots one by one we immediately obtain a corollary.

Corollary 5.6 Let

s(x) =
n∑
i=1

ciBi,d,t(x) =
m∑
i=1

biBi,d,τ (x), x ∈ I,

where m > n and τ is the knot vector formed from the knot vector t by adding
m − n knots to t (so t ⊂ τ ) in I. Then b has no more sign changes than c, i.e.,
S−(b) ≤ S−(c).

With this corollary we can derive the variation diminishing property of spline
functions.

Theorem 5.7 (Variation Diminishing Property) Let

s(x) =
n∑
i=1

ciBi,t(x), x ∈ I,

be a spline. Then S−I (s) ≤ S−(c).
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Proof. Let r = S−I (s) and let (xi)
r+1
i=1 be an increasing sequence of points in I chosen

such that
S−(s(x1), s(x2), . . . , s(xr+1)) = r.

Then let τ be the knot vector formed from t by adding to t each point xi, i =
1, . . . , r+ 1, with multiplicity d (if any point xi is already a knot in t, we just add it
d−mi times to t, where mi is is the multiplicity of xi in t). At each point xi, only
one B-spline Bj,τ has the value 1, all others have value 0, and therefore s(xi) = bj.
It follows that S−(b) ≥ r, and hence, by Corollary 5.6,

S−I (s) = r ≤ S−(b) ≤ S−(c).

�

For spline curves in R2 the variation diminishing property translates into a
property concerning the number of crossings of the curve with a straight line.

Theorem 5.8 (VDP for planar spline curves) Let

s(x) =
n∑
i=1

ciBi,t(x), x ∈ I,

be a spline curve in R2, with ci ∈ R2, and let L be any straight line in R2. Then the
number of times s crosses L is less than or equal to the number of times its control
polygon crosses L.

Proof. Suppose the straight line is

L = {p ∈ R2 : p · n− a = 0},

for some unit vector n ∈ R2 and constant a ∈ R, and let

σ(x) = s(x) · n− a, x ∈ I.

Then S−I (σ) is the number of times s crosses L. Moreover, since
∑n

i=1Bi,d(x) = 1,

σ(x) =
n∑
i=1

γiBi,t(x),

where γi = ci · n − a, and S−(γ) is the number of times the control polygon of s
crosses L, where γ = (γ1, . . . , γn).

Since σ is a spline function with coefficients γi, the VDP of σ (Theorem 5.7)
implies S−I (σ) ≤ S−(γ). �
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5.4 Exercises

5.1 Show that a spline curve s in R3 satisfies a variation diminishing property
analogous to Theorem 5.8: the number of crossings of s through a plane P is
not greater than the number of crossings of the control polygon of s through P .
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Chapter 6

B-spline interpolation and
approximation

6.1 Spline interpolation in B-spline form

We now return to the problem of interpolating data with a spline that we discussed
in Chapter 2, but we can now use the alternative approach of representing the spline
in B-spline form.

6.1.1 Linear spline interpolation

Consider again the example of contructing a piecewise linear spline to match given
data. Suppose that x1, x2, . . . , xm ∈ R is an increasing sequence of points and that
y1, y2, . . . , ym ∈ R are associated data values. We let a = x1 and b = xm and
we would like to find a spline g : [a, b] → R such that in each interval [xi, xi+1],
i = 1, 2, . . . ,m− 1, g is a linear polynomial, and such that

g(xi) = yi, i = 1, 2, . . . ,m. (6.1)

In Chapter 2 we constructed g piecewise (in equation (2.10)). If instead we repre-
sent g using B-splines, the C0 continuity of g is already guaranteed by the continuity
of the B-splines. We set d = 1 and n = m, and we can choose t to be the closed
knot vector

t = (t1, . . . , tm+2) = (x1, x1, x2, x3, . . . , xm−2, xm−1, xm, xm).

Then

g(x) =
m+2∑
i=1

ciBi,1,t(x), x ∈ [a, b],

65
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where ci = yi, i = 1, . . . , n.

6.1.2 Cubic Hermite spline interpolation

The cubic Hermite spline we constructed in Theorem 2.6 can also be represented
using B-splines. We recall that this spline is the C1 function g : [a, b] → R whose
pieces are cubic and such that

g(xi) = yi and g′(xi) = si, i = 1, . . . ,m, (6.2)

for given height values yi and slope values si. To represent g in B-spline form, we
must set d = 3 and n = 2m. As regards the knot vector t, we can reflect the C1

continuity of g in t by giving the interior knots multiplicity 2. Thus, choosing t to
be closed, we obtain

t = (t1, . . . , t2m+4) = (x
[4]
1 , x

[2]
2 , x

[2]
3 , . . . , x

[2]
m−1, x

[4]
m ),

where we have used the shorthand x[k] = x, . . . , x︸ ︷︷ ︸
k

.

Theorem 6.1 The unique C1 cubic spline satisfying the Hermite interpolation con-
ditions (6.2) can be represented as

g(x) =
2m∑
i=1

ciBi,3,t(x), x ∈ [a, b], (6.3)

where c1 = y1, c2m = ym, and

c2i = yi +
hi
3
si, c2i+1 = yi+1 −

hi
3
si+1, i = 1, . . . ,m− 1,

and hi = xi+1 − xi.

Proof. Consider g in (6.3). The m− 2 interior points x2, . . . , xm−1 are knots in t of
multiplicity 2. If we now insert these same m− 2 points into t, we obtain a refined
knot vector τ in which each of these knots has multiplicity 3:

τ = (τ1, . . . , τ3m+2) = (x
[4]
1 , x

[3]
2 , x

[3]
3 , . . . , , x

[3]
m−1, x

[4]
m ).

By applying Boehm’s algorithm repeatedly we obtain a new representation of g,

g(x) =
3m−2∑
i=1

biBi,3,τ (x), x ∈ [a, b],
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where b1 = c1, b3m−2 = c2m, and

b3i−1 = c2i, b3i = c2i+1, i = 1, . . . ,m− 1,

and

b3i−2 =
xi+1 − xi
xi+1 − xi−1

c2i−1 +
xi − xi−1
xi+1 − xi−1

c2i, i = 2, . . . ,m− 1.

The latter coefficients simplify:

b3i−2 =
hi

hi−1 + hi

(
yi −

hi−1
3
si

)
+

hi−1
hi−1 + hi

(
yi +

hi
3
si

)
= yi.

Since the interior knots of τ have multiplicity 3, and recalling Section 3.5.4, we see
that this representaion of g is piecewise cubic BB form, and thus by checking its
coefficients one can see that it is the same function as in Theorem 2.6. �

6.1.3 C2 cubic spline interpolation

Consider now the C2 cubic spline g that matches the values yi at xi and that satisfies
the two Hermite end conditions,

g′(x1) = s1 and g′(xm) = sm. (6.4)

We showed in Theorem 2.8 that g is uniquely determined and one way of computing
g is to make the first derivatives of g at the interior points x2, . . . , xm−1 be unknowns
and to solve a linear system ofm−2 equations to find these. We can instead represent
g using cubic B-splines and solve for the coefficients, as follows. We let d = 3 and
n = m+ 2, and we can use the closed knot vector

t = (t1, . . . , tm+6) = (x
[4]
1 , x2, x3, . . . , xm−1, x

[4]
m ),

The simple interior knots reflect the C2 continuity of g. We can now represent g in
the form

g(x) =
m+2∑
i=1

ciBi,3,t(x), x ∈ [a, b],

and it remains to compute the coefficients. To do this we simply use the m + 2
interpolation conditions to create m+ 2 linear equations. We require

m+2∑
j=1

cjBj,3(xi) = yi, i = 1, . . . ,m,
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and
m+2∑
j=1

cjB
′
j,3(xi) = si, i = 1,m.

Since at most three cubic B-splines are non-zero at a knot and the same is true
of their first derivatives, each equation involves at most three of the coefficients ci.
In fact, these equations form a tridiagonal system if we order the coefficients as
c = [c1, c2, . . . , cm+2]

T and we order the data as

y = [y1, s1, y2, . . . , ym−1, ym, sm]T .

The equation system is then Ac = y, where A is the tridiagonal matrix

A =


α1 γ1
β2 α2 γ2

. . . . . . . . .

βm+1 αm+1 γm+1

βm+2 αm+2

 ,

with

α1 = 1, γ1 = 0,

β2 = B′1,3(x1), α2 = B′2,3(x1), γ2 = 0,

βi = Bi−1,3(xi−1), αi = Bi,3(xi−1), γi = Bi+1,3(xi−1), i = 3, . . . ,m,

βm+1 = 0, αm+1 = 0, γm+1 = 1,

βm+2 = 0, αm+2 = B′m+1,3(xm), γm+2 = B′m+2,3(xm).

We know that the matrix A is non-singular because we have already shown that the
spline g is unique.

If instead of the Hermite end conditions (6.4), we use the natural end conditions

g′′(x1) = 0 and g′′(xm) = 0, (6.5)

then we can use the same knot vector and just two of the equations change. We
know that these equations also have a unique solution because we have already show
that the natural spline is unique.

A third alternative to ensuring there is a unique C2 cubic spline interpolant to
the data (xi, yi), i = 1, . . . ,m, is to use the so-called free end condition, or not-a-knot
condition. In this approach, which is valid as long as m ≥ 4, we force the spline g to
be C3 at the two points x2 and xm−1. This is equivalent to forcing g to be a single
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cubic polynomial in the intervals [x1, x3] and [xm−2, xm]. To do this we set n = m,
and we let t be the knot vector

t = (t1, . . . , tm+4) = (x
[4]
1 , x3, . . . , xm−2, x

[4]
m ),

and we look for a spline solution of the form

g(x) =
m∑
i=1

ciBi,3,t(x), x ∈ [a, b].

