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Lecture o

Intro

Warning: This is a preliminary version. I am working on them and new (and hopefully)
better versions will surface from time to time. They still suffer from several shortcomings
and are prone to errors (not so many and not so serious, I hope), but they will (hopefully)
improve! Some sections are thoroughly checked while others are raw and under
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construction and they are marked with a warning sign: “careful—construction!”.
VERSION 4.1 (RUN 193)—14th June 2021 at 10:26am

These notes grew out my giving the introductory course in commutative algebra at
UiO at several occasions during the last ten years. This is course where the students
meet serious commutative algebra for the first time. Their backgrounds are diverse.
They know some linear algebra, but mostly not from a theoretical standpoint, and very
few have come as far as the Cayley—-Hamilton Theorem. They have had a rudimentary
experience in commutative algebra, and have heard about rings and ideals and have
seen some examples, but to indicate their level, most do not know Gauss’ lemma. Most
have followed a course in group and Galois theory, which occasionally goes as far as
the Sylow’s theorems, and which include basic Galois theory. Given these conditions,
the notes starts at the very beginning with the very basic properties of rings and ideals

With that starting point the theory is developed introducing the fundamental con-
cepts and techniques; in short, a guide to a beginners tools necessary to start off
practising commutative algebra; And of course, subsequently this leads to the usual
collection of the “great theorems” of David Hilbert, Emmy Noether and Wolfgang Krull;
the corner stones of the whole theory. A primary function of the course is to prepare
the ground for studies in algebraic geometry and number theory,

Being a preparatory course, there is a risk it leaves you with a lurking melancholy
as expresses in the lyrics from Leonard Bernstein’s song Some Other Time: “just when
the fun is starting comes the time for parting”( so beautifully performed by Monica
Zetterlund and Bill Evans). But there is a cure: Do more mathematics!

The notes are written for the students. The style is rather ample with detailed
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explanations, which makes the text rather long. But redundancy of the language is an
important factor in making a text accessible and easy to read, however redundancy
without variation is futile if not contra productive. Remember the french saying: when
you complain you don’t understand what the British say, they just repeat the phrase but
louder. There is also a gradient in the redundancy—as the course evolves more details
are left to the students.

Categories and functors entered mathematics in the 1940’s work of Eilenberg and
Maclane, and as Peter Freud states “in a fairly explosively manner functors and natural
transformations permeated a wide variety of subjects”. To give a master course in
algebra today—about eighty years later—in an attitude that the word category is a slip
of the tongue, would be close to a heresy. But categories and functors do not enter the
presentation in a substantial way, they only appear as notational devices, except at a few
placed a mild use of easy categorical techniques will be convenient and clarifying. And
for the benefit of the students a very short appendix is included with the rudimental
definitions.

Mathematical theories are not linearly ordered, but rather constitute some kind of
intricate graph with nodes being statements and edges being implications. But time is
linear, and a challenge for a lecturer is to find a path through this mathematical skein
valid both scientifically and pedagogically. And speaking about time, to reach through
the curriculum before the term ends, can be sever. The notes suffer from the common
syndrome of a never ending expansion, and threaten to end up obese, so any lecturer
that might chose to them is obliged to make a reasonable choice among the chapters.

Giving examples is an important part of the teaching, establishing a broad back-
ground for the students intuition. So examples abound, some are mainstream situations,
but others function as eyeopeners: they are meant to illustrate what delicate situation
one risks finding oneself in and what denizens one risks meeting when venturing the
stormy waters where the standard hypotheses of the theory no more comply. It is also
important to understand why the specific hypotheses of a result are required, and often
this is best illustrated through examples.

Doing exercise are as well a fundamental when learning mathematics; so we include
almost four hundred (397 to be exact)—some are easy and some more demanding.
Solutions are provided for many (for the moment only 101 exercises from the first
chapters are solved; the solution part is still a construction cite), and they are indicated
by a golden star in the margin. To jump forth and back between an exercise and its
solution just click on the numbers. A habit of many authors is to bundle up parts of the
theory with the exercises, not (always) out of laziness, but most often as an attempt to
limit the number of pages. Anyhow, from the pedagogical angle it is sound practice to
force students to participate actively in developing the matter. So, also in these notes
some exercises are part of the theory. Ideally, solutions should always be provided for
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these exercises (and eventually will).

Definitions are not, as in many texts, formatted in special typography to stand out,
but are indicated in the margin in blue with the Norwegian version of the name in red.

An insurmountable means of keeping track of maps and equalities between com-
positions, is to draw diagrams; a simple one is shown in the margin . Diagrams come
all kinds of shapes and can be utterly intricate, but for us they will always be simple
and mostly triangular or square. One says that a diagram, or a part of a diagram, is
commutative if possible equalities hidden in the geometry of the diagram, in fact are
equalities; so for example & = y o B in the marginal example. Almost every diagram we
shall draw will be commutative, and we shall tacitly assumed they are.

So a few words about the gothic alphabet, which poperly should be called the
blackletter typefaces. Mathematicians are always in shortage of alphabets and letters, and
tend to use all kinds of creative decorations to have enough glyphs. To overcome this
typographical shortfall we have decided to designate ideals by a blackletter typeface.
There is certainly a very strong historical evidence—a reminder of the deep German
roots of algebra—and it is also convenient in many ways: like a team in uniforms you
recognize ideals immediately. However, the inconvenience is that blackletter letters can
be difficult to write by hand, and handwritten ones difficult to read, especially the p and
the g stand out in this respect. We confined the use to the lower case letters a, b ¢, m, n,
p, 4, and may be occasionally an t. Letters like I and ] mostly denote sets of indices, A,
B and C and from time to time R and S, are rings and while M and N will be modules.

CEAARARAS
LTy éﬁ”g {,} 7
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Lecture 1

Rings

The starring role in commutative algebra is played by the commutative rings and their
ideals—they are even the main targets of the investigations. In this chapter we become
acquainted with rings, and ideals will be introduced in the next chapter.

Commutative rings come in a great variety of flavours, and the sources where they
arise are as diverse. Some rings are best though of as “number systems” as the ring
Z of integers and its well-known larger siblings the field of rationals Q, the field of
real numbers R and the field of complex numbers C (this suite may be brought at least
two steps further, but in a non-commutative way; the next two members are called
the quaternions and the octonions). There are also some ubiquitous “little brothers”;
the rings Z /nZ of integral residue classes modulo a natural number n. Among them
we find the finite fields IF, = Z/pZ with p elements, p being a prime, and there are
also the other finite fields IF, with g elements, g being a prime power g = p". And
there are naturally also some “big brothers”; for instance, the field Q consisting of the
complex numbers that are roots of polynomials with rational coefficients; and inside Q
we find the the ring Z of algebraic integers; the complex numbers being roots of monic
polynomials with integral coefficients.

The earliest systematic study of commutative rings was of various “generalized
number systems”; certain subrings of the ring of algebraic numbers. Already Gauss
undertook such studies, but they really sparked off in the nineteenth century with the
work of Kronecker and Dedekind.

Other commutative rings resemble rings of functions on different kinds of spaces, like
continuous functions on topological spaces (with real or complex values) or holomorphic
functions in open domains in the complex plain, but the rings most relevant in our
context arise in algebraic geometry. These are rings of polynomial functions with values
in a field k defined on so-called varieties, which are vanishing loci in k" for sets of
polynomials.

The development took a new direction around the middle of the twentieth century,
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when mathematicians like Zariski and Weil strived for establishing a sound foundation
of algebraic geometry, and the recognition of the power algebraic geometric methods
have in number theory, eventually lead to the happy marriage of algebraic geometry
and number theory — consummated by Grothendieck and his invention of schemes.

1.1 Rings

(1.1) Recall that a ring A is an algebraic structure consisting of a set endowed with two
binary operations; an addition which makes A an abelian group, and a multiplication.
The multiplication is assumed to be distributive over the addition, and in this course it
will always be associative and commutative (or at least almost always). There are of
course both many non-commutative rings and non-associative rings that are extremely
interesting, but this course is dedicated to rings that are associative and commutative.

The sum of two elements will naturally be denoted as a + b, and the product will
we indicated in the traditional way by a dot or simply by juxtaposition; that is, as a - b
or just as ab. The left distributive law asserts that a(b + ¢) = ab + bc, and since rings for
us are commutative, it follows that the right distributive law (b + c)a = ba + ca holds as
well.

We shall also assume that all rings have a unit element; that is, an element 14 such
that 14 -a = a-14 = a for all members a of the ring. At most occasions the reference to
A will be dropped and the unit element written as 1 whatever the ring is.

ExamPpLE 1.1 The simplest of all rings are the ring Z of integers and the rings Z/nZ
of residue classes of integers modulo n. The traditional numbers systems of rational
numbers Q, of real numbers R and of complex numbers C are well-known rings. ¥

Zero divisors and nilpotents
(1.2) Elements in general rings can behave quite differently from what we are used to in
a classical setting of real and complex numbers. It might very well happen that ab = 0
without neither a nor b being zero. Such elements are called zero divisors. Be aware that
the familiar cancellation law does not hold in a ring with zero divisors in that ab = ac not
necessarily implies that b = c¢. Rings without zero divisors are called integral domains
or, for short, domains. Obviously, elements that are not zero divisors are called non-zero
divisors, another name being regular elements. A regular element a2 has the virtue that
xa = 0 implies that x = 0 and can therefore be cancelled from equalities like ab = ac
(the difference b — c is killed by a and hence vanishes). So in an integral domain, the
cancellation law is in force.

For instance, the rings Z /nZ have zero divisors whenever # is a composite number:
if n factors as n = pq with p and g natural numbers both different from #, it holds true
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that pg = 0in Z/nZ, and p and g are both non-zero in Z/nZ neither having n as a
factor.

A more geometric example could be the ring of continuous functions on the space
X which is the union of the x-axis and the y-axis in the plane. On X the function xy
vanishes identically, but neither x nor y does; x does not vanish on the y-axis and y not
on the x-axis.
(1.3) It might also happen that powers of non-zero elements vanish, i. e. one has 4" =0
for some natural number 1 but with a # 0. For instance, in the ring Z/p?Z it holds true
that p> = 0, but p # 0. Such elements are called nilpotent. Rings deprived of nilpotent
elements are said to be reduced.

Units and fields
(1.4) Division by non-zero elements is generally not possible in rings and non-zero
elements are not in general invertible. For instance, if p and q are two different primes
in Z, the fraction p/q is not an integer and does not lie in Z. Elements in a ring A
that are invertible, i. e. ring-elements a for which there is an element a~! in A with
aa~! =1, are called units. They form an abelian group under multiplication, which we
shall denote by A*.

Rings A all whose non-zero members are invertible; that is, which satisfy A* =
A\{0}, are called fields. In fields division by non-zero elements can be performed
unconditionally.

ExaMrLE 1.2 Well-known fields are the fields of rational numbers Q, of real numbers IR
and of complex numbers C. If p is a prime number, the ring Z/pZ of integers modulo
p is a field, usually denoted by [F;,. It is a finite field having p elements. *

Examples

(1.3) We do not assume that 1 # 0 although it holds in all but one ring. The exceptional
ring is the so-called null-ring. When 0 = 1, it follows thata =a-1=a-0 = 0, so zero
will be the sole element. The only role the null-ring plays, and the only reason not
to throw it over board, is that it allows significantly simpler formulations of a many
results, and it does not merit a proper notation (well, one always has the alternative 0).

(1.4) The set of polynomials Q[xy,...,x,] in r variables x, ..., x, with rational coeffi-
cients is a ring when equipped with the usual sum and product, as are the set of real
polynomials R[xy, ..., x,;] and the set of complex polynomials C[xy, ..., x;].

(1.5) The complex rational functions in a variable x form a field C(x). The elements are
meromorphic functions in C expressible as the quotient p(x)/q(x) of two polynomials
p and g with g not being identically zero. One is not confined to just one variable; the
field C(xy,...,x,) of rational functions in the variables x1, ..., x, consists of fractions
p(x1,...,x)/q(x1,..., %) where p and g are polynomials and where g is not the zero
polynomial.

(1.6) For any set X < C”" one may consider the set of polynomial functions on X; that is,
the functions on X that are restrictions of polynomials in r variables. They form a ring

éﬁgﬂ%dﬁﬂfqﬂti‘&jﬁg  addition and multiplication.
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(1.7) Associated with any topological space X are the sets Cr(X) and C¢(X) of continu-
ous functions on X assuming respectively real or complex values. Point-wise addition
and multiplication make them (commutative) rings. When X has more structure than
just a topology, there are further possibilities. Two instances are the ring of smooth
functions on a smooth manifold, and the ring O(Q) of holomorphic functions in an
open domain () of the complex plane.