We now simply obtain the m×m linear system Ac = y where c = [c1, c2, . . . , cm]T ,
y = [y1, y2, . . . , ym]T , and

A = [Bj,3,t(xi)]i,j=1,...,m.

We will show in the next section that this problem also has a unique solution by
viewing it as a special case of more general spline interpolation, in which the degree
is arbitrary and the so-called Schoenberg-Whitney conditions hold.

6.2 General spline interpolation

Let us now consider the more general problem of interpolation using splines of any
degree. Suppose we are given the data (xi, yi), i = 1, 2, . . . , n, where the xi are
increasing. To construct a spline g that passes through the data, we could consider
choosing any degree d, and choose some knot vector t = (t1, t2, . . . , tn+d+1), which
defines n B-splines, the same number of B-splines as data. Then we can ask whether
there exist unique coefficients c1, . . . , cn ∈ R such that the spline

g(x) =
n∑
i=1

ciBi,d,t(x)

interpolates the data, i.e., such that g(xi) = yi, i = 1, . . . , n. Writing Bi = Bi,d,t,
this is equivalent to asking whether the matrix

A = [Bj(xi)]i,j=1,...,n =

B1(x1) · · · Bn(x1)
...

...
B1(xn) · · · Bn(xn)


is non-singular. It turns out that the answer is very simple: there is a simple set of
conditions, known as the Schoenberg-Whitney conditions, that guarantee a unique
solution.
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Theorem 6.2 (Schoenberg-Whitney) The matrix A is non-singular if and only
if Bi(xi) > 0 for all i = 1, . . . , n.

The conditions Bi(xi) > 0 are of course equivalent to the single condition that the
diagonal of A is positive. In the case that the maximum multiplicity of the knots
in t is d, the conditions are also equivalent to

ti < xi < ti+d+1, i = 1, . . . , n.

In the case that the knot vector is closed, the condition that B1(x1) > 0 is equivalent
to t1 ≤ x1 < td+2, and the condition Bn(xn) > 0 is equivalent to tn < xn ≤ tn+d+1.
This allows the case that t1 = x1 and td+n+1 = xn. Therefore, the theorem can be
applied to show that, for example, C2 cubic spline interpolation using a closed knot
vector and free end conditions, as in the previous section, is uniquely solvable.

We will give a proof of the Schoenberg-Whitney theorem by proving a more
general result, as follows. It turns out that the matrix A is also totally positive,
meaning that all its minors are non-negative (a minor of A is the determinant of a
square submatrix of A). Not only that, a minor of A is positive if and only if its
diagonal is positive. In summary, this more general property of B-splines can be
stated as a follows.

Theorem 6.3 Let t = (t1, t2, . . . , tn+d+1) be a knot vector, and let m ≤ n. For any
increasing sequence of points x1, x2, . . . , xm and any increasing sequence of indices
j = (j1, j2, . . . , jm) with 1 ≤ j1 < jm ≤ n, the matrix

A(j) = [Bjk(xi)]i,k=1,...,m

has non-negative determinant. The determinant is positive if and only if Bji(xi) > 0
for all i = 1, . . . ,m.

The case m = n of Theorem 6.3 implies the Schoenberg-Whitney theorem.

To prove Theorem 6.3, we will work directly with the determinant of A(j), and
apply knot insertion, and use the fact that the determinant is a linear function of
its columns. Let us recall how the B-splines B1, . . . , Bn are refined by adding a new
knot z to some non-empty knot interval [tµ, tµ+1]. The refined knot vector is

τ = (t1, t2, . . . , tµ, z, tµ+1, . . . , tn+d+1),

and, as observed in Chapter 5, if B̃1, . . . , B̃n+1 are the B-splines on τ , then

Bj = αjB̃j + βjB̃j+1, j = 1, . . . , n, (6.6)
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where αj, βj ≥ 0 and

αj > 0 if tj < z,

βj > 0 if tj+d+1 > z.

Proof of Theorem 6.3. Suppose first that for some p, Bjp(xp) = 0. Then there are
two possible cases, either xp ≤ tjp or xp ≥ tjp+d+1. If xp ≤ tjp then Bjk(xi) = 0 for
all i ≤ p and k ≥ p. Then the first p rows of A(j) are linearly dependent and A(j) is
singular. If on the other hand xp ≥ tjp+d+1 then Bjk(xi) = 0 for all i ≥ p and k ≤ p.
Then the first p columns of A(j) are linearly dependent and A(j) is again singular.

It remains to consider the case that Bji(xi) > 0 for all i = 1, . . . ,m. Suppose
that there are at least d+1 knots in t between each consecutive pair of interpolation
points xi and xi+1. Since xi belongs to [tji , tji+d+1], any other point xp, p 6= i, cannot
belong to [tji , tji+d+1]. Thus Bji(xp) = 0 if p 6= i, and A(j) is a diagonal matrix and
since its diagonal elements are positive, it is non-singular with positive determinant.

Otherwise, we use induction on the number of knots between pairs of points
xi and xi+1. Suppose that between some pair of points xp and xp+1, there are less
than d+ 1 knots of t. We now form a new knot vector τ by adding a new knot z to
t between xp and xp+1. Then, recalling (6.6), we can replace each element Bjk(xi)
of A(j) by

αjkB̃jk(xi) + βjkB̃jk+1(xi).

Then, by the linearity of the determinant of A(j) with respect to its columns,

detA(j) =
∑

ε∈{0,1}m
γε det Ã(j + ε), (6.7)

where ε = (ε1, ε2, . . . , εm), and

γε =
m∏
k=1

(
(1− εk)αjk + εkβjk

)
≥ 0,

and
Ã(j + ε) = [B̃jk+εk(xi)]i,k=1,...,m.

Any j + ε in (6.7) is a non-decreasing subsequence of (1, 2, . . . , n + 1). If any
two consecutive elements of j + ε are equal then two of the columns of Ã(j + ε) are
equal and det Ã(j + ε) = 0. Therefore, we can remove such ε from the sum in (6.7),
and we have

detA(j) =
∑

ε∈{0,1}m
j+ε increasing

γε det Ã(j + ε). (6.8)
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By the induction hypothesis, all the determinants in the sum in (6.8) are non-
negative, and this implies by induction that detA(j) ≥ 0. To show that detA(j) > 0
we must show that there is at least one ε ∈ {0, 1}m for which j + ε is increasing,
γε > 0, and det Ã(j + ε) > 0. By the induction hypothesis, det Ã(j + ε) > 0 if the
diagonal of Ã(j + ε) is positive. It turns out that this is true for ε∗ = (ε∗1, . . . , ε

∗
m),

where
ε∗1 = · · · = ε∗p = 0, ε∗p+1 = · · · = ε∗m = 1.

To see this observe that j + ε∗ is clearly increasing, and it is sufficient to show that

αjk > 0, B̃jk(xk) > 0, k = 1, . . . , p, (6.9)

βjk > 0, B̃jk+1(xk) > 0, k = p+ 1, . . . ,m. (6.10)

Consider first (6.9), and let k ∈ {1, . . . , p}. Since tjk < xk ≤ xp < z, it follows that
αjk > 0. Further, let τ be the knot vector obtained from inserting z in t. Then
τjk = tjk and

τjk+d+1 =

{
tjk+d+1 if z ≥ tk + d+ 1,

max(z, tjk+d) otherwise.

Therefore, τjk < xk < τjk+d+1, and so B̃jk(xk) > 0, which establishes (6.9). To show
that (6.10) also holds, let k ∈ {p + 1, . . . ,m}. Since tjk+d+1 > xk ≥ xp+1 > z it
follows that βjk > 0. Further, τjk+d+2 = tjk+d+1 and

τjk+1 =

{
tjk if z ≤ tk,

min(z, tjk+1) otherwise.

Therefore, τjk+1 < xk < τjk+d+2, and so B̃jk+1(xk) > 0. �

6.3 Least squares approximation

While interpolation is suitable when the data set is small and relatively free of
noise, a better solution otherwise is to make some kind of approximation. One of the
easiest kinds of approximation is least squares approximation since it leads to a linear
system of equations. So now let us suppose we have data (xi, yi), i = 1, 2, . . . ,m,
where m could be large, and we would like to make an approxiamtion using a spline

g(x) =
n∑
i=1

cjBj,d,t(x),

with n ≤ m, using some suitable degree d and knot vector t = (t1, t2, . . . , tn+d+1).
Thus we want to find coefficients c1, . . . , cn so that g(xi) ≈ yi, i = 1, . . . ,m. The
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least squares solution to this is to minimize the sum of squares,

E =
m∑
i=1

(g(xi)− yi)2, (6.11)

which expands to

E =
m∑
i=1

(
n∑
j=1

cjBj(xi)− yi

)2

.

We can regard E as a function E : Rn → R in the unknowns c1, . . . , cn. It is quadratic
and at a minimum, all its partial derivatives are zero. The partial derivative with
respect to the variable ck is

∂E

∂ck
= 2

m∑
i=1

Bk(xi)

(
n∑
j=1

cjBj(xi)− yi

)
, (6.12)

and so all the partial derivatives of E are zero if and only if

n∑
j=1

(
m∑
i=1

Bk(xi)Bj(xi)

)
cj =

m∑
i=1

Bk(xi)yi, k = 1, . . . , n. (6.13)

This is a linear system of equations in the unknowns c1, . . . , cn, often referred to as
the normal equations. We can express this system in vector and matrix notation by
defining A to be the (rectangular) matrix in Rm,n,

A = [Bj(xi)]i=1,...,m,j=1,...,n =

B1(x1) · · · Bn(x1)
...

...
B1(xm) · · · Bn(xm)

 ,
and letting c = [c1, . . . , cn]T ∈ Rn and y = [y1, . . . , ym]T ∈ Rm. Then the system
becomes

(ATA)c = ATy. (6.14)

Thus there is a unique solution c if the n × n square matrix ATA is non-singular.
When is the matrix ATA non-singular? Suppose that ATAc̃ = 0 for some c̃ ∈ Rn.
Then c̃TATAc̃ = 0 and therefore ‖Ac̃‖2 = 0 and so Ac̃ = 0. It follows that if A has
full rank n, then c̃ = 0. Thus ATA is non-singular if A has full rank n.

Next, differentiating (6.12) with respect to cl gives

∂2E

∂ck∂cl
= 2

m∑
i=1

Bk(xi)Bl(xi),
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and so the Hessian matrix of E is 2ATA. Therefore, if ATA is positive definite, E
is a strictly convex function (it is strictly convex along every straight line in Rn), in
which case the solution c to the normal equations is the unique minimum.

By the Schoenberg-Whitney conditions, A has full rank n if there exists a
subsequence (xk1 , xk2 , . . . xkn) of the points (x1, x2, . . . , xm) such that Bi(xki) > 0,
i = 1, . . . , n. We conclude as follows.

Theorem 6.4 If there exists a subsequence (xk1 , xk2 , . . . xkn) of (x1, x2, . . . , xm) such
that

Bi(xki) > 0, i = 1, . . . , n,

then there is a unique solution c to the minimization of E in (6.11) and it is the
solution to the linear system (6.14).

6.4 Variation-Dimishing Spline Approximation

Schoenberg introduced the following spline approximation. Let f : [a, b] → R be
continuous, let d ≥ 1, n ≥ 1, and let t = (t1, . . . , tn+d+1) be a knot vector such that
td+1 = a and tn+1 = b and such that all knots td+2, . . . , tn are simple. Then the
spline

g(x) =
n∑
i=1

f(t∗i )Bi,d,t(x), x ∈ [a, b], (6.15)

where t∗i is the knot average t∗i = (ti+1 + · · · + ti+d)/d, is known as the variation-
diminishing spline approximation. This is a very simple approximation, which we
can think of as a generalization of piecewise-linear interpolation. It is in general
smoother than piecewise-linear interpolation, but still has good shape-preserving
properties, as we will see.

Theorem 6.5 If f is non-negative then so is g, if f is monotonically non-decreasing
then so is g, and if f is convex then so is g.

Proof. We leave the cases d = 1 and d = 2 as Exercise 6.15. Otherwise, d ≥ 3,
in which case g ∈ C2[a, b]. That g is non-negative when f is non-negative follows
immediately from the fact, already established, that the B-splines Bi,d,t are non-
negative.

Next, suppose that f is monotonically non-decreasing. By Theorem 4.6, the
derivative of g for x ∈ [a, b] is

g′(x) = d
n∑
i=1

f(t∗i )

(
Bi,d−1(x)

ti+d − ti
− Bi+1,d−1(x)

ti+d+1 − ti+1

)
= d

n∑
i=2

(
f(t∗i )− f(t∗i−1)

ti+d − ti

)
Bi,d−1(x),
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which is non-negative since f(t∗1), . . . , f(t∗n) is a non-decreasing sequence.

Finally, suppose that f is convex. Observe that

t∗i − t∗i−1 =
ti+1 + · · ·+ ti+d

d
− ti + · · ·+ ti+d−1

d
=
ti+d − ti

d
,

and therefore

g′(x) =
n∑
i=2

ciBi,d−1(x),

where

ci =
f(t∗i )− f(t∗i−1)

t∗i − t∗i−1
.

Differentiating g again and using Theorem 4.6 shows that

g′′(x) = (d− 1)
n∑
i=3

(
ci − ci−1
ti+d−1 − ti

)
Bi,d−2(x),

which is non-negative because the sequence c2, . . . , cn is non-decreasing by the con-
vexity of f . �

6.5 Exercises

6.1 Check that Theorem 6.5 also holds in the cases d = 1 and d = 2.
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Chapter 7

Surfaces

We will consider two ways of extending BB polynomials and Bézier curves to sur-
faces, one is to take tensor-products of BB basis polynomials, the other is to gen-
eralize BB polynomials to polynomials defined over triangles. The tensor-product
approach is very general and also applies to splines in B-spline form. We consider
both interpolation and least squares approximation by splines in tensor-product
B-spline form.

7.1 Tensor-product BB polynomials

If we take the tensor-product of the two linear spaces of polynomials πd1 and πd2 ,
we obtain a new linear space πd1,d2 = πd1 ⊗ πd2 , comprising all polynomials of two
variables with degree ≤ d1 in the first variable and of degree ≤ d2 in the second
variable. A basis can be constructed by taking products of bases for πd1 and πd2 .
For example, the monomial bases for π2 and π1 are {1, x, x2} and {1, y} respectively,
so that a basis for π2,1 is

{1, x, x2, y, xy, x2y}.
Thus a polynomial p ∈ πd1,d2 can be expressed uniquely in the form

p(x, y) =

d1∑
i=0

d2∑
j=0

ai,jx
iyj.

An alternative to the monomial basis is the BB polynomial basis, and thus we
can represent a polynomial p ∈ πd1,d2 as a tensor-product BB polynomial,

p(x, y) =

d1∑
i=0

d2∑
j=0

ci,jB
d1
i (λ)Bd2

j (µ), ci,j ∈ R, (7.1)

77
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Figure 7.1: A biquadratic Bézier surface

with respect to some rectangular domain [a1, b1]× [a2, b2], where

λ =
x− a1
b1 − a1

, µ =
y − a2
b2 − a2

. (7.2)

Similarly, we define a tensor-product Bézier surface in Rk as a parametric polynomial

p(x, y) =

d1∑
i=0

d2∑
j=0

ci,jB
d1
i (λ)Bd2

j (µ), ci,j ∈ Rk. (7.3)

We often restrict both p and p to the domain [a1, b1] × [a2, b2]. In practice, the
Euclidean space Rk will often be R3. The control net of p is the network of points
and line segments consisting of the control points ci,j and all line segments of the
form [ci,j, ci+1,j] and [ci,j, ci,j+1]. Figure 7.1 shows a biquadratic surface, where
m = n = 2, with its control net. For the scalar-valued function p we take its control
points to be (i/d1, j/d2, ci,j), i = 0, 1, . . . , d1, j = 0, 1, . . . , d2.

Tensor-product BB polynomials inherit various properties from BB polyno-
mials in one variable. On each of the four boundaries of the parameter domain
[a1, b1]× [a2, b2] the function p is a univarite BB polynomial whose control polygon
is one of the four boundaries of the control net of p. For example,

p(x, a2) =

d1∑
i=0

ci,0B
d1
i (µ).

At the corners of the parameter domain, p equals one of the corner coefficients, for
example

p(a1, a2) = c0,0.
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Since the tensor-product Bernstein polynomials

Bd1,d2
i,j = Bd1

i ⊗B
d2
j ,

sum to one:

d1∑
i=0

d1∑
j=0

Bd1,d2
i,j (λ, µ) =

d1∑
i=0

d2∑
j=0

Bd1
i (λ)Bd2

j (µ) =

d1∑
i=0

Bd1
i (λ)

d2∑
j=0

Bd2
j (µ) = 1,

every point p(x, y) is a non-negative affine combination of the coefficents ci,j. The
surface p lies in the convex hull of its control points ci,j.

7.1.1 The de Casteljau algorithm

Given a parameter pair (x, y) ∈ [a1, b1] × [a2, b2], one way of computing the value
p(x, y) is to evaluate the basis polynomials Bd1

i and Bd2
j at x and y respectively and

then apply the formula (7.1). Alternatively one can apply de Casteljau’s algorithm
to the rows of coefficients in each of the two directions. We apply d1 steps of the
algorithm with respect to x and d2 steps with respect to y. The last point generated
will be the point p(x, y), no matter how we order these d1 + d2 steps. Consider an
example. Let d1 = 2, d2 = 3, andc00 c01 c02 c03

c10 c11 c12 c13
c20 c21 c22 c23

 =

 0 0 0 6
18 2 0 8
4 0 4 18

 ,
and suppose that λ = 1/2 and µ = 2/3 in (7.2). Applying de Castlejau’s algorithm
first with respect to x gives 0 0 0 6

18 2 0 8
4 0 4 18

→ [
9 1 0 7
11 1 2 13

]
→
[
10 1 1 10

]
.

Then, applying the algorithm with respect to y gives[
10 1 1 10

]
→
[
4 1 7

]
→
[
2 5

]
→
[
4
]
,

so that p(x, y) = 4. Alternatively, we could apply the algorithm first with respect
to y, giving 0 0 0 6

18 2 0 8
4 0 4 18

→
 0 0 4

22/3 1/3 16/3
1/3 8/3 40/3

→
 0 8/3

26/9 34/9
20/9 88/9

→
 16/9

94/27
196/27

 ,
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and then with respect to x, 16/9
94/27
196/27

→ [
71/27
145/27

]
→
[
4
]
,

yielding the same answer.

7.1.2 Joining polynomial pieces together

Joining tensor-product BB polynomials is similar to joining univarite BB polynomi-
als if we arrange their parameter domains in a rectangular grid. By Theorem 2.1,
the partial derivative of p of order (r1, r2) is

Dr1,r2p(x, y) =
d1!

(d1 − r1)!
1

hr11

d2!