(1.8) Quadratic extensions: An example of a class of rings, important in algebraic number
theory, is the class of the quadratic extensions Z[/n] obtained by adjoining a square
root to Z; that is, Z[y/n| = {a+by/n | a,b € Z}, where n is any integer (positive or
negative). These rings are contained in the field of complex numbers C and inherit
their ring structure from C; to verify that they are rings is suffices to see they are closed
under addition—which is obvious—and multiplication, which ensues from the little
calculation

(a+byn)(a' +V'\/n) = (ad’ +nbb') + (ab’ +a'b)/n,

the point being that (aa’ + nbb’) and (ab’ + a’b) are integers when a,4’,b,b" and n are.
A few special case have their proper name; for instance, elements of Z[i] are called

Gaussian integers.
*

Homomorphisms

When studying mathematical objects endowed with certains structures—like rings for
instance, which have an additive and a multiplicative structure—maps preserving the
structures are fundamental tools. Working with topological spaces one uses continuous
maps all the time, and linear algebra is really about linear maps between vector spaces.
And of course, the theory of groups is inconceivable without group homomorphisms;
that is, maps respecting the group laws. A new class of objects in mathematics is always
accompanied by a new class of maps. This observation can be formalized and leads to
the definition of categories.

(1.5) In our present context the relevant maps are the so-called ring homomorphism, which
also will be referred to as maps of rings or ring-maps. These are maps ¢: A — B between
two rings A and B preserving all the structures around; that is, the additive group
structure, the multiplication and the unit element 1. In other words, they comply with
the two rules

Q 9la+b) = pla) + 9(b);
3 ¢(ab) = p(a)p(b) and p(1) = 1.

The sum of two maps of rings is in general not a map of rings (it is additive, but does
not respect the multiplication) neither is their product (it respects multiplication, but not

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



addition), but of course, the composition of two composable ring-maps is a ring-map.
The rings (commutative with unit) together with their homomorphisms form a category
denoted Rings.

(1.6) A homomorphism ¢: A — B is an isomorphism if there is a ring homomorphism
{: B — A such that the two relations o ¢ = id4 and ¢ o ¢p = idp hold true. One most
often writes ¢! for the inverse map, and it is common usage to call isomorphisms
invertible maps. For ¢ to be invertible it suffices it be bijective. Multiplication will
then automatically be respected since ¢! (ab) = ¢~1(a)p~1(b) is equivalent to ab =
(¢~ (a)p~1 (D)), and the latter equality is a consequence of ¢ respecting multiplication.
Applying ¢! to ¢(14) = 1p one sees that ¢~ (15) = 14, so the inverse map sends the
unit element to the unit element as well. An analogous argument shows that ¢! also
is additive.

Examples

(1.9) So-called evaluation maps are omnipresent examples of ring homomorphisms. To
illustrate this concept, we pick a point a € C". Sending a polynomial f to the value
it assumes at a, gives a map C[xy,...,x,] — C, and by the very definition of the ring
structure of the polynomial ring (addition and multiplication are point-wise operations)
this is a map of rings.

Any ring A of functions—say with complex values—on any space X possesses
analogue evaluation maps. The operations in A being defined point-wise the map
f +— f(x) is a ring-map from A to C for any point x € X.

(1.10) Another series of well-known examples of ring-maps are the maps Z — Z/nZ
that send an integer 4 to its residue class [a] modulo the integer n.
¥

Subrings and polynomial expressions

(1.7) We begin by recalling the notion of a polynomial expression. Assume given a ring A
and sequence a = (ay,...,a,) of elements from A. For any multi-index & = (ay, ..., ay);
that is, a sequence on non-negative integers, one has the monomial expression

o

o
a*=ait-..ooan.

n
These expressions show an exponential behavior in that a* - a = a**P. A polynomial
expression in the a;’s is just a finite linear combination of such monomials. Frequently
one wants to confine the coefficients to a specific subset S of A, and then one speaks
about polynomial expressions with coefficients in S. They are thus elements of A shaped

like
e
Zsa-a“ :Zsa-all-...~aﬁ",
® [
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Subrings (underringer)

Subrings generated by
elements (underringer
generert av elementer)

where the summation extends over all multi-indices, and where the non-zero coefficients
are finite in number and confined to S.

A successive application of the distributive law and the exponential behaviour of
monomials gives the classical formula for the product of two polynomial expressions:

(Z So - a) - (Z tg aP) = Z( Z Satg)-a’. (1.1)

p Toatp=y

(1.8) A subring B of A is a ring contained in A whose ring operations are induced from
those of A. Phrased differently, it is an additive subgroup containing the unit element
which is closed under multiplication; to be specific, it holds that 0 € B and 1 € B, and
for any two elements 4 and b belonging to B, both the sum a + b and the product ab
belong to B. The intersection of any family of subrings of A clearly is a subring.

ExamrLE 1.11 The integers Z is a subring of the rationals Q. *
(1.9) Given a ring A and a subring B and a set of elements ay,...,4, from A, one
constructs a subring Blay, ..., a,] of A as the set of all polynomial expressions

« a
Zba-all-..ua,r

where & = (ay,...,a,) runs through the multi-indices and the b,’s are elements from
B, only finitely many of which are different from zero. It is straightforward to check,
using the classical formula (1.1) above, that this subset is closed under multiplication
and hence is a subring of A (it is obviously closed under addition). It is called the
subring generated by the a;’s over B, and is the smallest subring of A containing the ring
B and all the elements 2;. Common usage is also to say that B[ay, ..., a,] is obtained by
adjoining the a;’s to B.

This construction works fine even for infinitely many 4;’s since each polynomial
expression merely involves finitely many of them. Thus there is a subring Bla;i € I] for
any subset {a;};c; of A. It equals the intersection of all sub rings of A containing B all
the a;’s.

Examples

(1.12) Let 1 be an integer. The ring Z[1/n] = {m/n’ | i € No,m € Z} is a subring of
Q. The elements are the rational numbers whose denominator is a power of n. More
generally, if S is any set of integers, one may form Z[n~!| n € S], which is the subring
of Q consisting of the rational numbers whose denominator is a product of numbers
from S.
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Be aware that quite different sets S can give rise to the same subring. For instance,

when py, ..., p, are the primes occurring in the prime factorization of the integer #, it
holds true that Z[1/n] = Z[p; ', ..., p; 1.
(1.13) The subring C[t?, 3] of C[t] is a ubiquitous example in algebraic geometry; it
is the coordinate ring of a so-called cusp and consists of all polynomials whose first
derivative vanishes at the origin; or phrased differently, the polynomials without a
linear term.

(1.14) The subring C[x,1/x] of the rational function field C(x) consists of elements of
the form p(x~') + ¢ + g(x) where p and g are polynomials vanishing at the origin and
¢ a complex constant.

*

The prime ring and the characteristic

(1.10) Every ring has a canonical subring called the prime ring. The unit element 1 in A
generates an additive cyclic subgroup of A whose elements are just sums of 1 or —1 a
certain number of times; that is, they are shaped liken =1+...+1orn =—-1—... -1
This subgroup is obviously closed under multiplication and is hence a subring. It is
called the prime ring of A.

As is well known, a cyclic group is either finite and isomorphic to Z/nZ for some
positive integer n, or it is infinite and isomorphic to Z. The prime ring is therefore
either isomorphic to one of the rings Z/nZ or to Z. In the former case the integer # is
called the characteristic of A, in the latter case one says that A is of characteristic zero. So,
in any case, the characteristic of a ring A is a non-negative integer attached to A.
(1.11) Any field contained in A contains the prime ring. Hence, if A contains a field, the
characteristic is either prime or zero. In case it is prime, the prime ring equals the field
IFp, and in case the characteristic is zero, the ring A contains Q as well. We say that IF),
respectively Q is the prime field of A.

Algebras

Frequently when working in commutative algebra there are “coefficients” around; that
is, one is working over a “ground ring”. So the most natural objects to work with are
perhaps not rings, but the so-called algebras.

(1.12) The notion of an algebra is a relative notion involving two rings A and B. To give
a B-algebra structure on A is just to give a map of rings ¢: B — A. One may then form
products ¢(b) - a of elements a from A with elements of the form ¢(b). The map ¢, even
though it is an essential part of the B-algebra structure of A, is often tacitly understood
and suppressed from the notation; one simply writes b - a for ¢(b) - a. Later on, when
we have introduced modules, a B-algebra structure on a ring A will be the same as a
B-module structure on A with the extra condition that multiplcation in A is B-linear.

ExamrLE 1.15 Every ring has a canonical structure as a Z-algebra (defined as in Para-
graph 1.10 above). The class of algebras is therefore a strict extension of the class of
rings. Since a ring is an algebra over any subring, over-rings give a large number of

examples of algebras. *
14TH JUNE 2021 AT 10:26AM
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*Of course, it holds
true that idc (zw)
equals zidc w and not
Zidc w

(1.13) Faithful to the principle that any new type of objects is accompanied by a
corresponding new type of maps; one says that a map of rings ¢: A — A’ between two
B-algebras is an B-algebra homomorphism* if it respects the action of B; in other words,
it holds true that ¢(b-a) = b - ¢(a) for all elements a2 € A and b € B. Composition of
two composable B-algebra homomorphisms is a B-algebra homomorphism so that the
B-algebras form a category denoted Algg.

(1.14) One says that A is finitely generated over B, or is of finite type over B, if A =
Blay,...,a] for elements a3, ..., a, from A.

ExaMmrLE 1.16 A note of warning might be appropriate, algebra structures can be
deceptive. Every ring is of course an algebra over itself in a canonical way (the algebra
structure is given by the identity map), but there can be other unorthodox ways A can
be an A-algebra. A simple example to have in mind is the field C of complex numbers,
which has an alternative algebra structure induced by complex conjugation. In this
structure a complex number z acts on another complex number w as z - w.

The two structures are not isomorphic as C-algebras although the underlying rings
are the same. A good try for an isomorphism would be the identity map, but it does
not respect the two algebra-structures®. Similar unorthodoxy will arise from any ring
endomorphism A — A. Examples of such are furnished by the Frobenius homomorphisms
of rings of positive characteristic (see Exercsise 1.7 below). *

Exercises
(1.1) Assume that A is a finite ring. Show that the units are precisely the elements that
are not zero divisors. Conclude that if A is an integral domain, it is a field.
(1.2) Find all nilpotents and all zero divisors in Z/72Z. What are the units?
(1.3) Generalize the previous exercise: Let n be a natural number. Determine nilpotents,
zero divisors and units in Z/nZ.
(1.4) Show that the prime ring is the smallest subring of a ring; i. e. it is contained in
all other subrings of the given ring.
(1.5) The Binomial Theorem. Convince yourself that the binomial theorem persists being
true in any commutative ring; that is, check that your favourite proof still holds water.
(1.6) Show that the sum of two nilpotent elements is nilpotent. HINT: You can rely on
the binomial theorem.
(1.7) The Frobenius homomorphism. Let A be a ring of positive prime characteristic p.
Show that the relation

(a+Db)P =aP + b
holds true for all a,b € A. Hence the map A — A that sends a to the p'" power a? is
a ring homomorphism. It is called the Frobenius homomorphism. HINT: The binomial
coefficients (¥) have p as factor when 1 < r < p.
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(1.8) Show that any intermediate ring Z < A € Q is of the form A = Z[p~!|p € S] for
some set S of primes.
(1.9) Let¢: A — B be amap of rings. Show that ¢ induces a group homomorphism
mapping A* into B*.
(1.10) Units in imaginary quadratic extensions. Let n be a natural number. Show that an
element x € Z[\/—n] is a unit if and only if |x| = 1 (where |x| denotes the ordinary
absolute value of the complex number x), and use this to determine the units in
Z[y—n].
(1.11) Assume that a is a nilpotent element of the ring A. Show that 1 + a is invert-
ible. More precisely: If a" = 0, the inverse is given as (1+a)™' =1—a+a®>—... +
(=1)""'a"=1. Conclude that if u is a unit and a nilpotent, then u + a is invertible.
HinT: Use the good old formula for the sum of a geometric series.

*

1.2 Polynomials

We are well acquainted with polynomials with real or complex coefficients; we met
them already during the happy days at school. They were then introduced as functions
depending on a real (or complex) variable whose values were given by a polynomial
expressions. In this section we shall introduce polynomials with coefficients in any
(commutative) ring A. The point of view will necessarily be formal and without
reference to functions, and there is no reason to confine oneself to just one variable.
(1.15) In an earlier paragraph we met polynomial expressions in a set of ring elements.
In the present situation where there is no surrounding ring, we must, as signalled above,
proceed in a formal way. A polynomial in the variables x1, ..., x, is defined as a formal
sum

fxq,...,xn) :Eaaxl'xl-...xz", (1.2)
14

where the summation extends over all multi-indices « = (ay, ..., a,) with the a;s being
non-negative integers, and where the coefficients a, are elements from the ground ring
A, only finitely many of which are non-zero. Do not speculate much* about what the
term “formal sum” means, the essential point is that two such “formal sums” are equal
exactly when corresponding coefficients agree.