(d2 − r2)!
1

hr22

d1−r1∑
i=0

d2−r2∑
j=0

∆r1,r2ci,jB
d1−r1
i (λ)Bd2−r2

j (µ),

where hi = bi−ai, i = 1, 2, and ∆r1,r2ci,j denotes the forward difference of ci,j formed
by differencing r1 times in i and r2 times in j. So,

∆0,0ci,j = ci,j,

∆1,0ci,j = ci+1,j − ci,j,
∆0,1ci,j = ci,j+1 − ci,j,
∆1,1ci,j = ci+1,j+1 − ci+1,j − ci,j+1 + ci,j,

and so on.

If, for example, p is bicubic, i.e., d1 = d2 = 3 then it is uniquely determined
by the sixteen Hermite corner data

Dr1,r2p(ak, bl), r1, r2 ∈ {0, 1}, k, l ∈ {1, 2}.

By the formula for the partial derivatives, these Hermite data can be expressed in
terms of differences of the BB coefficients. For example, at the corner point (a1, a2)
we have

p(a1, a2) = c0,0

D1,0p(a1, a2) =
3

h1
(c1,0 − c0,0),

D0,1p(a1, a2) =
3

h2
(c0,1 − c0,0),

D1,1p(a1, a2) =
9

h1h2
(c1,1 − c1,0 − c0,1 + c0,0).
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a 1 b1 c 1

b2

a 2

Figure 7.2: Parameter domains of p and q

Alternatively, one obtains the BB coefficients from the Hermite data.

In this way, in analogy to the method of Section 2.4, we could construct a
bicubic Hermite spline interpolant to data given on a rectangular grid of points
(xk, yl), for some x1 < x2 < · · · < xm1 and for some y1 < y2 < · · · < ym2 . Given
some Hermite data values f r1,r2k,l ∈ R, r1, r2 ∈ {0, 1}, k = 1, . . . ,m1, l = 1, . . . ,m2,
we could find a unique C1 bicubic spline g that satisfies

Dr1,r2g(xk, yl) = f r1,r2k,l , r1, r2 ∈ {0, 1}, k = 1, . . . ,m1, l = 1, . . . ,m2.

An alternative approach to constructing a tensor-product spline is to derive
the smoothness conditions required by the BB coefficients of adjacent polynomial
pieces. Due to the tensor-product nature of the spline, these conditions just reduce
to those for univariate polynomials, applied to each row of coefficients. For example,
suppose that q is a second BB polynomial

q(x, y) =

d1∑
i=0

d2∑
j=0

ei,jB
d1
i (ν)Bd2

j (µ), ei,j ∈ R, (7.4)

where

ν =
x− b1
c1 − b1

,

on an adjacent parameter domain [b1, c1]× [a2, b2]; see Figure 7.2. Then p and q join
with continuity of order r at x = b1, written Cr, if and only if

Dk,0p(b1, y) = Dk,0q(b1, y), k = 0, 1, . . . , r, y ∈ [a2, b2].

From the formula for partial derivatives, these conditions are equivalent to

1

(b1 − a1)k
d2∑
j=0

∆k,0cd1−k,jB
d2
j (µ) =

1

(c1 − b1)k
d2∑
j=0

∆k,0e0,jB
d2
j (µ),
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for k = 0, 1, . . . , r and µ ∈ [0, 1]. So by the linear independence of the basis polyno-
mials Bd2

j , the conditions are equivalent to

∆k,0cd1−k,j
(b1 − a1)k

=
∆k,0e0,j

(c1 − b1)k
, k = 0, 1, . . . , r, j = 0, 1, . . . , d2.

Similar to Theorem 2.4, these conditions can be expressed in the form

ei,j =
i∑

k=0

cd−i+k,jB
i
k(α), i = 0, 1, . . . , r, j = 0, 1, . . . , d2,

where

α =
c1 − a1
b1 − a1

.

7.2 Tensor-product splines in B-spline form

A tensor-product spline function has the form

s(x, y) =

n1∑
i=1

n2∑
j=1

ci,jφi(x)ψj(y), (7.5)

where φi(x) = Bi,d1,σ(x) and ψj(y) = Bj,d2,τ (y) are the B-splines defined by the
polynomial degrees d1 and d2 and the knot vectors

σ = (σ1, σ2, . . . , σn1+d1+1), τ = (τ1, τ2, . . . , τn2+d2+1).

We can also write s as

s(x, y) =

n1∑
i=1

n2∑
j=1

ci,jBi,j(x, y),

a linear combination of the tensor-product B-splines Bi,j(x, y) = φi(x)ψj(y).

7.2.1 Evaluation

To evaluate s at a given point (x, y) we can first locate knot intervals [σµ, σµ+1] and
[τν , τν+1] that contain x and y respectively, in which case

s(x, y) =

µ∑
i=µ−d1

ν∑
j=ν−d2

ci,jφi(x)ψj(y).
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We can now use Algorithm 1 of Subsection 3.9.1 to compute the φi(x) and ψj(y)
in the sum to compute s(x, y). We could, for example, use the vector and matrix
notation

φ(x) = [φµ−d1(x), . . . , φµ(x)]T , ψ(y) = [ψν−d2(y), . . . , ψν(y)]T ,

and

C = [ci,j]i=µ−d1,...,µ,j=ν−d2,...,ν ,

so that

s(x, y) = φ(x)TCψ(y).

7.2.2 Interpolation to gridded data

Suppose next that we are given rectangular grid data (xi, yj, fi,j), i = 1, . . . , n1,
j = 1, . . . , n2, where the xi are increasing and the yj are increasing. We would like
to find the coefficients ci,j of the spline in (7.5) such that s(xi, yj) = fi,j for all
i = 1, . . . , n1, j = 1, . . . , n2. Thus we want to solve the equations

n1∑
p=1

n2∑
q=1

cp,qφp(xi)ψq(yj) = fi,j, i = 1, . . . , n1, j = 1, . . . , n2. (7.6)

We can break this problem down into two simpler problems by defining

dp,j =

n2∑
q=1

cp,qψq(yj), p = 1, . . . , n1, j = 1, . . . , n2. (7.7)

With this substitution we can rewrite the equations in (7.6) as

n1∑
p=1

dp,jφp(xi) = fi,j, (7.8)

and we can now solve the problem in two steps. In the first step we solve the
equations (7.8) for the unknowns dp,j and in the second step we solve (7.7) for the
unknowns cp,q. We can express both steps in vector and matrix notation, defining
the matrices

A =

 φ1(x1) · · · φn1(x1)
...

...
φ1(xn1) · · · φn1(xn1)

 , B =

 ψ1(y1) · · · ψn2(y1)
...

...
ψ1(yn2) · · · ψn2(yn2)

 ,
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and

C = [ci,j]i=1,...,n1,j=1,...,n2 ,

D = [di,j]i=1,...,n1,j=1,...,n2 ,

F = [fi,j]i=1,...,n1,j=1,...,n2 .

Further, let d1, . . . ,dn2 denote the columns of D and d̃1, . . . , d̃n1 the rows of D, and
similarly for C and F . With this notation, the first step consists of solving

Adj = fj, j = 1, . . . , n2, (7.9)

for the vectors dj, and the second step consists of solving

Bc̃p = d̃p, p = 1, . . . , n1, (7.10)

for the vectors c̃p. Thus, in the first step, for each j, we carry out interpolation of the
j-th row of data (xi, fi,j). In the second step, for each p, we carry out interpolation
of the p-th column of the coefficients computed in the first step, (yj, dp,j). We can
also write the two steps more succinctly as

AD = F, (7.11)

BCT = DT . (7.12)

Thus, due to the tensor-product nature of the spline and the rectangular nature
of the data, the interpolation problem (7.6) reduces to univariate interpolation in
each variable independently, and has a unique solution if the matrices A and B are
non-singular. Due to the Schoenberg-Whitney theorem (Theorem 6.2) we conclude
as follows.

Theorem 7.1 If φi(xi) > 0, i = 1, . . . , n1, and ψj(yj) > 0, j = 1, . . . , n2, then the
interpolation problem (7.6) has a unique solution whose coefficient matrix C can be
found by solving the linear systems (7.11) and (7.12).

Notice here that we are solving several linear systems using the same matrix A
or B, only the right hand side changes. So we can reduce the amount of computation
considerably if we use a technique like LU decomposition to factorize A and B in a
preprocessing step, so that the individual linear systems can be solved efficiently.

7.2.3 Least squares approximation

In analogy to the interpolation problem, the least squares problem for a rectangular
grid of data can be reduced to univariate approxmation. Suppose we are given
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rectangular grid data (xi, yj, fi,j), i = 1, . . . ,m1, j = 1, . . . ,m2, where the xi are
increasing and the yj are increasing. Assuming that n1 ≤ m1 and n2 ≤ m2, we
would like to find the coefficients ci,j of the spline in (7.5) such that s(xi, yj) ≈ fi,j
for all i = 1, . . . ,m1, j = 1, . . . ,m2. The least squares solution to this problem
consists of minimizing the sum of squares

E =

m1∑
i=1

m2∑
j=1

(s(xi, yj)− fi,j)2.

Thus we want to find the cp,q that minimize

E =

m1∑
i=1

m2∑
j=1

(
n1∑
p=1

n2∑
q=1

cp,qφp(xi)ψq(yj)− fi,j

)2

. (7.13)

We can proceed as in the univariate case treated in Section 6.3. The function E,
as a function of the n1n2 variables cp,q, is quadratic, and at a minimum its partial
derivatives are zero. Its partial derivative with respect to ck,l is

∂E

∂ck,l
= 2

m1∑
i=1

m2∑
j=1

φk(xi)ψl(yj)

(
n1∑
p=1

n2∑
q=1

cp,qφp(xi)ψq(yj)− fi,j

)
, (7.14)

and so the partial derivatives of E are zero if and only if

n1∑
p=1

n2∑
q=1

(
m1∑
i=1

φk(xi)φp(xi)

)(
m1∑
j=1

ψl(yj)ψq(yj)

)
cp,q =

m1∑
i=1

m2∑
j=1

φk(xi)ψl(yj)fi,j,

for k = 1, . . . , n1, l = 1, . . . , n2, These are the normal equations for the minimization
problem and we can break them down into univariate linear systems. Let us define
the matrices

A =

 φ1(x1) · · · φn1(x1)
...

...
φ1(xm1) · · · φn1(xm1)

 , B =

 ψ1(y1) · · · ψn2(y1)
...

...
ψ1(ym2) · · · ψn2(ym2)

 ,
and

C = [ci,j]i=1,...,n1,j=1,...,n2 ,

D = [di,j]i=1,...,n1,j=1,...,m2 ,

F = [fi,j]i=1,...,m1,j=1,...,m2 .
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Let d1, . . . ,dm2 denote the columns of D and d̃1, . . . , d̃n1 the rows of D, and similarly
for C and F . With this notation, we can solve the system in two steps. The first
step consists of solving

(ATA)dj = AT fj, j = 1, . . . ,m2,

for the vectors dj, and the second step consists of solving

(BTB)c̃p = BT d̃p, p = 1, . . . , n1,

for the vectors c̃p. We can write the two steps more succinctly as

(ATA)D = ATF, (7.15)

(BTB)CT = BTDT . (7.16)

Applying the Schoenberg-Whitney theorem again, we make the following conclusion.

Theorem 7.2 Suppose that there exists a subsequence (xk1 , xk2 , . . . xkn1 ) such that
φi(xki) > 0, i = 1, . . . , n1, and a subsequence (yl1 , yl2 , . . . yln2 ) such that ψj(xlj) > 0,
j = 1, . . . , n2. Then E in (7.13) has a unique minimizer whose coefficient matrix C
can be found by solving the linear systems (7.15) and (7.16).

7.3 Triangular BB polynomials

An alternative choice of bivariate polynomials is the linear space of polynomials of
total degree at most d, for some d ≥ 0, i.e, polynomials of the form

p(x, y) =
∑

0≤i+j≤d

ai,jx
iyj,

(where we understand i, j ≥ 0 in the summation). The degree of p is the largest
value of i+ j over all non-zero ai,j in the summation. As in the univariate case, we
denote this space by πd. The monomials xiyj in the sum are linearly independent
and form a basis for πd. Since the number of such polynomials is

1 + 2 + · · ·+ (d+ 1) =

(
d+ 2

2

)
,

this is also the dimension of πd. For example, the monomial basis of π2 is

{1, x, y, x2, xy, y2},

which has six elements.
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If we use such polynomials to model surfaces it turns out that, similar to the
univariate case, there is again an alternative basis that makes the modelling easier.
This is the basis of triangular BB basis polynomials

Bd
i,j(x, y) =

d!

i!j!(d− i− j)!
xiyj(1− x− y)d−i−j, 0 ≤ i+ j ≤ d,

To show that these polynomials are linearly independent, it is sufficient to show that
any monomial xkyl, k + l ≤ d, can be expressed as a linear combination of the Bd

i,j.

Lemma 7.3 For k, l ≥ 0 and k + l ≤ d,

xkyl =
(d− k − l)!

d!

∑
i+j≤d
i≥k, j≥l

i!j!

(i− k)!(j − l)!
Bd
i,j(x, y).

Proof. We use the trinomial theorem:

xkyl = xkyl(x+ y + (1− x− y))d−k−l

= xkyl
∑

i+j≤d−k−l
i≥0, j≥0

(d− k − l)!
i!j!(d− k − l − i− j)!

xiyj(1− x− y)d−k−l−i−j

=
∑
i+j≤d
i≥k, j≥l

(d− k − l)!
(i− k)!(j − l)!(d− i− j)!

xiyj(1− x− y)d−i−j,

which by the definition of Bd
i,j gives the result. �

We are often mainly interested in (x, y) in the triangular domain

D := {(x, y) ∈ R2 : x, y ≥ 0, x+ y ≤ 1}

because the polynomials Bd
i,j are non-negative in D. By the trinomial theorem they

also sum to one, ∑
0≤i+j≤d

Bn
i,j(x, y) =

(
x+ y + (1− x− y)

)d
= 1.

The form of Bd
i,j suggests a more symmetric way of viewing it, as a function of three

variables. Let i = (i1, i2, i3) for ik = 0, 1, 2, . . ., and let λ = (λ1, λ2, λ3), with λk ∈ R.
Then we define

Bd
i (λ) =

(
d

i

)
λi11 λ

i2
2 λ

i3
3 , (7.17)
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where (
d

i

)
=

d!

i1!i2!i3!
.

Then we see that
Bd
i,j(x, y) = Bd

i,j,d−i−j(x, y, 1− x− y).

For example, the cubic basis polynomials with the trivariate indexing are:

B3
003

B3
102 B3

012

B3
201 B3

111 B3
021

B3
300 B3

210 B3
120 B3

030

and are given by the formulas

λ33
3λ1λ

2
3 3λ2λ

2
3

3λ21λ3 6λ1λ2λ3 3λ22λ3
λ31 3λ21λ2 3λ1λ

2
2 λ32

We now define a triangular BB polynomial with respect to an arbitary triangle
T ∈ R2 with vertices v1,v2,v3 as

p(x) = p(x, y) =
∑
|i|=d

ciB
d
i (λ), ci ∈ R, (7.18)

where |i| = i1 + i2 + i3 and λ1, λ2, λ3 are the barycentric coordinates of the point
x = (x, y) with respect to the triangle T , i.e., the three values such that

λ1 + λ2 + λ3 = 1, (7.19)

λ1v1 + λ2v2 + λ3v3 = x. (7.20)

Analogously, if we replace the coefficients ci by points ci in some Euclidean space
such as R3, we obtain a triangular Bézier surface

p(x) = p(x, y) =
∑
|i|=d

ciB
d
i (λ). (7.21)

The points ci are the control points of p, which, together with all line segments that
connect neighbouring points, form the control net of p. Similarly, the control points
of p are defined to be (ξi, ci) ∈ R3, |i| = d, where ξi is the domain point

ξi =
i1v1 + i2v2 + i3v3

d
.
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Figure 7.3: A quadratic triangular Bézier surface

Figure 7.3 shows a quadratic surface, where d = 2, with its control net.

How do we find λ1, λ2, λ3? If vk = (xk, yk), k = 1, 2, 3, then we can express
(7.19–7.20) in matrix form as 1 1 1

x1 x2 x3
y1 y2 y3

λ1λ2
λ3

 =

1
x
y

 ,
and Cramer’s rule gives the solution

λ1 =
D1

D
, λ2 =

D2

D
, λ3 =

D3

D
,

where

D1 =

∣∣∣∣∣∣
1 1 1
x x2 x3
y y2 y3

∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣
1 1 1
x1 x x3
y1 y y3

∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣
1 1 1
x1 x2 x
y1 y2 y

∣∣∣∣∣∣ ,
and

D =

∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ .
Since the signed area A(v1,v2,v3) of the triangle T = [v1,v2,v3] is D/2, and the
signed area of, for example, the subtriangle A(x,v2,v3) is D1/2, and so on, we can
alternatively express the barycentric coordinates of x as ratios of triangle areas,

λ1 =
A(x,v2,v3)

A(v1,v2,v3)
, λ2 =

A(v1,x,v3)

A(v1,v2,v3)
, λ3 =

A(v1,v2,x)

A(v1,v2,v3)
.
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If x ∈ T then these coordinates are non-negative.

Triangular BB polynomials have several properties analogous to tensor-product
ones. For example, on each of the three edges of the triangle T , p is a univariate
polynomial whose BB control polygon is part of the control net of p. For example,
if x is a point on the edge [v1,v2] then its barycentric coordinates are such that
λ3 = 0 and λ1 + λ2 = 1 and then

p(x) = p(λ1v1 + λ2v2) =
∑

i1+i2=d

ci1,i2,0
d!

i1!i2!
λi11 λ

i2
2 .

At the corners of the triangle T , p equals the corresponding corner coefficient. For
example if x = v1 then λ2 = λ3 = 0 and λ1 = 1 and so

p(x) = p(v1) = cd,0,0.

Like tensor-product Bézier surfaces, triangular Bézier surfaces are affinely invariant
and have the convex hull and bounding box properties.

7.3.1 The de Casteljau algorithm

The basis polynomials satisfy a recursion formula analogous to the univariate case,
c.f. Lemma 1.3. Here we make the convention that Bd

i (x) = 0 whenever i1 < 0 or
i2 < 0 or i3 < 0.

Lemma 7.4 For i1, i2, i3 ≥ 0 and |i| = d,

Bd
i (λ) =

3∑
k=1

λkB
d−1
i−ek(λ), (7.22)

where e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Proof. The proof is similar to that of Lemma 1.3. For i1, i2, i3 ≥ 1, one can easily
check the following formula for trinomial coefficients,(

d

i

)
=

(
d− 1

i− e1

)
+

(
d− 1

i− e2

)
+

(
d− 1

i− e3

)
,

and substituting this into the definition (7.17) leads to (7.22). The cases when any
of the indices i1, i2, i3 are zero are easy to check. �
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From this recursion we obtain a de Casteljau algorithm for evaluating p in (7.18)
at x ∈ R2. We initialize the algorithm by setting c0i = ci, |i| = d. Then, for each
r = 1, . . . , d, let

cri = λ1c
r−1
i+e1

+ λ2c
r−1
i+e2

+ λ3c
r−1
i+e3

, |i| = d− r. (7.23)

Theorem 7.5 The last value computed, cd0,0,0, is the value of p(x) in (7.18).