(1.16) The “pure” terms amx'iél -...xy" occurring in (1.2) are called monomials, and the
abbreviated notation x* = xj'-...xy" is convenient and practical. The degree of a
non-zero monomial 4, - x* is the sum Y ; a; of the exponents, and the highest degree of
a non-zero monomial term in a polynomial is the degree of the polynomial. Non-zero
constants are of degree zero, but the zero polynomial is not attributed a well-defined
degree—it is rather considered to be of any degree (it equals 0 - x* for any «).
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Homogenous
polynomials
(Homogene polynomer)

Homogenous
components of a
polynomials (homogene
komponenter til et
polynom)

A universal mapping
property (en universell
avbildningsegenskap)

A polynomial is said to be homogenous if all its monomial terms are of the same
degree. For example, the polynomial x?y + z3 is homogeneous of degree three whereas
x2y + z? is not; it is still of degree three, but not homogeneous.

Every polynomial may be expressed as a sum of homogeneous polynomials of
different degrees—just recollect the homogenous terms with the same degree—and
these are called the homogenous components of f. They are unambiguously associated
with f.

(1.17) Adding two polynomials is simply done term by term, and neither is there any
hocus-pocus about multiplying them. The good old pattern is followed where

Zuax"‘ Z bﬁxﬂ = Z( Z agbg)x". (1.3)
“ p

T atp=y

In particular, the product of monomials comply to the exponential law x*xf = x*+F;
with this in mind, the content of formula (1.3) is that the product is bilinear over A.

Equipped with the operations just described the set A[xy, ..., x;] of polynomials in
the variables x4,..., x, becomes a ring. Of course, there are axioms to be verified; a
tedious and uninteresting process without obstacles, so we voluntarily skip it (such an
indolence being reserved for professors, students are urged to do the checking).
ExErcise 1.12 Let f = ] a,x* and g = >, byx* be two non-zero polynomials with
coefficients from the ring A such that fg is non-zero. Show that deg fg¢ < deg f + deg g.
Show that equality holds when A is an integral domain. Give examples where strict
inequality holds. #*
(1.18) There is a notable difference between a polynomial and a polynomial function.
Over finite rings, like Z /nZ for instance, different polynomials can give rise to identical
polynomial functions. Simple examples being polynomials in IF,[t]; that is, polynomials
in one variable over the field F, with two elements. For instance, such polynomials
without constant term and with an even number of non-zero terms will vanish identically
as a function on FF,. Over infinite fields however, the two notions coincide.

The universal mapping property
(1.19) The polynomial ring A[xy, ..., x,] has a so-called universal mapping property; one
may freely assign values to the variables to obtain homomorphisms.

PROPOSITION 1.20 (THE UNIVERSAL MAPPING PROPERTY) Let A be a ring. Assume given
a sequence by, ..., b, of elements from an A-algebra B. Then there is a uniquely determined
algebra homomorphism ¢: Alxq,...,x;| — B such that ¢(x;) = b; for 1 <i<r.

PRrOOF: A polynomial p is given as p = >, a,x". Since the coefficients a, are unam-
biguously determined by p, setting ¢(p) = >, auby' - ... b gives a well-defined map
which is easily seen to be additive. Since a relation like the one in (1.3) is universally
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valid in commutative rings, ¢ respects multiplication as well, and we have an algebra
homomorphism. O

ExamrLE 1.17 The universal mapping property is a rather special property most algebras
do not have. For instance, the algebra C[t?, ] from Example 1.13 on page 19 does not
have it. That algebra has the generators > and #3, and the equality (#?)% = (+*)2 imposes
a constraint on the values a homomorphism ¢ can assume on the two generators: it
must hold true that ¢(#?)% coincides with ¢(#3)? (note that there is no such thing as

$(t))- *

Two further constructions

There are two further constructions closely related to the construction of the polynomial
rings.

(1.21) One may consider polynomial expressions over A in an infinite number of
variables x1,x3,...,Xy, ... although each polynomial merely involves finitely many of
the variables. For every n the polynomial ring A[xy, ..., x,] is obviously contained in
Alxy,...,x,41], and these polynomial rings thus form a nested sequence of rings. The

polynomial ring in countably many variables A[x1, X2, .. .| is just the union of all these.

It will also be denotede A[x;|i € IN].

Exercisk 1.13 Convince yourself that the universal mapping property holds even for
polynomial rings in infinitely many variables. *
(1.22) The second type of rings we have in mind, are the rings of formal power series. A
formal power series is an expression as in (1.2)

flxq,...,xn) = Zaax"‘l R
14

except that the sum is not require to be finite (but the summation still extends over
multi-indices with the #;’s being non-negative). Addition is done term by term, and
the multiplication is defined by formula (1.3), which is legitimate since the expression
for each coefficient involves only finitely many terms. The formal power series ring is
denoted A[xq,...,x].

The case of power series in one single variabel with coefficients in a field k, merits a
few comments. The units in the ring k[x] are precisly the series with a non-zero constant
term; i. e. those shaped like f(x) = ap+a;x +az + ... with ag # 0. A potential inverse
series g(x) = bp + bix + by + ... must in addition to agby = 1 satisfy the relations

aoby +a1by_1+ ... +ayby =0 (1.4)

for n > 1, simply because (1.4) expresses that the terms of degree n > 1 of fg vanish.

But since ag is invertible, b, is readily solved from (1.4) in terms of the a;’s and the b;’s
for i < n, thus allowing the inverse g to be constructed by recursion.
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Formal Laurent series

(formelle Laurent
rekker)

In courses about complex function theory it is taught that meromorphic functions
have Laurent series near a pole, and there is a formal analogue of those. So a formal
Laurent series with coefficients in k is a formal sum F(x) = >~ a;x~". Tt looks pretty
much like a power series, but finitely many terms with negative exponents are allowed.
The Laurent series form a ring k((x)). Sums of two Laurent series are done term-wise,
and the coefficients of the product of },;5 a;x' and 3o, bix' are defined by the

Cr = Z aiby_;,
i

the sum extends a priori over all integers i, but in reality it is finite since b,_; = 0 for

formula

large i and a; = 0 for i small—some checking of axioms is of course necessary, but we
leave that to the industrious students.

Every element g(x) is thus on the form x" f(x) where n € Z and f(x) is an invertible
power series, and it ensues that k((x)) is a field. Clearly k[x] is contained in k((x)), and
every element in k((x)) is the quotient between two elements from k[x]. We say that
k((x)) is the fraction field of k[x].

Exercises

(1.14) Units in polynomial rings. Show that a polynomial f(x) = Y a;x in A[x] is
invertible if and only if ag is invertible and all the other coefficients are nilpotent.
HinT: Assume that f(x) = 1+ayx + ... +a,x" is invertible with inverse f(x)~! =
1+4by+...+byx™. Show that aitlb,,_; = 0 for 0 < i < n+ m. Conclude that a, is
nilpotent.

(1.15) Let A be a reduced ring. Show that group of units in the polynomial ring A[x]
equals A*.

(1.16) Assume that k is a field and let t and u be variables. Show that there is no
injective ring homomorphism from k[t, 1/t] to k[u].

(1.17) Let k be a (finite) field. Prove that there is infinitely many monic irreducible
polynomials with coefficients in k. HiNT: Mimic Euclid’s proof of the prime numbers
being infinitely many.

(1.18) Long division. Let A be a ring and g(t) a polynomial in A[t].

a) Show that the following version of long division by g(t) works in A[t]; that
is, for any polynomial f(t) € A[t] there are polynomials g(t) and r(t) with
degr < degb and an element a € A such that af(t) = g(t)q(t) + r(t).

b) Assume that A is a domain. Conclude that the number of different zeros of a non-
zero polynomial in A[t] is less than the degree. In a later example (Example 2.11
on page 38) we shall be exhibit a counterexample when A is not domain.

(1.19) Monoidal algebras. In this exercise the definition of polynomial rings is made
precise and generalized.
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Let G be commutative monoid* written additively. As an abelian group A[G] is the
direct sum of copies of A indexed by G; that is, A[G] = @,cc A. The elements are
sequences p = (pa)aec With finite support, and addition is defined component-wise.
Introduce a product on A[G] by the formula

(P-Da= D> ppay
BYEG, p+y=u

Let x* denote the sequence all whose components are zero apart from the one in the
slot with index &, which equals one.

a) Show that the x* form an additive basis for A[G].

b) Show that x* - xP = x%+B,

¢) Show that (3, pax®)xP =3, pax®+P. Verify that A[G] is a ring.

d) Show that A[Np] ~ Alxy,...,x].

(1.20) The formal derivative. Let f(x) = X o<ica a;x' be a polynomial with coefficients in
a field k. Copying the classical formula for the derivative of a polynomial, one defines
the formal derivative f'(x) of f as f'(x) = Y <jqi-aix’ L.

a) Show that derivation is a linear operation and that both the Leibnitz" rule
and the chain rule hold true; that is (f(x)g(x))" = f(x)¢'(x) + f/(x)g(x) and
(f(3(x))' = £'(g(x)g'(x).

b) Show that if k is of charactristic zero, then f’ = 0 if and only if f is constant; i. e.
f if and only if is of degree zero.

c) Show thatif f/ = 0 and f is not of degree zero, then k has positive characteristic,
say p, and f(x) = g(x*") for some r where g is a polynomial with g’ # 0.

(1.21) Let {A;}ic; be a collection of subrings of the ring A. Prove that the intersection
(icr Ai is a subring.
(1.22) Give examples of two subrings A; and A, of a ring A such that their union is
not a subring. Assume that the collection {A;}c; of subrings of A has the property that
any two rings from it are contained in a third. Prove that in that case the union [ J;c; A;
is a subring.

*

1.3 Direct products and idempotents

As an introductory motivation to this section, consider the disjoint union X u Y of two
topological spaces X and Y. Giving a continuous function on X u Y is the same as
giving one continuous function on X and one on Y. Therefore the ring of continuous
functions Cr (X u Y) decomposes as the direct product Cr(X uY) = Cr(X) x Cr(Y),
in which both addition and multiplication are given component-wise. This indicates
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*Since the unit
element (1,1) does not
lie in either A;, they
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not subrings even
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under both addition
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*The reference to the
index set I will
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and strings written as

(a;).

that in the interplay between geometry and rings, direct product of rings correspond to
disconnected spaces.

Below we shall define the direct product of a collection of rings regardless of its
cardinality and introduce the notion of idempotent elements (elements e such that e? = e).
Multiplication by idempotents are projection operators (they are equal to their squares)
and serve to decompose rings (and later on modules) into direct products.

The archetype of an idempotent function is the characteristic function ex of a
connected component, say X, of a topological space Z; that is, the function that assumes
the value one on X and zero on the rest of Z. Since X is a connected component of Z,
this function is continuous, and of course, eg( = ex. Moreover, the restriction f|x to
X of any function f on Z equals f - ex, or put more precisely, f - ex is the restriction
flx extended by zero to the entire space Z. Anyhow, in this way the set Cr(Z) -ex is a
ring naturally identified with Cg(X) with the idempotent ex corresponding to the unit
element in Cr(X). The lesson learned is that idempotents are algebraic counterparts to
the geometric notion of connected components (at least when the components are finite
in number).

Direct products of rings

We start out by considering two rings A; and Aj;. The Cartesian product A = Ay x Ap
consisting of the pairs (a1,42) becomes a ring when equipped with the componentwise
operations. The underlying additive group is the direct product of the underlying
groups of the two rings, and the product is given as

(a1,a2) - (ﬂlpaé) = (m "1’1/‘12 : ‘1/2)'

The unit element is the pair (1,1), and the two projections 7;: A — A; are ring
homomorphisms. Moreover, the direct product possesses two special elements e; =
(1,0) and e, = (0,1), which satisfy elz = ¢; and eje; = 0. The sets e; A and ex A equal
respectively A x {0} or {0} x Ay, and are, with a liberal interpretation®, subrings of A
isomorphic to respectively A; and A;.

(1.23) To generalize what we just did for a pair of rings, let {A;}ic; be any collection
of rings, which can be of any cardinality. In our context it will mostly be finite, but
occasionally will be countable. The direct product [ [;.; A; has as underlying additive
group the direct product of the underlying additive groups of the A;’s. The elements
are “tuples” or strings (a;);c; indexed* by I whose i-th component a; belongs to A;,
and the addition of two such is performed component-wise. The same is true of the
multiplication, also performed component for component; that is, it holds true that
(a;) - (b;) = (a; - b;). The ring axioms can be checked component-wise and thus come
for free.
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Interpreting tuples a = (a;) as maps a: I — |Jc; Aj, the ring operations of the

direct product are just the point-wise operations. The unit element, for instance, is the
“constant*” function that sends each index i to 1.
(1.24) The projections 71;: [ [,c; A; — A; are ring homomorphisms (this is just another
way of saying that the ring operations are defined component-wise) and enjoy the
following universal property: Given any ring B and any collection ¢;: B — A; of ring
homomorphisms, there is an unambiguously defined map of rings ¢: B — [ [,c; A; such
that ¢p; = ;0 ¢ for all i € I. Indeed, this amounts to the map given by ¢(x) = (¢;(x))jer
being a ring homomorphism.