Proof. Similar to the proof of Theorem 1.6, one uses the recursion (7.22) to show,
by induction on r, that

p(x) =
∑
|i|=d−r

criB
d−r
i (λ) (7.24)

for all r = 0, 1, . . . , d. For r = 0, (7.24) follows from the definition of p(x). For
r ≥ 1, we may assume that (7.24) holds with r replaced by r − 1, and then

p(x) =
∑

|i|=d−r+1

cr−1i Bd−r+1
i (λ)

=
∑

|i|=d−r+1

cr−1i

3∑
k=1

λkB
d−r
i−ek(λ)

=
3∑

k=1

λk
∑

|i|=d−r+1

cr−1i Bd−r
i−ek(λ)

=
3∑

k=1

λk
∑

|i|=d−r+1
ik≥1

cr−1i Bd−r
i−ek(λ)

=
3∑

k=1

λk
∑
|i|=d−r

cr−1i+ek
Bd−r

i (λ),

which, by (7.23), reduces to (7.24). �

The de Casteljau algorithm can be viewed as a tetrahedral scheme. The flow of
computations in the case d = 2 is as follows,

c0002
c0101 c0011

c0200 c0110 c0020

→ c1001
c1100 c1010

→ c2000

Analogous to Theorem 1.7, the de Casteljau coefficients are themselves triangular
BB polynomials:
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Theorem 7.6 The coefficient cri , |i| = d− r, in the de Casteljau algorithm (7.23),
viewed as a function of x, is the BB polynomial

cri =
∑
|j|=r

ci+jB
r
j (λ). (7.25)

The proof is similar to that of Theorem 1.7, using induction on r but using instead
the recursion (7.22).

7.3.2 Derivatives

Let us consider the directional derivative of p in some vector direction u ∈ R2,

Dup(x) = u · ∇p(x),

where · is the scalar product and ∇p(x) denotes the gradient of p at x. In order to
find a formula for Dup(x) let us consider first how we take a directional derivative
of a basis polynomial.

Lemma 7.7 The directional derivative of the basis polynomial Bd
i in (7.18) in the

vector direction u ∈ R2 is

DuB
d
i (λ) = d

3∑
k=1

µkB
d−1
i−ek(λ), (7.26)

where µ1, µ2, µ3 are the unique solutions to the equations

µ1 + µ2 + µ3 = 0, (7.27)

µ1v1 + µ2v2 + µ3v3 = u. (7.28)

We might call µ1, µ2, µ3 the ‘directional coordinates’ of u with respect to T . They
are similar to barycentric coordinates, but they sum to zero instead of one. As an
example, the vector u = v2 − v1 has directional coordinates µ1 = −1, µ2 = 1, and
µ3 = 0, and the vector u = v3− (v1 + v2)/2 has directional coordinates µ1 = −1/2,
µ2 = −1/2, and µ3 = 1.

Proof. By the definition of Bd
i (λ) in (7.17), we see that

∂

∂λk
Bd

i (λ) = dBd−1
i−ek(λ), k = 1, 2, 3,
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and therefore, by the chain rule,

DuB
d
i (λ) =

3∑
k=1

∂

∂λk
Bd

i (λ)Duλk = d
3∑

k=1

Bd−1
i−ek(λ)Duλk.

Taking the directional derivative of equations (7.19–7.20) in the direction u gives

Duλ1 +Duλ2 +Duλ3 = 0,

Duλ1v1 +Duλ2v2 +Duλ3v3 = u,

and so Duλk = µk, k = 1, 2, 3. �

In analogy to Theorem 1.8, we have

Theorem 7.8 The directional derivative of the BB polynomial p in (7.18) in the
vector direction u ∈ R2 is

Dup(x) = d
∑
|i|=d−1

∆uciB
d−1
i (λ), (7.29)

where

∆uci = ∆u,T ci =
3∑

k=1

µkci+ek .

Proof. By Lemma 7.7,

Dup(x) =
∑
|i|=d

ciDuB
d
i (λ)

= d
∑
|i|=d

ci

3∑
k=1

µkB
d−1
i−ek(λ)

= d

3∑
k=1

µk
∑
|i|=d

ciB
d−1
i−ek(λ)

= d

3∑
k=1

µk
∑
|i|=d
ik≥1

ciB
d−1
i−ek(λ)

= d
3∑

k=1

µk
∑
|i|=d−1

ci+ekB
d−1
i (λ).

�
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v1

T
v3

v4

2v

U

Figure 7.4: Triangles sharing a common edge.

Continuing to take directional derivatives in this way, we can also find higher
order derivatives.

Theorem 7.9 The r-th order derivative of the BB polynomial p in (7.18) in the
vector directions u1, . . . ,ur ∈ R2, 1 ≤ r ≤ d, is

Du1 · · ·Durp(x) =
d!

(d− r)!
∑
|i|=d−r

∆u1 · · ·∆urciB
d−r
i (λ).

7.3.3 Joining polynomial pieces together

Consider now how we might build a spline over a triangulation in the plane from
triangular BB polynomials. The main issue is how to fit together two triangular BB
polynomials whose triangular parameter domains share a common edge. Suppose
then that p is again the BB polynomial in (7.18), of degree ≤ d, whose parameter
domain is the triangle T = [v1,v2,v3] and that we again denote by λ1, λ2, λ3 the
barycentric coordinates of the point x ∈ R2 with respect to T . Then, for any point
v4 ∈ R2 on the side of the edge [v1,v2] opposite to v3, let q be a BB polynomial of
degree ≤ d, defined on the triangle U = [v1,v2,v4],

q(x) =
∑
|i|=d

c̃iB
d
i (λ̃), (7.30)

where λ̃1, λ̃2, λ̃3 are the barycentric coordinates of x with respect to U ; see Figure 7.4.
Suppose that the point x belongs to the common edge [v1,v2]. Then λ1 = λ̃1,
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λ2 = λ̃2, and λ3 = λ̃3 = 0, and

p(x) =
∑

i1+i2=d

ci1,i2,0
d!

i1!i2!
λi11 λ

i2
2 ,

q(x) =
∑

i1+i2=d

c̃i1,i2,0
d!

i1!i2!
λi11 λ

i2
2 .

It follows that p and q join continuously on the common edge [v1,v2] if and only if

ci1,i2,0 = c̃i1,i2,0, i1 + i2 = d. (7.31)

This is equivalent to saying that the control nets of p and q have the same boundary
polygon on [v1,v2]. Under this condition we can define the spline

s(x) :=

{
p(x), x ∈ T ;

q(x), x ∈ U.
(7.32)

Under what condition is s also C1? It is C1 if its directional derivative Dus is
continuous on the edge [v1,v2] for any vector u transversal to the vector v2 − v1,
i.e., for any non-zero vector u that is not parallel to v2 − v1. For such a u we
compare the derivative formulas

Dup(x) = d
∑
|i|=d−1

∆u,T ciB
d−1
i (λ),

Duq(x) = d
∑
|i|=d−1

∆u,U c̃iB
d−1
i (λ̃).

In the case that x ∈ [v1,v2] these reduce to

Dup(x) = d
∑

i1+i2=d−1

∆u,Uci1,i2,0
(d− 1)!

i1!i2!
λi11 λ

i2
2 ,

Duq(x) = d
∑

i1+i2=d−1

∆u,U c̃i1,i2,0
(d− 1)!

i1!i2!
λi11 λ

i2
2 .

The condition for C1 continuity is therefore

∆u,T ci1,i2,0 = ∆u,U c̃i1,i2,0, i1 + i2 = d− 1, (7.33)

in addition to (7.31). Condition (7.33) can be rewritten in the form

c̃i1,i2,1 =
3∑

k=1

αk c(i1,i2,0)+ek , i1 + i2 = d− 1, (7.34)

where α1, α2, α3 are the barycentric coordinates of v4 with respect to T . This follows
from using (7.31) and taking the difference of (7.28) and the corresponding equation
for U . The coordinates α1 and α2 are non-negative but α3 is negative.



96 CHAPTER 7. SURFACES



Chapter 8

Blossoming

The blossom or polar form of a polynomial provides a simple way to derive the con-
tinuity conditions for joining BB polynomials together (as in Theorem 2.4). It also
shows how a BB polynomial is subdivided into two BB polynomial pieces through
de Casteljau’s algorithm.

8.1 The three axioms

Every polynomial of degree ≤ d,

p(x) =
d∑
i=0

aix
i, ai ∈ R, (8.1)

has a unique d-variate blossom, also called a polar form, P . The blossom is the
unique polynomial P (x1, x2, . . . , xd) that is

(i) symmetric,

(ii) multi-affine, and

(iii) agrees with p on its diagonal.

By symmetric we mean that P has the same value if we swap any two variables xi
and xj:

P (. . . , xi, . . . , xj, . . .) = P (. . . , xj, . . . , xi, . . .).

By multi-affine we mean that P is affine with respect to each variable: if

x1 = (1− λ)x+ λy,

97
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then
P (x1, x2, . . . , xd) = (1− λ)P (x, x2, . . . , xd) + λP (y, x2, . . . , xd),

and similarly for the other variables. By the diagonal property we understand that

P (x[d]) = P (x, x, . . . , x︸ ︷︷ ︸
d

) = p(x).

We will see shortly that the blossom is unique, but to show that it exists, just replace
each term xi in (8.1) by the expression∑

1≤k1<k2<···<ki≤d

xk1xk2 · · ·xki
/(d

i

)
. (8.2)

For example, the quadratic

p(x) = a0 + a1x+ a2x
2

has the bivariate blossom

P (x1, x2) = a0 + a1
x1 + x2

2
+ a2x1x2,

and the cubic
p(x) = a0 + a1x+ a2x

2 + a3x
3

has the trivariate blossom

P (x1, x2, x3) = a0 + a1
x1 + x2 + x3

3
+ a2

x1x2 + x1x3 + x2x3
3

+ a3x1x2x3.

Using (8.2), the symmetry and multi-affine properties of P are easily verified. The
diagonal property holds because

(
d
i

)
is the number of terms in the sum in (8.2).

We will use the blossom to derive various properties of BB polynomials without
needing the explicit formula (8.2): it is the defining properties (i), (ii), (iii) that are
important.

8.2 de Casteljau’s algorithm

It turns out that we can express both the coefficients of a BB polynomial p and
the points in the de Casteljau algorithm very simply in terms of the blossom of p.
Consider again the BB polynomial

p(x) =
d∑
i=0

ciB
d
i (λ), (8.3)
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with coefficients ci ∈ R, and λ = (x−a)/(b−a), and recall de Casteljau’s algorithm:
we let c0i = ci, i = 0, 1, . . . , d, and for r = 1, . . . , d, we let

cri = (1− λ)cr−1i + λcr−1i+1 , i = 0, 1, . . . , d− r. (8.4)

Then cd0 = p(x).

Theorem 8.1 The d-variate blossom P of p is unique and the points in de Castel-
jau’s algorithm can be expressed as

cri = P (a[d−r−i], b[i], x[r]), r = 0, 1, . . . , d, i = 0, 1, . . . , d− r.

In particular, since the coefficients ci of p are the de Casteljau points ci = c0i (for
any value of x), we also have

ci = P (a[d−i], b[i]), i = 0, 1, . . . , d. (8.5)

Proof. For each r = 0, 1, . . . , d and i = 0, 1, . . . , d− r, let

αri = P (a[d−r−i], b[i], x[r]).

By the symmetry and multi-affine properties of P and the fact that

x = (1− λ)a+ λb,

it follows that
αri = (1− λ)αr−1i + λαr−1i+1 , r ≥ 1, (8.6)

and therefore,

αd0 =
d∑
i=0

α0
iB

d
i (λ).

So by the diagonal property of P ,

p(x) =
d∑
i=0

α0
iB

d
i (λ).

Since this holds for all x and the Bd
i are linearly independent, it follows that α0

i = ci.
It then also follows that αri = cri for all r and i.

It remains to show that P is unique. To this end, suppose P and Q are
d-variate blossoms of p, and let x1, . . . , xd ∈ R. We will show that

P (x1, . . . , xd) = Q(x1, . . . , xd). (8.7)
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For each r = 0, 1, . . . , d and i = 0, 1, . . . , d− r, let

αri = P (a[d−r−i], b[i], x1, . . . , xr),

βri = Q(a[d−r−i], b[i], x1, . . . , xr).

By the symmetry and multi-affine properties of P and Q and since

xr = (1− λr)a+ λrb,

where λr = (xr − a)/(b− a), we have the recursions

αri = (1− λr)αr−1i + λrα
r−1
i+1 ,

βri = (1− λr)βr−1i + λrβ
r−1
i+1 .

By (8.5), α0
i = β0

i = ci, and so by induction on r, αri = βri for all r and i. Hence,
αd0 = βd0 , which gives (8.7). �

For example, the coefficients of de Casteljau’s algorithm in the cubic case are:

P (a, a, a) P (a, a, x) P (a, x, x) P (x, x, x)
P (a, a, b) P (a, b, x) P (b, x, x)
P (a, b, b) P (b, b, x)
P (b, b, b)

8.3 Joining BB polynomials together

One application of the blossom is the derivation of the continuity conditions for
joining BB polynomials together smoothly, i.e., a proof of Theorem 2.4. Consider
again the spline

s(x) =

{
p(x), a ≤ x < b;

q(x), b ≤ x < c;

with p as in (8.3) and where

q(x) =
d∑
i=0

eiB
d
i (µ),

for coefficients ei ∈ R, with µ = (x− b)/(c− b).
Let us define

ν =
c− a
b− a

.
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To obtain the condition for Cr continuity of s at x = b, observe that the
derivatives of q of order ≤ r at x = b depend only e0, e1, . . . , er. Thus we just need
to express p as a BB polynomial with respect to the interval [b, c] and equate the first
r + 1 of its coefficients with e0, e1, . . . , er. This motivates us to find the coefficients
α0, . . . , αd in the representation

p(x) =
d∑
i=0

αiB
d
i (µ),

with µ = (x− b)/(c− b). We can express these using the blossom of p:

αi = P (b[d−i], c[i]).

On the other hand, from the de Casteljau algorithm applied to p on the interval
[a, b] with x = c we also have

P (b[d−i], c[i]) = cid−i,

Moreover, by (2.5),

cid−i =
i∑

j=0

cd−i+jB
i
j(ν),

and we conclude that

αi =
i∑

j=0

cd−i+jB
i
j(ν), i = 0, 1, . . . , d.

Thus, the condition for Cr continuity of s is that

ei =
i∑

j=0

cd−i+jB
i
j(ν), i = 0, 1, . . . , r,

which proves Theorem 2.4.

8.4 Subdivision

Another application of the blossom is to subdivision. Consider again the BB poly-
nomial p(x) in (8.3), and consider the two outer diagonal rows of points in the de
Casteljau algorithm (8.4), that is

c00, c
1
0, . . . , c

d
0, and cd0, c

d−1
1 , . . . , c0d.



102 CHAPTER 8. BLOSSOMING

By Theorem 8.1, these can be expressed in terms of P as

ci0 = P (a[d−i], x[i]), and cd−ii = P (b[i], x[d−i]).

Therefore, again by Theorem 8.1, but applied to the sub-interval [a, x], we see that
the ci0 are the coefficients of p when represented as a BB polynomial with respect to
[a, x], i.e.,

p(y) =
d∑
i=0

ci0B
d
i (µ),

where µ = (y−a)/(x−a), and similarly, the cn−ii are the coefficients of p represented
as a BB polynomials with respect to the sub-interval [x, b],

p(y) =
d∑
i=0

cd−ii Bd
i (ν),

where ν = (y − x)/(b− x).

On subdividing p repeatedly, one can obtain the BB polynomial coefficients
of p on any number of adjacent sub-intervals [a0, a1], [a1, a2], . . ., [ak−1, ak], with
a0 = a and ak = b. Together, their individual control polygons form a composite
control polygon for p with kd + 1 vertices. As the sub-intervals get smaller, the
composite polygon tends to get closer to p. Thus subdivison offers an alternative
way of plotting p. Instead of plotting p by sampling it at several parameter values
tj ∈ [a, b] and plotting the polygon formed by the points p(tj), we can alternatively
subdivide p a few times and plot its composite control polygon.

8.5 Generalized de Casteljau algorithm

We can also compute the blossom of a BB polynomial by generalizing de Casteljau’s
algorithm in a simple way; in fact we already did this in the latter part of the proof
of Theorem 8.1. We will see later that computing a blossom is useful for converting
a BB polynomial to B-spline form.

Suppose that p(x) is the BB polynomial in (8.3). We can compute its blossom
P (x1, . . . , xd) for any x1, . . . , xd ∈ R using the the following generalized de Casteljau
algorithm. We set c0i = ci, i = 0, 1, . . . , d, and for r = 1, . . . , d, we set

cri = (1− λr)cr−1i + λrc
r−1
i+1 , i = 0, 1, . . . , d− r. (8.8)

where λr = (xr − a)/(b− a). As in the latter part of the proof of Theorem 8.1, one
can show by induction on r that

cri = P (a[d−r−i], b[i], x1, . . . , xr),
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and so, in particular, the last coefficient computed is cd0 = P (x1, . . . , xd). For exam-
ple, the coefficients of the algorithm in the cubic case are:

P (a, a, a) P (a, a, x1) P (a, x1, x2) P (x1, x2, x3)
P (a, a, b) P (a, b, x1) P (b, x1, x2)
P (a, b, b) P (b, b, x1)
P (b, b, b)

By the symmetric property of the blossom P , this algorithm will yield the value
P (x1, . . . , xd) regardless of the ordering of the points x1, . . . , xd.

8.6 Blossom of a polynomial in B-spline form

We have seen how the coefficients of de Casteljau’s algorithm can be expressed in
terms of the blossom of the polynomial in question. This property generalizes to the
coefficients in the de Boor algorithm (Algorithm 2 of Subsection 3.9.2). Consider
the spline function

s(x) =
n∑
i=1

ciBi,d,t(x),

for some knot vector t = (t1, t2, . . . , tn+d+1), and suppose [tµ, tµ+1] is a non-degenerate
knot interval for some µ ∈ {d+ 1, . . . , n}. Then the polynomial piece sµ = s|[tµ,tµ+1]

is given by

sµ(x) =

µ∑
i=µ−d

ciBi,d,t(x), x ∈ [tµ, tµ+1]. (8.9)

Let us recall de Boor’s algorithm (see (3.25)): we set c0i = ci, i = µ− d, . . . , µ, and
for r = 1, . . . , d and i = µ− d+ r, . . . , µ, we set

cri = (1− λi,r)cr−1i−1 + λi,rc
r−1
i , (8.10)

where λi,r = (x− ti)/(ti+d−r+1 − ti). Then cd0 = sµ(x).

Theorem 8.2 The coefficients cri in the de Boor algorithm can be expressed as

cri = P (ti+1, . . . , ti+d−r, x
[r]), r = 1, . . . , d, i = µ− d+ r, . . . , µ,

where P is the blossom of sµ.