Idempotents

(1.25) In any ring A an element e satisfying e? = e is said to be idempotent, and if f is
another idempotent, one says that f and e are orthogonal when fe = 0. The element 1 —e
is always idempotent when e is and is orthogonal to e as shown by the little calculations

(1-e)?=1-2e+e*=1-2e+e=1—¢,

2

e(l—e)=e—e"=e—e=0.

The subset Ae = {ae | a € A} is a ring with ¢ as a unit element. Indeed
ae - be = abe® = abe,

so Ae is closed under multiplication and trivially it is closed under addition as well;

finally
2

e-ae = ae” = ae,

so that e serves as the unit element.

It is common usage to count the unit element and zero among the idempotents; they
are called the the trivial idempotents.
(1.26) We saw above that in the direct product A; x A, there appears two natural
defined idempotents. Conversely, let A a ring. To any family {e;};<i<, of mutually
orthogonal idempotents that add up to 1, there corresponds a decomposition of A as a
direct product:

PRrROPOSITION 1.27 Let ey, ..
that Y, e; = 1. Then each set Ae; is a subring in the restricted sense, and the association

., & be pairwise orthogonal idempotents in a ring A and assume
x — (xeq,...,xer) gives an isomorphism of rings

A—"=T],; Ae.
The projection onto Ae; is realized as multiplication by e;.
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Proor: To begin with, we verify that the map in the proposition, call it ¢, is a ring
homomorphisms. So let x and y be two elements from A. Clearly ¢ is additive, moreover,
the e;’s being idempotents, we find

P(x)P(y) = (xe;)i - (vei)i = (xyeie;); = (xye;); = ¢p(xy),

and thus ¢ also respects the multiplication. The unit element 1 maps to the string (e;);
which is the unit element in the product since each e; serves as unit element in Ae;.

Now, we have supposed that the ¢;’s add up to one; that is, 1 = >} e;. Hence
x =3, xe;, from which ensues that ¢ injective; indeed, that ¢(x) = (xe;); = 0, means
that each xe; = 0.

Finally, let us check that ¢ is surjective. Given an element (x;e;); in the product, we set
x = >}; xie;. Using that the ¢;’s are mutually orthogonal, we find xe; = >, x;e;e; = xje;,
and x maps to the given element (x;e;);. a

Exercises
(1.23) Determine the idempotents in Z /127 and in Z /36Z.
(1.24) What is the prime ring of Q x IF,?
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Lecture 2

Ideals

Ideals were first defined by Richard Dedekind in 1876, but the name comes from the so
called “ideal numbers” of Ernst Eduard Kummer which he introduced in a series of
papers around 1847.

Working with rings of integers in algebraic number fields, the algebraists of the
period realized that analogues of the Fundamental Theorem of Arithmetic do not always
hold in such rings. Recall that the Fundamental Theorem asserts that any integer is a
product n = pq -...- p; of signed primes, and that the factors are unique up to order and
sign—changing the order of the factors does not affect the product, and changing the

sign of one factor can be compensated by simultaneously changing the sign of another.

It is not too complicated to show that in a vast class of rings, including the rings of
algebraic numbers above, any element can be expressed as a product of irreducible
elements; that is, as a product of elements which may not be factored further (they can

of course always be altered by a unit, but that is not considered an honest factorization).

The point is however, that these factors are not always unique (apart from the innocuous
ambiguities caused by unit factors and change of order).

The classical example, which is omnipresent in text books, is the factorization
2.3 = (1+iv/5)(1 —iV/5) in the ring Z[iv/5]. The four involved numbers are all
irreducible, and no two of them are related by units.

The ideals came about to remedy this fault and, in fact, in certain rings called
Dedekind rings, the situation can be salvaged; there is a factorization theorem for ideals
replacing the Fundamental Theorem of Arithmetic. Hence the name ideals, they were
“the ideal numbers”

Dedekind rings are however a very restricted class of rings, and today ideals play
an infinitely wider role than just being “ideal numbers”. In algebraic geometry for
instance, they appear as the sets of polynomials in k[x, ..., x;| vanishing along a subset
of k", and this is the clue to the coupling between algebra and geometry.

Richard Dedekind
(1831-1916)

German mathematician

Ernst Eduard Kummer

(1810-1893)
German mathematician
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Ideals (idealer)

Proper ideals (ekte
idealer)

2.1 Ideals

(2.1) Let A be a ring. An additive subgroup a of A is called an ideal if it is closed under
multiplication by elements from A. That is, a satisfies the two following requirements;
the first merely being a rephrasing that a is a subgroup.

dIfacaandbea, thena+be A, and 0 € A;
dIfaecAandbea, thenabea.

Both the trivial additive subgroup (0) and the entire ring satisfy these requirements
and are ideals, although special ideals. In many texts the ring itself when considered an
ideal, is denoted by (1).

(2.2) An ideal a is said to be a proper ideal if it is not equal to the entire ring. This is
equivalent to no member of a being invertible. Indeed, if a € a is invertible, one has
b =bala e a for any b € A; and if a = A, of course, 1 € a. From this observation
ensues the following characterization of fields in terms of ideals:

PROPOSITION 2.3 A ring A is a field if and only if its only ideals are the zero ideal and A itself.

ProoF: We just saw that an ideal a equals A precisely when a n A* # . If A is a field,
then A* = A\{0}, and any ideal, apart from the zero ideal, meets A*. The other way
round, any non-zero and proper ideal must contain a non-zero element, which cannot
be invertible, and consequently A is a not a field. 3

Examples

(2.1) The subset nZ of Z consisting of all multiples of the integer n is an ideal; a
so-called principal ideal. The ideal nZ is frequently written (1) or (n)Z.

(2.2) For any subset S< C” the polynomials in C[xy,...,x,] vanishing on S form an
ideal.
¥

Operations on ideals—the lattice of ideals

(2.4) The set Z(A) of ideals in the ring A has—in addition to being partially ordered
under inclusion—a lot of structure. One may form the intersection (;c; a; of any family
{a;}ic; of ideals. It is easily seen to be an ideal, and it is the largest ideal contained in
all the a;’s. Likewise, one has the notion of the sum of a family of ideals. It is the ideal
consisting of all finite sums of elements from the a;’s:

Zai:{”’h+-'-+”jr |aj, € a;, re N},

iel
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and it is the smallest ideal containing all the a;’s. So Z(A) is what one technically calls
a complete lattice; every subset of Z(A) has a greatest lower bound (the intersection) and
a smallest upper bound (the sum). It is the lattice of ideals in A.

(2.5) A construct similar to the sum of a family of ideals is the ideal generated by a set
of elements {a;};c; from A. It will be denoted (a;i € I), or in case the set is finite, say
equal to {ay,...,a,}, the alternative notations (ay,...,a,) or (ay,...,a,)A are common
usage. Its members are the finite linear combinations of the a;’s with coefficients from
the ring A; that is, it holds that

(ailie I) = {2 ciai | ci € A, J <1 finite }.

The elements a; are called generators. ldeals which are generated by finitely many
elements are naturally called finitely generated.

(2.6) An ideal generated by a single element is called a principal ideal and is denoted by
(a) or by aA. It consists of all multiples of the generator; i.e. (a) = {c-a|ce A}.

In some rings all ideals are principal as is the case for the integers Z and the
polynomial ring k[t] over a field. These rings, if also being domains, are called Principal
Ideal Domains, frequently referred to by the acronym PID.

Different elements can of course generate the same principal ideal, but they will, at
least in domains, be closely related, as described in the next lemma.

LEmMA 2.7 Two non-zero divisors a and b in a ring A generate the same principal ideal precisely
when they are related by a unit; that is, when a = ub where u € A*.

Proor: When (a) < (b) there is a ring element u so that a = ub, and when (b) < (a) it
holds that b = va, Hence a = vua. And a not being a zero-divisor, we conclude that
vu = 1. a
One often says that a and b are associates if one is a unit times the other; i. e. if a = ub
with u € A*. The lemma then says that two non-zero divisors a and b generate the same
principal ideal if and only if they are associates. So in a domain the set of principal
ideals is naturally identified with A modulo association (which easily is seen to be an
equivalence relation ).

In the case when the ring A possesses zero-divisors, things are more complicated,
see Example 2.10 on page 38 below.
(2.8) The product of two ideals a and b is the ideal generated by all products of one
element from a and one from b; that is, the product ab is formed of all finite sums of
such products:

ab={ab1+...+a,by |a;€a,bjeb,re N}

(2.9) The last operation we offer is the formation of the transporter between two ideals.
Some texts call it the quotient of the two deals—however, that term should be reserved
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for another construction we shortly come to. So let a and b be two ideals in A. We
define the transporter (a : b) to be set of elements which on multiplication send b into a;
that is

(a:b)={xeA|xbca}.

It is easily seen to be an ideal. In the particular case that a = (0) and b is a principal
ideal, say b = (a), the transporter (0 : a) (an immediate simplification of the notational
overloaded expression ((0) : (a))) coincides with the annihilator of a; that is

(0:a)=Anna={xeA|xa=0}.

Similarily, any ideal a has an annihilator ideal which is defined as Anna = (0: a) =
{xeA|xa=0forallaea}l.

Examples

(2.3) In Z it holds that (100 : 10) = (10). More generally if a and b are elements from
the ring A and b is not a zero divisor, one has (ab : b) = (a). Indeed, xb = yab is
equivalent to x = ya since cancellation by b is allowed b being a non-zero divisor. If b is
a zero-divisor it anyhow holds that (ab,b) = (a) + Annb.
(2.4) In Z/40Z one has Ann2 = (20), that Ann4 = (10) and that Ann20 = (5).
(2.5) In the polynomial ring C|x,y] it holds that ((xy,y?) : (x,y)) = (y). Clearly (y) is
contained in ((xy,y?) : (x,y)). For the converse inclusion assume that fx = gxy + hy?
where f, ¢ and h are polynomials in C[x,y]. Since x divides the terms fx and gxy, it
divides hy? as well, and by cancelling x, we infere that f = gy + I’y with I/ € C[x,y];
that is, f € (y).

*

Functorially
A map of rings ¢: A — B induces two maps between the ideal lattices Z(A) and Z(B),
one in a covariant and one in a contravariant way. One can move ideals forward with
the help of ¢, and the the usual inverse image construct gives a way to move ideals
backwards along ¢. The new ideals are in some texts respectively called extensions or
contractions of the old.
(2.10) We begin with the contravariant way. The inverse image ¢ ~!(b) of an ideal b in B,
also called the pullback, is evidently an ideal in A—indeed, ¢(ab) = ¢(a)¢p(b) belongs
to b whenever ¢(b) does—and this gives rise to a map ¢~': Z(B) — Z(A). In the
frequently reccurring case when A is a subring of B, the reference to the inclusion map
is most often suppressed, and one uses the natural notation b n A for the “pullback” of
the ideal b.

Obviously the inverse image preserves inclusions, and it takes intersections to
intersections ( pullbacks of sets respect intersections in general). Sums and products
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of ideals however, are not generally preserved, but the inclusions in the upcoming
proposition are easily verified. One has:

PROPOSITION 2.11 (PULLBACKS) Let ¢p: A — B be a ring homomorphism and let a and b be
two ideals in B. The pullback map ¢—': T(B) — I(A) preserves inclusions, and the following
claims hold true:
)¢9~ (a)n¢Tl(b) =9 (anb),
i) o~ 1(a)+ ¢~ (b) = (a+b);
iii) =1 (a) - ¢~ (b) ¢ (a-b).

Equality does not hold in general in the two last statements, but notice that both
inclusions will be equalities when ¢ is a surjective map. We postpone giving examples
to the end of the paragraph (Examples 2.6 and 2.7 below).

(2.12) Next we come to the covariant construction. If a is an ideal in A, the image ¢(a)
is not necessarily an ideal in B unless ¢ is surjective. A stupid example can be the
image of any non-zero ideal in Z under the inclusion Z < Q. The ideal generated by
¢(a) however is, and we shall usually denote this ideal by ¢(a)B or simply by aB; as
mentioned above it is called the extension of a, but is also frequently referred to as the
pushout of a. This induces a map Z(A) — Z(B). Inclusions are obviously preserved,
and one leisurely verifies the other relations in the following proposition.

PROPOSITION 2.13 (PusnHOUTS) Let ¢p: A — B be a map of rings and let a and b be two ideals
in A. Then the map a — aB preserves inclusions. Moreover, the following hold true:
i) ¢(a-b)B = ¢(a)B-¢(b)B;
ii) ¢(a+6)B = ¢(a)B+ ¢(b)B;
iii) ¢(anb)B<=¢(a)Bn ¢(b)B.

The inclusion in the last statement may be strict (see Example 2.9 on page 38), but just
like with the previous proposition, equality holds in the third statement whenever ¢ is
surjective.

Examples

(2.6) A simple example of strict inclusion in statement ii) in Proposition 2.11 above is the
diagonal map §: A — A x A that sends a to (a,a). The two ideals b = { (0,a) |ae€ A}
and b’ = {(4,0) | a € A} are both pulled back to the zero ideal, but since b+ b" = A x A,
their sum is pulled back to the entire ring A.

(2.7) We intend to give an example of strict inclusion in iii) in Proposition 2.11. Consider
the subring k[xy] of the polynomial ring k[x, y| and let ¢ be the inclusion. Let a and
b be the two principal ideals (x) and (y) in k[x, y]. We contend that a n k[xy] = b
k[xy] = (xy); indeed, clearly (xy) < (x) n k[xy], and equality holds since an identity like
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xf(x,y) = g(xy) between polynomials forces g to be without a constant term. Similarily,
(y) N klxy] = (xy). So (ank[xy])(b nklxy]) = ((xy)?), but (x) n (y) = (xy)k[x,y],
which intersects k[xy] in the ideal (xy).

*

Exercises

(2.1) Let a, b and ¢ be ideals in a ring A.

a) Show that the two relations a-b < anband (anb)?>< a- b hold. Show by giving
examples that there might be a strict inclusion in both cases.

b) Assume that a+ b = (1). Show thata-b=anb.

c) Show that a(b+¢) = ab+ ac. Show thatanb+ancSan (b+¢), and by
exhibiting an example, show that the inclusion can be strict.

(2.2) Let {a;} be a collection of ideals in the ring A. Show that for any ideal b it holds
true that ((;c;a;: 6) = iy(a; : b) and that (b: X7 a;) = iy (b2 a;).

(2.3) Show that any non-zero ideal in the ring Z of integers is principal, generated by
any of the two members of smallest absolute value. Show that each non-zero ideal in
the polynomial ring k[x] over a field k is principal, generated by any member of smallest
degree.

(2.4) Given two ideals (1) and (m) in the ring of integers Z.

a) Show that (n) < (m) if and only if m|n. Conclude that the partially ordered set
Z(Z)\{(0)} of non-zero ideals in Z is lattice isomorphic to the the set of natural
numbers ordered by reverse divisibility;

b) Describe the ideals (1,m) and (1) n (m). Show that (n) - (m) = ((n) n (m)) -
(n,m);

c) Describe ((144) : (24));

d) Describe the transporter (1 : m) in terms of the prime factorizations of the two
integers n and m.

(2.5) Let k[x,y] be the polynomial ring in the variables x and y over the field k, and let
m be the ideal generated by x and y; that is m = (x,y). Let n denote a natural number.

a) Exhibit a set of generators for the power m”.
b) Let u and v be two natural numbers. Show that m" < (x#,y") for n sufficiently
large. What is the smallest # for which this holds?

(2.6) Let A = Z[+/2,4/3]. Show that as an abelian group A is free of rank four and
exhibit a basis. Show that the underlying abelian groups of the principal ideals (v/2)
and (v/3) both are of rank four. Exhibit additive bases for both.

*
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2.2 Kernels and quotients

In one way ideals play the same role in the category of rings as normal subgroups do
in the category of groups. They are precisely the subobjects that appear as kernels of
homomorphisms, and consequently, the ones that can be factored out.

(2.14) By definition the kernel of a ring homomorphism ¢: A — B is the kernel of ¢
considered a map between the underlying additive groups; that is, it equals the subset
of elements mapping to zero, or written in symbols ker¢ = {a € A | ¢(a) = 0}. If
aeker¢and b e A, we find

¢(a-b) = ¢(a) - ¢(b) =0-¢(b) =0,

and we can conclude that ab € ker ¢. Hence the kernel ker ¢ is an ideal.
(2.15) To see that any ideal is a kernel, one introduces the concept of quotient rings. An
ideal a in A being an additive subgroup, there is a quotient group A/a which consists
of the residue classes [a] = a + a of elements in A. The sum of two such, say [4] and [b],
equals [2+ b]. To put a ring structure on A/a we simply define the product of two
classes [a] and [D] as

[a]-[b] =[a-b]=a-b+a.

Some checking is needed; the most urgent one being that the product only depends on
the residue classes [a] and [b] and not on the choice of representatives 2 and b. This is
encapsulated in the formula where x and y are arbitrary elements from a

(a+x) - (b+y)+a=a-b+a-y+b-x+x-y+a=a-b+a.

It is left to the students to verify that this product complies with the associative,
commutative and distributive laws. Finally, by definition of the ring operations in A/g,
the quotient map 7: A — A/a that sends a to the residue class [4], is a map of rings
whose kernel equals the given ideal a.

ExamrLE 2.8 It is appropriate to mention what quotients by the two “extreme” ideals
are. The quotient A/a equals A if and only if a is the zero-ideal, and it equals* the
null-ring if and only if a = A. #
(2.16) The quotient ring A/a together with the quotient map 7: A — A/a enjoys a
so-called universal property—the rather pretentious notion “solves a universal problem”
is also common usage—which is a convenient way of characterizing many types of
mathematical objects. The origin of the technique is found in category theory where
objects not always have “elements” and one must rely on “arrows” to express properties.

Any map of rings ¢: A — B that vanishes on «; that is, which satisfies a < ker ¢,
factors in a unique way through the quotient A/a. In other words, there is a unique
ring-map ¢: A/a — B such that ¢ = ¢ o 7. Indeed, since ¢(a) = 0, the map ¢ is
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constant on every residue class [a] = a + a, and we put ([a]) equal to that constant
value. This value is forced upon ¢, so ¥ is unique, and it is a ring-map since ¢ is. We
have proven:

ProOPOSITION 2.17 (THE FacTORIZATION THEOREM) Given an ideal a in the ring A. A map
of rings A — B vanishes on a if and only if it factors through the quotient map A — A/a. The
factorization is unique.

The statement may be illustrated by the first commutative diagram in the margin. The
solid arrows are the given ones, and the dashed arrow is the one claimed to exist. If
it happens that ker ¢ = a, the induced map ¢ will be injective, and hence, if a priori
surjective, an isomorphism. The images of all ring-maps with the same kernel are
therefore isomorphic, in the strong sense that the isomorphisms fit into diagrams like
the second one in the margin.

Ideals in quotients

(2.18) There is a natural one-to-one correspondence between ideals in A/a and ideals in
A containing the ideal a. Indeed, if b < A is an ideal with a < b, the image 71(b) equals
the additive subgroup b/a< A/a and since 7t is surjective, this is an ideal in A/a.
Moreover, if ¢S A/a is an ideal, the inverse image 7~ !(c) is an ideal in A satisfying
7(t=1(c)) = ¢ (again because 7 is surjective); or in other words, 77! (¢c) contains a and
1 c)/a="c.

PROPOSITION 2.19 (IDEALS IN QUOTIENTS) Let a be an ideal in the ring A and let m: A —
A/ a the quotient map. The following three statements hold true:

i) For every ideal b in A it holds true that ' (7t(b)) = b+ a. Each ideal cin A/a is
of the form 7t(b) = b/a; indeed, ¢ = (= (c));
ii) The lattice of ideals in A/a and the lattice of ideals A containing a are isomorphic
lattices, with ¢ — 7t(c) and ¢ — 7~ (c) as mutually inverse maps;
iit) An ideal is mapped to the zero ideal in A/ a if and only if it is contained in a.

ProOF: We already saw that 77(b) = b/a is an ideal and that ¢ = 7r(7r~!(c)), so the last
part of i) is clear. For the first claim, if 77(x) = 7(b) for some element b € b it evidently
holds true that x — b € ker 1 = a and hence x € b + a so that 77~ !(7(b)) < b + a. The
reverse inclusion follows immediately since 77(b + a) = 77(b), again because ker 7t = a.

To show ii) observe that the equality 7~!(7r(b)) = b+ a entails that 7! takes
values in the sublattice of Z(A) whose members contain a. It equally implies that
= 1(7t(b)) = b whenever a < b, and we conclude that the two maps are mutual inverses.
They both respect inclusions and are thus lattice isomorphisms.

The third claim iii) is just a rephrasing of a being the kernel of 7. 3
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Note that both maps 7 and 7! respect intersections, sums and products of ideals. The
picture below is an illustration of the situation:

Ideals b in A

Ideals with a < b Ideals in A/a

T

(2.20) The image in A/a of an ideal b < A, which not necessarily contains a, is the ideal
(64 a)/a. This holds since obviously 7t(b + a) = 7(b). Now, ker 7|, = an b from
which ensues the following isomorphism

b/bna~(a+b)/a (2.1)

The two members of (2.1) are ideals in different rings, so we must be cautious about
what isomorphic means (it does not mean equal even though it might seem so the
map sending a class [b] to the class [b], but those classes are mod different ideals). The
isomorphism is certainly an isomorphism of abelian groups, but it preserves a lot more
structure. The two sides are what we later shall call A-modules: Elements from A
operate by multiplication on both sides (this evidently holds for ideals in any quotient
ring of A), and the isomorphism respects these operations.

Finally, we mention that when a and b are two ideals with a < b, there is a natural
isomorphism

(A/a)/(b/a) ~ A/b. (2.2)

Indeed, in the diagramme in the margin, the composition 71y /4 © 774 has the ideal b as
kernel, and therefore factors through 7, by say 6. The map 6 is surjective since the
composition is and injective since the composition has b = 71;1(b/a) as kernel. The
two formulas (2.1) and (2.2) are often referred to as the Isomorphism Theorems.

THEOREM 2.21 (THE IsoMoRrRPHISM THEOREM) Let a and b be ideals in A. Then the following
two isomorphism relations hold, where in the second is assumed that a C b:

i) b/bna~(a+b)/a;

ii) (A/a)/(b/a)~ A/b.
As remarked above, the isomorphisms are module isomorphisms; they are isomor-

phisms of abelian groups which respect multiplication by elements from A.

A convenient convention
(2.22) Ever recurring ingredients of a set-up in commutative algebra are rings shaped
like quotients k[Xj, ..., X;]/a of a polynomial ring. When working with such rings,
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it is very natural and suggestive to denote the class of a variable by the lower case
variant of the uppercase letter used for the variables. To avoid repeating this formula ad
infinum like a yogi’s mantra, we adhere to the following convention: we say that the
ring A = k[x1,...,x,] has constituting relations f1(xq1,..., %) = ... = fs(x1,..., %) =0,
if A=k[Xy,...,Xs]/awitha=(f1,...,fs) and the upper case X;’s correspond to the
lower case ones.

A convenient way of defining ring maps with source A and target a k-algebra B, is
to assign values b; € B to the generators x;. This can of course not be done freely, but
when the constituting relations persist holding in B when the b;’s are substituted for the
x;’s, there is a well-defined and unique ring map A — B such that x; — b;. This ensues
from the Factorization Theorem (Theorem 2.17 on page 36); indeed, sending X; to b;
defines a map k[Xj, ..., X;] — B which factors via A since it vanishes on the ideal a.

Examples

(2.9) This example aim at illustrating that strict inclusion in the last inequality of
Proposition 2.13 on page 33 may occur. So let A = k[X,Y, Z] and let B = k[x, y, z] with
constituting relation zx = zy, and consider the natural map ¢: A — B that sends upper
case letters to their lower case versions. Let a and b be the principal ideals (X) and (Y)
in A. We conted that ¢(a nb) < ¢(a) N ¢(b).

It holds that anb = (XY), so (anb)-B = (xy). Since zx = zy, we see that and
zx € (x) n (y) = aB n bB, but zx ¢ (xy)B; indeed, one way of seeing this is to observe
that sending z to 1 and both x and y to t gives a well-defined ring map k[x,y, z] — k[t]
(since the relation zx = zy persists as t = t), which maps zx to t and xy to t>. We deduce

that ¢(anb) S ¢(a) N ¢(b).

(2.10) Let A = k[x, y, z] with constituting relation z = zxy. In A the two principal ideals
(z) and (xz) coincide, but there is no unit u # 1 in A so that uz = xz; hence z and xz
are not associates even though (z) = (xz).

The salient point is that A* = k*. One way of seeing this, is to observe that killing
z gives a well-defined ring map A — k[x,y|. It takes units to units, and the group of
units in the polynomial ring equals k*. So 1 would be a scalar. Setting z equal to 1 and

x = y~! gives a ring map A — k[y,y~!], and in the latter ring obviously x is not a scalar

being equal to y 1.

(2.11) Let A = k[x;|i € N] with constituting relations x? = —1 for i € N. Then the
polynomial #? + 1 has infinitely many roots in A. The ring A is not an integral domain
in that x? = sz fot all i and j; so that (x; + xj)(x; — x;) = 0.

¥
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Exercises
(2.7) Let k be a field and ¢: k — A a ring homomorphism. Show that ¢ is injective
unless A is the null ring.
(2.8) Let A be aring and let a and b be two ideals in A. Show that there is a natural
equality b(A/a) = (a+ b)/a. Use the Isomorphism Theorem to show that there is a
canonical isomorphism A/a+b ~ (A/a)/b(A/a), so that you can divide out by a sum
of two ideals by successively dividing out by one at a time. Of course, the order doesn’t
matter: swapping the two ideals yields an isomorphism A/a+b ~ (A/b)/a(A/b).