In particular, the coefficients of sµ are

ci = P (ti+1, . . . , ti+d), i = µ− d, . . . , µ. (8.11)
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Proof. The proof is similar to that of Theorem 8.1 except that we now define

αri = P (ti+1, . . . , ti+d−r, x
[r]), r = 1, . . . , d, i = µ− d+ r, . . . , µ.

By the symmetry and multi-affine properties of P and the fact that

x = (1− λi,r)ti + λi,rti+d−r+1,

it follows that
αri = (1− λi,r)αr−1i−1 + λi,rα

r−1
i , r ≥ 1,

and therefore,

αdµ =

µ∑
i=d−µ

α0
iBi,d,t(x).

So by the diagonal property of P ,

p(x) =

µ∑
i=d−µ

α0
iBi,d,t(x).

By the linear independence of Bµ−d,d,t, . . . , Bµ,d,t, it follows that α0
i = ci, and it then

follows that αri = cri for all r and i. �

As an example, let d = 3, µ = 4, and t4 < t5, and let P be the blossom of the cubic
piece s4. Then the coefficients in de Boor’s algorithm for a point x are:

P (t2, t3, t4) P (t3, t4, x) P (t4, x, x) P (x, x, x)
P (t3, t4, t5) P (t4, t5, x) P (t5, x, x)
P (t4, t5, t6) P (t5, t6, x)
P (t5, t6, t7)

Similar to the generalized de Casteljau algorithm, there is also a generalized
de Boor algorithm which computes the blossom of sµ at any points x1, . . . , xd. We
set c0i = ci, i = µ− d, . . . , µ, and for r = 1, . . . , d and i = µ− d+ r, . . . , µ, we set

cri = (1− λi,r)cr−1i−1 + λi,rc
r−1
i , (8.12)

where λi,r = (xr − ti)/(ti+d−r+1 − ti). One can show by induction on r that

cri = P (ti+1, . . . , ti+d−r, x1, . . . , xr),

and so, in particular, the last coefficient computed is cd0 = P (x1, . . . , xd). For ex-
ample, the coefficients in this generalized algorithm for s4 of the previous example
are:

P (t2, t3, t4) P (t3, t4, x1) P (t4, x1, x2) P (x1, x2, x3)
P (t3, t4, t5) P (t4, t5, x1) P (t5, x1, x2)
P (t4, t5, t6) P (t5, t6, x1)
P (t5, t6, t7)
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8.7 Conversion of polynomial and spline repre-

sentations

Suppose we are given the BB coefficients of a polynomial p with respect to an
interval [a, b]. We have seen how we can use de Casteljau’s algorithm to obtain the
BB coefficients of p with respect to a sub-interval of the form [a, c] or [c, b]. If we
apply the algorithm a second time we will then obtain the BB coefficients of p with
respect to any arbitrary interval [c, d].

We might also need to convert a BB polynomial to B-spline form with respect
to some chosen knot vector, or convert a spline in one B-spline representation into
another. To do this we can make use of the blossoming theory we have developed.

8.7.1 Converting a BB polynomial to B-spline form

We saw earlier, in Subsection 4.2.1, how we can represent a polynomial p given in
monomial form

p(x) =
d∑
i=0

aix
i,

into a spline over any knot vector, by using Marsden’s identity. But suppose we are
given p in the BB form

p(x) =
d∑
i=0

ciB
d
i (λ),

with λ = (x− a)/(b− a) for some interval [a, b]. How can we represent p as a spline
in this case, i.e., how do we find the coefficients c̃1, . . . , c̃n in the representation

p(x) =
n∑
i=1

c̃iBi,d,t(x), x ∈ [td+1, tn+1],

with respect to some chosen knot vector t = (t1, t2, . . . , tn+d+1)? To do this we can
use blossoming. We know that

c̃i = P (ti+1, . . . , ti+d), i = 1, . . . , n,

where P is the d-variate blossom of p. Thus we can compute the coefficients c̃i using
the generalized de Casteljau algorithm for p to compute P (ti+1, . . . , ti+d) for each i.
We just set (x1, . . . , xd) = (ti+1, . . . , ti+d) in (8.8).
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8.7.2 Converting one B-spline form to another

Similarly, we can convert a polynomial given in B-spline form into some other
B-spline form. Thus, consider the polynomial sµ of (8.9), whose coefficients are
cµ−d, . . . , cµ. We might want to represent sµ in the alternative form

sµ(x) =
ν∑

i=ν−d

c̃iBi,d,τ (x),

with respect to some new knot vector τ = (τ1, τ2, . . . , τm+d+1) for ν < ν + 1 and
ν ∈ {d+ 1, . . . , n}. By the theory we have developed,

c̃i = P (τi+1, . . . , τi+d), i = ν − d, . . . , ν,

where P is the d-variate blossom of sµ, and moreover, we can compute the value
P (τi+1, . . . , τi+d) for each i from the generalized form of de Boor’s algorithm, setting
(x1, . . . , xd) = (τi+1, . . . , τi+d) in (8.12).

Consider now spline refinement. Suppose we want to represent a spline s over
a given knot vector t as a spline over a refined knot vector τ , i.e., such that t ⊂ τ .
Thus we have

s =
n∑
i=1

ciBi,d,t =
m∑
i=1

biBi,d,τ ,

and we want to find the new coefficints bi from the old ones, ci. We saw in Chapter 5
how we can do this by adding one knot at a time, and using Boehm’s algorithm to
find the new coefficients at each step. Using blossoming, we now have an alternative
method. We can express bi as

bi = P (τi+1, . . . , τi+d),

where P is the blossom of any polynomial piece p = s|[τν ,τν+1] such that τν < τν+1

and ν − d ≤ i ≤ ν. For any such choice of ν there is a unique µ such that

tµ ≤ τν < τν+1 ≤ tµ+1,

in which case

p(x) =

µ∑
i=µ−d

ciBi,d,t(x),

and we can therefore compute P (τi+1, . . . , τi+d) from the generalized de Boor algo-
rithm, setting (x1, . . . , xd) = (τi+1, . . . , τi+d) in (8.12).
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8.8 Blossoms of bivariate polynomials

As for polynomials of one variable, there is a blossom for polynomials of several
variables. Consider the bivariate polynomial,

p(x) = p(x, y) =
∑
i+j≤d

ai,jx
iyj. (8.13)

There is a unique d-variate blossom P for p in which each variable is a point in R2.
The blossom, P (x1,x2, . . . ,xd), xk ∈ R2, is, as before, uniquely defined by three
properties: that it is (i) symmetric, (ii) multi-affine, and (iii) agrees with p(x) on its
diagonal. The blossom can be obtained from p by replacing the term xiyj in (8.13)
by the expression∑

xk1xk2 · · · xkiy`1y`2 · · · y`j
/( d!

i!j!(d− i− j)!

)
. (8.14)

Here the sum is over all pairs of sequences

1 ≤ k1 < k2 < · · · < ki ≤ d, 1 ≤ `1 < `2 < · · · < `j ≤ d,

whose elements are pairwise distinct, i.e., such that `β 6= kα. For example, the
quadratic

p(x) = a0 + a10x+ a01y + a20x
2 + a11xy + a02y

2

has the bivariate blossom

P (x1,x2) = a0 + a10
x1 + x2

2
+ a01

y1 + y2
2

+ a20x1x2 + a11
x1y2 + x2y1

2
+ a02y1y2.

The monomials p(x) = xy and p(x) = x2y have the trivariate blossoms

P (x1,x2,x3) =
1

6
(x1y2 + x1y3 + x2y1 + x2y3 + x3y1 + x3y2),

and

P (x1,x2,x3) =
1

3
(x1x2y3 + x1x3y2 + x2x3y1),

respectively. Like in the univariate case, the symmetry and multi-affine properties
of P are easily verified from (8.14), and the diagonal property holds because the
number of terms in the sum is d!/(i!j!(d− i− j)!).

Recall now the triangular BB polynomial p of (7.18) and the corresponding de
Casteljau algorithm (7.23) for evaluating p(x) for some point x ∈ R2. In analogy to
the proof of Theorem 8.1, one can show that the d-variate blossom P of p is unique
and the coefficients in de Casteljau’s algorithm can be expressed as

cri = P (v
[i1]
1 ,v

[i2]
2 ,v

[i3]
3 ,x[r]), r = 0, 1, . . . , d, |i| = d− r, (8.15)
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and so, as a special case,

ci = P (v
[i1]
1 ,v

[i2]
2 ,v

[i3]
3 ), |i| = d. (8.16)

In analogy to the univariate case, since

ci3i1,i2,0 = P (v
[i1]
1 ,v

[i2]
2 ,x[i3]), |i| = d,

these are the BB coefficients of p with respect to the sub-triangle [v1,v2,x], more
precisely,

p(y) =
∑
|i|=d

ci3i1,i2,0B
d
i (λ̃),

where λ̃1, λ̃2, λ̃3 are the barycentric coordinates of y with respect to the triangle
[v1,v2,x].

Next consider the conditions for two triangular BB polynomials to join with
Cr continuity on a common edge. Recalling the spline s we defined in (7.32), in
analogy to the univariate case, the condition for p and q to join with Cr continuity
on the common edge [v1,v2] is that

c̃i = βi, |i| = d, i3 ≤ r

where the βi are the BB coefficients of p with respect to the triangle U . These can
be computed from the de Casteljau algorithm for p with respect to T with x = v4,
and the Cr condition thus reduces to

c̃i =
∑
|j|=i3

c(i1,i2,0)+jB
i3
j (α), |i| = d, i3 ≤ r,

where α1, α2, α3 are the barycentric coordinates of v4 with respect to T . This con-
dition generalizes the C1 condition of (7.31) and (7.34) in which i3 = 0 and i3 = 1
respectively.
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