*

2.3 Prime ideals and maximal ideals

Two classes of ideals are infinitely more important than others. We are speaking
about the prime ideals and the maximal ideals. The prime ideals are defined in terms of
multiplicative properties of the ring, and are generalizations of prime numbers. They
played the role of the primes in Kummer and Dedekind’s world of “ideal numbers”.
If your ambitions are high and you try to understand all ideals in a ring, you have to
begin with understanding the prime ideals, and then accomplish the draconian task to
explain how other ideals are built from the prime ideals.

(2.23) Anideal ain a ring A is a prime ideal if it is proper and satisfies the following
requirement:

O If ab € a, then eitheracaorbe a.

Maximal ideals are defined in terms of inclusions. They are, as the name indicates,
maximal among the proper ideals; that is, they are maximal elements in the partially
ordered set Z(A)\{A}. So an ideal a is maximal if it is proper and satisfies the following
requirement:

O If b is an ideal and a < b, then eithera = b or b = A.

Notice that both prime ideals and maximal ideals are proper by definition.
(2.24) One has the following characterization of the two classes of ideals in terms of
properties of quotients.

PROPOSITION 2.25 An ideal a in A is a prime ideal if and only if the quotient A/a is an
integral domain. The ideal a is maximal if and only if A/a is a field.

Proor: The quotient A/a is an integral domain if and only if [a][b] = 0 implies that
either [a] = 0 or [b] = O; that is, if and only if ab € a implies that eithera e aor b € qa,
which proves the first assertion.
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Bearing in mind the relation between ideals in A/a and ideals in A containing a (as
in Proposition 2.19 on page 36), the second assertion is pretty obvious. There is no ideal
strictly between a and A if and only if A/a has no non-trivial proper ideal; that is, if
and only if A/ais a field (Proposition 2.3 on page 30). a
Notice that the zero ideal (0) is a prime ideal if and only if A is an integral domain, and
it is maximal if and only if A is a field. When m is a maximal ideal, the field A/m is
called the residue class field of A at m and now and then denoted by k(m).

Since fields are integral domains, we see immediately that maximal ideals are prime.
The converse does not hold as we shortly shall see examples of (Example 2.14 below).

PROPOSITION 2.26 A maximal ideal m is prime.

(2.27) Not only for elements is it true that a product lies in a prime ideal only when one
of the factors does, the same applies to products of ideals as well:

PROPOSITION 2.28 Let a and b be two ideals in A such that ab is contained in the prime ideal
p. Then either a or b is contained in p.

Proor: If neither a nor b lies in p, one may find elements a € a and b € b not being
members of p. Since ab is contained in p, the product ab belongs to p, and since p is
prime, it either holds that a € p or that b € p. Contradiction. ]
The claim is not restricted to products of only two ideals. With an easy induction one
proves that if a finite product a; - ... - a, of ideals is contained in a prime ideal p, one of
the factors q; lies in p.

Prime ideals in quotients

(2.29) In the correspondence between ideals in A and A/a described in Proposition 2.19
on page 36 prime ideals correspond to prime ideals (containing a) and maximal ideals
to maximal ideal (containing a). The last statement is clear since with the notation as in

Proposition 2.19 the inverse image map 7!

is an isomorphisms of the lattice Z(A/a)
with the sublattice of Z(A) whose members contain a, and hence maximal elements
correspond to maximal elements. The first ensues from the general truth that prime
ideals pull back to prime ideals along ring maps ; indeed, assume that p is a prime
ideal in B and that ¢: A — B a ring map. That the product ab lies in the inverse image
¢~ 1(p), means that ¢(ab) € p, but ¢(ab) = ¢(a)¢(b), and hence either ¢(a) lies in p or

¢(b) lies there; that is, either a € ¢! (p) or b e ¢! (p). We have thus established:

PROPOSITION 2.30 (PRIME AND MAXIMAL IDEALS IN QUOTIENTS) Assume A is a ring and
a an ideal. The prime ideals in the quotient A/a are precisely those of the form p/a with p
a prime ideal in A containing a, and the maximal ideals are those shaped like m/a with m a
maximal ideal in A likewise containing a.
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Examples

(2.12) The archetype of maximal ideals are the kernels of evaluation maps. For in-
stance, let @ = (ay,...,a,) be a point in k" where k is any field, and consider the
map k[xi,...,%;] — k sending a polynomial f to its value f(a) at a. The kernel m is
a maximal ideal since k[xy,...,x,]/m is the field k. The kernel may be described as
m = (xy —ay,...,% — a,). This is obvious when a4 is the origin, and introducing fresh
coordinates x! = x; — a;, one reduces the general case to that case.

(2.13) The zero ideal in A is prime if and only if A is a domain, and it is maximal if and
only if A is a field.

(2.14) There are plenty of prime ideals that are not maximal. Continuing the pre-
vious example the ideal p generated by a proper subset of the variables is prime
but not maximal; that is, after eventually renumbering the variables, p = (x1,..., ;)
with s < r is prime but not maximal. This is best seen by considering the partial
evaluation map k[xq,...,%;] = k[xs11,...,x,] that sends a polynomial f(x1,...,x,) to
f(0,..,0,x541,..., %), whose kernel is p. Since the polynomial ring k[xs.1,...,%,] is a
domain, it ensues that p is prime, and p is obviously not maximal as s < r. By a linear
change of variable one also shows that the ideals (x; —ay,...,xs —a5) are all prime.

(2.15) Consider the ring of Gaussian integers Z[i]. It is isomorphic to the quotient
Z[t]/(t* + 1) of the polynomial ring Z[t], the isomorphism sends t to i. Let p € Z
be a prime number and consider the ideal pZ[i]. Citing Exercise 2.8 on page 39 we
infer that Z[t]/(p,t> + 1) on the one hand will be isomorphic to Z[i]/pZ][i] and on
the other to the quotient FF,[t]/(t> + 1), and we conclude that there is an isomorphism
Z[i]/pZ[i] ~ F,[t]/(t* + 1) that swaps t and i.

*

Prime avoidance and a pair of twin lemmas

A lemma about prime ideals that will be useful now and then, is the so-called Prime
Avoidance Lemma. It asserts that an ideal contained in a finite union of prime ideals
must lie entirely in one of them. The name stems from the equivalent statement that if
an ideal a is not contained in any of the prime ideals py, ..., p;, it has an element not
lying in any of the p;’s.

(2.31) As a warm up, let us do the case of two prime ideals, in which case the statement
is simply a statement about abelian groups: If a subgroup B of an abelian group is
contained in the union of two others, A; and Aj, it is contained in one of them; indeed,
assume not and pick elements x; € A; n Bbut x; ¢ A;j for {i,j} = {1,2}. Then x; +x € B
but x1 +x2 ¢ Ay U Ay, for were it in A, it would follow that x; € A}, again with
{i,j} = {1,2}, and this is not the case.

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



42 TIDEALS

*Lacking a unit

&
element it is not
genuine ring according
to our conventions

Redundant (redundant)

Irredundant unions
(irredundante unioner)

The corresponding statement for three subgroups is faulty as shows the vector space
IF, @ F, with four elements. It is the union of the three one-dimensional subspaces it has;
so for a general claim involving more than two ideals to be true, some multiplicative
structure is required, but the case of two groups is reflected in the assertion in that two
of the ideals need not be prime:

LEMMA 2.32 (PRIME AVOIDANCE LEMMA) Let ay, ..., a, be ideals in the ring A of which all
but at most two are prime. If a is an ideal contained in the union | J; a;, then a is contained in at
least one of the a;’s.

Proor: We shall assume that a is not contained in any of the g;’s and search for an
element in a not lying in the union (J; a;; that is, not belonging to any of the a;’s. The
proof proceedes by induction on 7, the case r = 2 already being settled. So we assume
r > 2 and that the lemma holds true for » — 1. Hence a is not contained in the union
U#i a; for any i. We can therefore for each i pick an element x; in a not in Uj# aj, and
we may safely assume that x; € a; (were it not, we would be through). Since r > 2 at
least one of the a;’s is a prime ideal, and we may as well assume that it is the case for a,.
With these assumptions, we contend that the element

X=X1 ... Xp—1 + Xy,

which clearly lies in a, does not belong to any a;. If i < v — 1 this holds because x; lies
in p;, but x, does not. For i = r we know that x, lies in a,, but x7 - ... x,_1 does not
since none of the factors lie there and a, is prime, so x ¢ a, as well. |
Notice that the proof merely requires a to be closed under addition and multiplication,
so the ideal a may be replaced with a “weak subring” of A; that is, a subset closed
under addition and multiplication*. The second remark to make is that if A is an
algebra over an infinite field, one may even skip the requirement that the ideals be
prime (Exercise 2.12 below).

(2.33) At several later occasions unions and intersections of prime ideals will play an
important role, and we use the occasion to introduce some terminology.

A union | J; S; of sets is said to be redundant if one of the sets can be discarded
without the union changing. This means that for some index v it holds that S, < ., Si-
If the union is not redundant, naturally one calls it irredundant. For finite unions of
prime ideals the Prime Avoidance Lemma entails that the union | J; p; is irredundant if
and only there is no inclusion relation among the p;’s. Indeed, if there is such a relation,
the union is obviously redundant, and if say p, <  J;.., p;, the lemma gives that p, is
contain in one of the other p;’s.

Similarly, an intersection (*); S; is irredundant if one cannot discard one of sets with-
out changing the intersection. For a finite intersection of prime ideals Proposition 2.28
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on page 40 implies that the intersection being irredundant is equivalent to there being
no inclusions among the prime ideals.

(2.34) Irredundant unions and intersections of prime ideals enjoy strong uniqueness
properties; in fact, the prime ideals involved are determined by their intersection or
their union, as expressed in the following twin lemmas.

LEmMMA 2.35 Let {p1,...,p,} and {q1,...,qs} be two families of prime ideals having the same
union; that is, p1 U -+~ UPr = (1 U - -+ U (s. Assume that there are no non-trivial inclusion
relations in either family. Then the two families coincide.

Proo¥: For each index v one has p, < [ J; qj and the Prime Avoidance Lemma gives that
there is an index a(v) so that p, € q,(,). By symmetry, for each y there is a f(u) such
that q, < Pp(y)- Now

Pv S da(v) EPBa(v))
and since there are no non-trivial inclusion relations among the p;’s, we infer that
B(a(v)) = v. In a symmetric manner one shows that a(S(u)) = y; so « is a bijection
from {1,...,7r} to {1,...,s} with py = g,(,), and we are through. EI

LemMA 2.36 Let {p1,...,p,} and {q1,...,qs} be two families of prime ideals having the same
intersection; that is, py N -+ N p, = q1 N -+ N qs. Assume that there are no non-trivial
inclusion relations in either family. Then the two families coincide.

ProOF: For each index v one has py...p, < [ g i S Qv and therefore at least for one index,
say a(v), the relation p,,) < qo holds. By symmetry, for each p there is a B(u) such that
4B() S Pu- Now

Pa(p(e)) = () < Prs
and there being no non-trivial inclusion relations among the p;’s we may conclude that
a(B(u)) = p. In a symmetric manner one shows that f(«(v)) = v and we can conclude
that a is a bijection from {1,...,r} to {1,...,s} with with p, ) = go a

Exercises

(2.9) Let p be a prime ideal in a ring A. Show that pA[t] is prime.

(2.10) Prove that pullback of prime ideals are prime, but show by examples that
pullbacks of maximal ideals need not be maximal. Show by giving examples that the
extension of a prime ideal is not necessarily prime.

(2.11) Let a and b be two ideals in a ring A, furthermore let py, ..., p, be prime ideals
in A. Show that if a\b is not contained in any of the p;’s, then a is not contained in the
union | J; p;.

(2.12) Assume that A is an algebra over an infinite field; show that the Prime Avoidance
Lemma persists being true without any of the p;’s being prime. HINT: Prove a “vector
subspace avoiding lemma” over infinite fields.
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2.4 Primes and irreducibles

There are two familiar characterizations of prime numbers. One says a number is
prime precisely when the only factors are plus or minus one and the number itself,
and the other asserts a number is prime precisely when it divides one of the factors
when dividing a product. These two aspects of prime numbers generalize to separated
notions, which are not equivalent in general.
(2.37) The first of the twin notions is that of prime elements. The definition is verbatim the
same as the second characterizations above: A prime element in a ring A is an element a
which is neither zero nor a unit and is such that if 2 divides a product, it divides one of
the factors; in other words, a relation like bc = ya for some y implies c = xa or b = xa
for some x; or expressed in symbols, a|bc implies that a|b or a|c. The property is not
restricted to products with two factors, a straightforward induction proves that if 4 is a
prime element that divides the product b; - - - b;, it divides one of the factors.

The concept of a prime ideal is also inspired by that of prime numbers, and for
principal ideals the two coincide; an element a being prime is equivalent to the principal
ideal (a) being a prime ideal.

PROPOSITION 2.38 A principal ideal (a) is a prime ideal exactly when a is a prime element.

ProoF: Recall what a being prime means: If a|bc then either a|b or a|c. Translated into a
statement about ideals the divisibility relation x|y means that y € (x). Hence, bc € (a) is
equivalent to a|bc, and b € (a) or c € (a) to respectively a|b or a|c . o
(2.39) The other aspect of prime numbers is that they can not be further factored; that is,
their sole factors are 1 and the prime itself. Irreducible polynomials in k[x] share this
quality except that they can be changed by non-vanishing constant factors (of course,
f = c!.cf for any non-zero constant c). Generalizing this, one says that a non-zero
element a from a ring A is irreducible if it is not a unit, and if a relation a = bc implies
that either b or c is a unit. This can be phrased in terms of a certain maximality condition
for principal ideals.

PROPOSITION 2.40 An element a in the ring A is irreducible if and only if (a) is maximal
among the proper principal ideal.

PRrOOF: A relation a = bc is equivalent to an inclusion (a) < (b), and when (a) enjoys
the maximality property it ensues that either (a) = (b) and c is a unit, or (b) = A and b
is a unit and a is irreducible. Assume then that a is irreducible and let (b) be a proper
principal ideal containing (a), which means that a = cb. So c is a unit since b is not, the
ideal (b) being proper, and we deduce that (a) = (b). a
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PROPOSITION 2.41 Every prime element in a domain A is irreducible.

ProoF: Assume that a is prime element in A and that 2 = bc. Since a is prime, it holds
true that b = xa or ¢ = xa for some x € A, say b = xa. Substituting back yields a = xca,
and cancelling a, which is legal since A is supposed to be a domain, we arrive at 1 = xc,
which shows that ¢ is a unit. a

The converse of this proposition is not generally valid, in fact one is tempted to say that
in most rings it does not hold. There are simple examples of irreducibles not being
prime in quadratic extensions of Z. We give one, the standard one you find in every
text, in the ring Z[v/—5] below (Example 2.18 on page 46). We will, however, shortly
meet classes of rings where it is true (see Proposition 2.44).

(2.42) Rings in which all ideals are principal, the PID’s, are among the easiest rings to
understand. One of the particular properties they enjoy is that there is no distinction
between maximal ideals and non-zero prime ideals.

PROPOSITION 2.43 In a principal ideal domain A, any non-zero prime ideal is maximal.

ProoOF: A non-zero prime ideal is generated by a prime element 4, and as any other
prime element, a is irreducible. From Proposition 2.40 above ensues that (a) then
is maximal among the proper principal ideals, but all ideals being principal, (a) is
maximal. (.

Neither is there any distinction between prime and irreducible elements:

PROPOSITION 2.44 In a principal ideal domain A an element is prime if and only if it is
irreducible.

ProOF: An irreducible element a generates according to Proposition 2.40 above an ideal
maximal among the proper principal ideals, but because all ideals are principal, (a) is a
maximal ideal. Hence it is a prime ideal, and 4 is a prime element. EI

Examples

(2.16) In the polynomial ring k[x] over a field k, principal ideals (f(x)) with f irreducible,
are maximal ideals. The quotient k[x]/(f(x)) is the field obtained from k by adjoining a
root of f. If you wonder what that root is, it is just the residue class [x] of the variable x.
This illustrates the saying that what matters in modern mathematics is “what objects
do, not what they are”, or as Obi-Wan Kenobi in Star Wars teaches Luke Skywalker:
“Do not equate ability with appearance”.
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(2.17) The quotient R[x]/(x? + 1) is isomorphic to C as one sees by mapping x to i. In a
similar vein, if p is a prime number, the polynomial ®,(x) = x"~! +xP~2 4+ ... 4 x+1
is irreducible over Q, so that Q[x]/ (®,(x)) is a field. Sending x to a primitive p*'-root
of unity ¢ , gives an isomorphism with Q(¢).

(2.18) Simple and concrete examples of irreducible elements that are not prime are easily
found in the ring Z[i/5] where among others the relation

2:3=(1+iV5)- (1—iy/5) (2.3)

holds. For instance, it follows that 2 is not a prime element since it neither divides
(1+iv/5) nor (1 —iv/5): indeed, squares of absolute values of members of Z[i\/5] are
natural numbers so that if a relation 2 = x - (1 + z\/g) held, we would find

4 =2 = [x|(1+iV5)]* = |x]s,

with |x| € IN, which absurd. The element 2 is however irreducible. Indeed, a factor-
ization 2 = zw yields 2 = |z||w|, which entails that either |z| = 1 or |[w| = 1, and in
view of the units in Z[iv/5] precisely being the elements of norm one (Exercise 1.10 on
page 21), either z or w would be a unit. Of course, the three other numbers appearing
in (2.3) are irreducible as well, and Exercise 2.17 below asks you to check this. For a
generic example of irreducible elements not being prime, see Exercises 2.53 and 2.54 on
page 62.

(2.19) The ring Z[i] of Gaussian integers is a P1D: The absolute value works as a so-called
Euclidean function on the ring Z[i], which means there is division algorithm valid in Z[i]
similar to the Euclidean algorithm for integers. For any two given Gaussian integers a
and b with b # 0, one may find two others, the quotient 4 and the remainder r, so that
a = gb + r, and most importantly, the remainder satisfies |r| < |b|.

To establish this, observe that geometrically the Gaussian integers form the integral
lattice in the complex plane; that is, the set of points with both coordinates integers.
Given two Gaussian integers a and b with b # 0, the distance from ab~! to the nearest
point in the integral lattice is obviously less then half the diagonal of a lattice square; that
is, there is an element g € Z[i] so that |ab~! — g| < +/2/2 < 1. Putting r = b(ab~! —¢q),
we have a = qb + r with |r| < |b|.

Now, any ideal in Z[i] is generated by a shortest non-zero member ay. Indeed, if
a € a divide a by gy to obtain a = gag + r with |r| < |ag|. But r = a — gag lies in a and
since ag is the shortest non-zero member of a, it ensues that r = 0.

*

Exercises
(2.13) Let py,..., pr be prime numbers and let A = Z/(py - ... p;). Show that the
prime ideals in A are precisely the principal ideals (p;). Prove that A/p;A is the field
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Fp, with p; elements. How many elements does (p;) have? An how many are there
in the principal ideal (p1 ... p;-...- pr) (the "hat" indicating that p; is not part of the
product).
(2.14) Find an explicit isomorphism between R[x]/(x? + x + 1) and C.
(2.15) Primes in the Gaussian integers. The aim of this exercise is to analyse the primes in
the ring of Gaussian integers Z[i]. Let p be a prime number.

a) Assume that p is odd. Show that there is an exact sequence of multiplicative

groups

4
1 ‘uz ]F; ]F; ‘uz 1

where yy = {£1}, and the maps ¢ and ¢ are given as ¢(x) = x? and ¢(x) =
x(p=1)/ 2’.

b) Conclude that —1 has a square root in [F, is and only if p =1 mod 4;

c) Show that x? + 1 is irreducible over the field FF, if and only if p is odd and p # 1
mod 4;

d) Show that the ring F,[x]/(x? + 1) is isomorphic to the field F,(v/-1) if p is
odd and p #1 mod 4 and isomorphic to IF, x IF, if p =1 mod 4. Show that if
p = 2, it is isomorphic to F[x]/(x?);

e) Consider the ring of Gaussian integer as an extension Z < Z[i]. Discuss the
possible shapes of the quotient Z[i]/pZ[i] where p € Z is a prime. When is
pZ][i] a prime ideal?

(2.16) Into which of the fields F3, F5 and [Fy is there a map of rings from Z[i]? If there
is one, describe the kernel.

(2.17) Referring to Example 2.18 show that the three other involved numbers 3, 1 +i/5
and 1 — i4/5 are irreducible.

(2.18) Euclidian functions and P1D’s. Let W be a well-ordered set (for instance INp). A
Euclidean function with values in W on a ring A is mapping §: A — W such that for any
pair a and b of elements from A there are elements q and r in A with a = bg +r and
0(r) < d(b). Show that a domain A which possesses a Euclidian function, is a PID.
HiNT: Minimize ¢ over non-zero elements in ideals.

(2.19) Prove that Z[\/-2] is a principal ideal domain by showing it has a division
algorithm with the absolute value as a Euclidean function. HINT: The convex hull of
iy/2, 1 and 0 is a rectangle whose longest diagonal has length /3.

(2.20) The Eisenstein integers. Gotthold Eisenstein is among the young geniuses who
died early. He succumbed to tuberculosis in 1852 at the age of 29. The numbers in the

ring Z[#] with 17 the cube root of unity 7 = ¢?™/3 = (—1 +i,/3)/2 are named after him.

a) Verify that Z[y| = {n+mn | n,m e Z} is a subring of C;
HINT: 72 +77+1=0
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b) Determine the units in Z[z];

¢) Prove that Z[y] has a division algorithm with the absolute value as a Euclidean
function. Conclude that Z[y] is a PID with every ideal generated by a shortest
member. HINT: Compute the diameter of the convex set spanned by #, 141, 1
and 0:

d) How many different generators does an ideal have?

2.5 Existence theorems

A useful technique for showing that ideals (and in later chapters submodules) of various
kinds exist relies on the so-called Zorn’s lemma. The lemma is a general result about
existence of maximal elements in partially ordered sets, sets which for us mostly will
be subsets of the lattices Z(A) of ideals in a ring A ordered by inclusion, or later on
subsets of the lattice of submodules of a module. The lemma turns out to be utterly
useful when studying rings, and in the sequel it will be crucial at several occasions.

Zorn's lemma

Zorn’s lemma is one of quite a few theorems that for some reason keep being called
lemmas. It is usually attributed to Max Zorn, but as often happens, its history can
be traced further back; Felix Hausdorff published versions of it some ten years before
Zorn. Anyhow, "Zorn’s lemma" is a good name (so good that an experimental and
non-narrative film made by Hollis Frampton in 1970 was called "Zorns lemma").

(2.45) We begin with introducing some terminology. A maximal element x in the partially
ordered set X is one for which there is no strictly larger element; that is, if y > x then
y = x. One should not confuse "maximal elements" with "largest elements" the latter
being elements larger than all other elements in X.. A partially ordered set can have
several maximal elements whereas a largest element, if there is one, is unique. There is
of course, analogous notions of minimal elements and least elements.
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A partially ordered set is said to be linearly ordered or totally ordered if any two of
its elements can be compared. Phrased differently, for any pair x, y of elements either
x <y ory < x should hold. A chain in ¥ is a linearly ordered subset of X.. The chain is
bounded above if for some element x € X it holds true that y < x for all elements y in the
chain, and then of course, x is called an upper bound for the chain. Similarly, the chain
is said to be bounded below when having a lower bound in ¥; that is, an element x € %
satisfying x < y for all members y of the chain.

We are now prepared to formulate Zorn’s lemma, however we shall not prove it,
only mention that it is equivalent to the axiom of choice (If you are interested in reading
more about this, consult [[?]])

THEOREM 2.46 (ZORN’S LEMMA) Let X be a partially ordered set in which every chain is
bounded above. Then % possesses a maximal element.

(2.47) A chain C in ¥ is called saturated or maximal if it is not properly contained in any
larger chain; that is, if C’ is another chain with C = C’, then C = C’. A chain is saturated
precisely when it impossible to insert any new element in-between two members of C.
As an illustration of the mechanism of Zorn’s lemma, let us prove the following

PROPOSITION 2.48 Let C be a chain in the partially ordered set ¥.. Then there is a saturated
chain containing C.

ProorF: The set of chains S in X containing C is partially ordered by inclusion, and we
intend to apply Zorn’s lemma to that set.

If C is a chain of chains (!!) the union (.. C is anew a chain: indeed, suppose that
x and y belong to the union so that there are chains Cy and C, with x € Cy and y € C,,.
By assumption C is a chain, so either Cy = Cy or C, = C, holds. In either case x and y lie
in a common chain and are therefor comparable. Every chain of chains is thus bounded
above, and by Zorn’s lemma, there is a maximal chain (i. e. saturated) chainin §S. [

A fundamental existence result

A frequent application of Zorn’s lemma in commutative algebra is to prove existence
of ideals that are maximal subjected to a given condition, and in surprisingly many
situations such maximizing ideals turn out to be prime .

Along these lines this section establishes a basic existence result with several impor-
tant applications, one being that every ring has at least one maximal ideal. Our interest
will be in ideals maximal among those containing a fixed ideal and being disjoint from
a fixed set S. These maximizing ideals turn out to be prime when S is multiplicatively
closed; that is, if the product of any two elements from S lie in S.
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THEOREM 2.49 (THE FUNDAMENTAL EXISTENCE THEOREM FOR IDEALS) A ring A, an ideal
ain A and a subset S not meeting a are given. Then there exists an ideal b maximal subjected to
the two following conditions

i) Snb=¢;

ii) a<b.

If S is multiplicatively closed, the ideal b will be a prime ideal.

Proor: Consider the set X of ideals in A satisfying the two requirements in the theorem.
It is non-empty because a is supposed not to meet S and is a member of X. Obviously,
the union of the ideals belonging to a chain in X will lie in ¥, and thus will be an
upper bound for the chain. Zorn’s lemma applies, and we may conclude that there is a
maximal element in .

Assume then that the set S is closed under multiplication, and let 2 and b be elements
in A such that ab € b. If neither belongs to b, the ideals b + (a) and b + (b) both meet S,
being strictly larger than b. Hence we can find elements x 4 a2 and y + Bb in S with
x,y € band a, B € A, and multiplying out, we find

(x + aa)(y + Bb) = xy + aay + Bbx + aBab.

The left side belongs to S as S is supposed to be multiplicatively closed, and since x,y
and ab all lie in b, the right side belongs to b, which contradicts the fact that S n b = .
]

THEOREM 2.50 (EXISTENCE OF MAXIMAL IDEALS) Let A be a ring different from the null-ring.
Every proper ideal a in a ring A is contained in a maximal ideal. In particular, there is at least
one maximal ideal in every ring, except the null-ring.

Proor: We apply the proposition with S merely consisting of the unit element, that is
S = {1}. The maximizing ideal is proper and not contained in any other proper ideal.
Hence it is maximal. To prove the second statement, apply the first to the zero ideal.

The radical of an ideal

Prime factors frequently occur with higher multiplicities in a factorization of an integer,
and it is of course interesting to get hold of the primes involved. In the transcription
of Kummer and Dedekind into the language of ideals, this leads to the notion of the
radical of a given ideal.

(2.51) The radical 1/a of a given ideal a in A consists of the elements a power of which
lies in a; that is,

va={aeA|a"e€aforsome neN}.

The elements of 4/a are also characterized as the elements in A whose residue classes in

A/a are nilpotent. Along the same line, taking a to be the zero ideal, we see that /(0)
is the set of nilpotent elements in A; it is called the nil radical of A.
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(2.52) The first thing to establish is that the radical 1/a in fact is an ideal.
LEMMA 2.53 Let a be an ideal in the ring A. Then the radical \/a is an ideal.

Proor: The radical is obviously closed under multiplication by ring elements, and
we merely have to check it is closed under addition. So assume that a and b are two
elements in the ring such that 4" € a and b € a. The binomial theorem gives

(a+b)N = Z (Ij)aN_ibi.

0<i<N

Choosing N = n +m — 1, we see that when i < m it holds that N —i > n, so either aN~"

or b lies in a. Every term of the sum therefore lies in a, and by that the sum itself. O
Specializing a to be the zero ideal yields the following.

COROLLARY 2.54 The set of nilpotent elements in A form an ideal.

(2.55) An ideal a in A is said to be radical if it equals its own radical; i. e. if it holds true
that \/a = a. One easily verifies that the radical of an ideal is a radical ideal so that
the equality 4/(1/a) = y/a holds true. In a similar manner as prime ideals and maximal
ideals radical ideals may be characterized in terms of quotients:

PROPOSITION 2.56 An ideal a in the ring A is radical if and only if the quotient A/ a is reduced.

ProorF: The residue class [a] in A/a of an element 4 is nilpotent precisely when a power
a" lies in a, so that A is reduced precisely when /a = a. Q
(2.57) The radical /a must be contained in any prime ideal containing a because if
a" € a and a € p with p prime, it holds that a € p, so a lies within the intersection of the
prime ideals containing it. The converse inclusion also holds and hinges on the basic
existence result above.

PROPOSITION 2.58 (THE RADICAL AS INTERSECTION OF PRIMES) Let A be a ring and assume
that a is a proper ideal in A. The radical \/a equals the intersection of the prime ideals containing

Va= ﬂp.

aC p, p prime

a; that is,

Proor: We already observed that \/ac (1, p P, so assume that 4 is an element not
lying in the radical \/a. We shall apply The Basic Existence Theorem (Theorem 2.49 on
page 49) with S being the set {4" | n € N } of powers of a (which obviously is closed
under multiplication). Since a ¢ 4/a, it holds true that S n a = ¢, and by the theorem
we conclude that there is prime ideal a containing a disjoint from S; thatis, a¢ a. Q1
(2.59) The special case that a = (0) merits to be pointed out:
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COROLLARY 2.60 The set of nilpotent elements in A equals the intersection of all prime ideals
in A; that is,

V(0) =[p.

p prime

Of course the larger of two ideals, one containing the other, is not needed in an intersec-
tion, and one might be tempted to discard from the intersection in Proposition 2.58 the
prime ideals not being minimal among those containing a and thus write

va=[p, (2.4)

p minimal

where the intersection extends over all prime ideals minimal over a. Such a represen-
tation is certainly valid, but the argument is more complicated than indicated since
a priori there could be infinitely descending chains of distinct prime ideals. However,
if {p;}ics is a chain of prime ideals, the intersection [),c; p; is a prime ideal (you are
asked to check this in Exercise 2.21 on the next page), and so by Zorn’s lemma, every
prime containing a contains a prime ideal minimal among those containing a; and this
is exactly what we need to have a representation as in (2.4).

(2.61) The operation of forming the radical commutes with forming finite intersections;
one has:

LEMMA 2.62 For every finite collection {a;} of ideals in A the equality (; /a; = /[ ); a; holds
true.

Proor: When an element a from A belongs to each of the radicals +/a;, there are integers
n; so that a’ € a;. With n = maxn; (here we use that the n;’s are finite in number), it
then holds true that a” € q; for each i, and thus a € y/["); a;. This shows that one has the
inclusion (); v/a; € 4/[); @;- The other inclusion is straightforward. a

Examples

(2.20) Even if a power of every element in 4/a lies in a, no power of 4/a will in general
be contained in a; a simple, but typical example, being the ideal a = (x1,x3,%3,...)
generated by the powers x! in the polynomial ring k[x, x2, x3, . ..] in countably many
variables. The radical of a equals the maximal ideal m = (x;|i € INy) generated by the
variables, but no power of m is contained in a. Indeed, the exponent needed to force a
power of x; to lie in a, tends to infinity with i.

(2.21) The operation of forming radicals does not necessarily respect infinite intersections.
For instance, if p is a prime number, one has /p"Z = pZ and therefore (), \/p'Z = pZ.
But evidently it holds true that (), p"Z = 0.

*
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Exercises
(2.21) Unions and intersections of chains of primes. Let {p;};ic; be a chain of prime ideals
in the ring A. Show that both the union | J,c; p; and the intersection ();; p; are prime
ideals. Show that every prime ideal containing a given ideal a contains a a prime ideal
minimal over a. Show that any prime ideal contained in a, is contained in a prime
maximal among those contained in a.
(2.22) Assume that p < q are two distinct prime ideals in the ring A. Show that there
are prime ideals p’ and g’ with p = p’ < ¢’ = q and so that there is no prime ideal lying
strictly between p’ and ¢'.
(2.23) Saturated multiplicative sets and zero divisors. A multiplicatively closed set S in the
ring A is said to be saturated if with x it contains every factor of x; that is, if x € S and
x = yz, then y € S (and by symmetry z € S).

a) Show that S is a saturated multiplicative set if and only if the complement A\S

is a union of prime ideals.

b) Show that the set of non-zero divisors in A form a saturated multiplicative set.

¢) Conclude that the set of zero divisors in A is a union of prime ideals.
(2.24) Show that the group of units A* is contained in any saturated multiplicative
set.
(2.25) The prime ideals that appear as maximizing in the proof of Proposition 2.58 are
of special kind. Let S = {a"} be the set of powers of an element from the ring A, and
let p be maximal among the ideals not meeting S. Show that the class [a] in A/p is
contained in every non-zero prime ideal of A/p.
(2.26) Let a be a finitely generated ideal. Show that a sufficiently high power of a is
contained in the radical +/a.
(2.27) Let A be a pID.

a) Show that every ascending chain of ideals in A is eventually constant.

b) Show that up to association, there are only finitely many irreducible elements

dividing a given a.
e

2.6 Local rings

Rings having only a single maximal ideal are called local rings. They occupy a central
place in the theory being of a simpler kind of rings, and a frequently applied strategy of
proof is to reduce an issue to a statement about local rings. In the analogy with rings of
functions, the local rings correspond to rings of germs* of functions near a point—hence
the name—and the maximal ideal consists of the germs vanishing at the point. There is
also the notion of a semi-local ring, which is a ring with merely finitely many maximal
ideals.
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* Remember, maximal

ideals are proper ideals

Local homomorphisms
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(2.63) In a local ring A the complement of the maximal ideal m coincides with the group
of units; that is, every element 2 € A not lying in m is invertible. Indeed, if it were not,
the principal ideal (2) would be a proper ideal, and by existence of maximal ideals
(Theorem 2.50 on page 50) it would be contained in a maximal ideal, obviously different
from m, which is incompatible with m being the sole maximal ideal in A. This proves
that the first statement in the following proposition implies the second.

PROPOSITION 2.64 Let A be a ring and m a proper ideal in A. The following three statements
are equivalent.
i) A is a local ring with maximal ideal m;
ii) The group of units and the complement of m coincide; that is, A* = A\m;
iii) The ideal m is maximal and consists of elements a such that 1 + a is invertible.

Proor: To see that the last statement ensues from the second, observe that if a is a
member of m, then 1 + 4 is not in m and hence is invertible.

Finally, assume that m be maximal and that all elements be shaped like 1 + 2 with
a € m are invertible. Let x be an element not in m. Since m is maximal, it holds true that
m+ (x) = A; hence x = 1 + 4 for some a € m, and x is invertible. This shows that iii)
implies i). a
The assumption in the last statement that m be maximal, is necessary; for an example
see Exercise 2.30 below.
(2.65) The argument in the previous paragraph partially goes through in a slightly more
general staging involving the so-called Jacobson radical J(A) of a ring A—the intersection
of all the maximal ideals in A—thatis, J(A) =)

m S A maximal ™

PROPOSITION 2.66 Let A be a ring. The Jacobson radical of A consists of the ring elements a
so that 1+ xa is invertible for all x € A.

Proor: Fix an element a in A. Firstly, assume that all elements of shape 1 + xa are
invertible. If there is a maximal ideal m so that 4 ¢ m, it holds true that m + (a) = A,
and there is a relation 1 = y + ax with y € m. It ensues that 1 — xa lies in m, but on
the other hand, 1 — ax is invertible by assumption; and we have the contradiction* that
m= A.

Assume then that 4 lies in all maximal ideals. If (1 + ax) were a proper ideal, it
would by the Fundamental Existence Theorem (Theorem 2.49 on page 49) be contained
in a maximal ideal n. Since a € n, it would follow that 1 € n, contradicting that n is
proper. Hence the principal ideal (1 + ax) is not proper, and 1+ ax is invertible. 3

The category of local rings
(2.67) Assume that A and B are two local rings whose maximal ideals are m4 and
mp respectively. A map of rings ¢: A — B is said to be a local homomorphism, or a
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map of local rings, if it holds true that ¢(m,) < mp. Equivalently, one may request that
¢~ (mp) = my ( the inclusion ¢~!(mp) S my always holds since ¢! (mp) is a proper
ideal). The field k = A/my, is called restklasse kroppen of A, often abbreviated to the
residue field of A. Together with these homomorphisms the local rings form a category
LocRings. Ring maps between local rings that are not local abound, a stupid example
being the inclusion of a local domain in a field; e.g. the inclusion of the ring Z,,) in Q
(cfr. Example 2.23 below)

Examples

(2.22) The set of rational functions over a field k that may be expressed as P(x)/Q(x)
with P(x) and Q(x) polynomials and Q(0) # 0, is a local ring whose maximal ideal
equals the set of the functions vanishing at the origin. The evaluation map given by
P(x)/Q(x) — P(0)/Q(0) identifies the residue field with the ground field k.

(2.23) Let p be a prime number and let Z ;) be the ring of rational numbers expressible
as n/m where the denominator m is relatively prime to p. Then Z,) is a local ring
whose maximal ideal is generated by p. Even more is true, the only ideals in Z, are
the principal ideals (p”); indeed, every rational number lying in Z,,) may be written as
p'n/m with v > 0 and neither n nor m having p as factor; so if a is an ideal, a = (p")
with v the least power of p dividing an element from a. And among these ideals (p)

contains all the others. The residue class field of Z, is the finite field IF, with p elements.

(2.24) In a polynomial ring Clxy, ..., x| for all points a € C" the ideal of polynomials
vanishing at a is a maximal ideal. It follows that the Jacobson radical of C[x, ..., x/]
equals (0).

(2.25) Assume that p and g are two prime numbers. Let A be the ring of rational numbers

with denominator relatively prime to pg. Thatis A = {n/m | n,me Z,(m,pq) = 1}.

The principal ideals by (p) and (g) are the only two maximal ideals in A, and J(A) =

(p) n (9) = (pq).
%

Exercises

(2.28) Show that a ring has just one prime ideal if and only if its elements are either
invertible or nilpotent. Prove that this is the case if and only if A/+/(0) is a field.
(2.29) Let k be a field. Show that power series ring k[t] is a local ring with maximal
ideal (t)k[t].

(2.30) Let A be the subring of Q whose elements are the rational numbers a expressible
as a = m/n where n does have neither 2 nor 3 as factor. Show that A has two maximal
ideals (2) and (3) whose intersection equals (6). What are the two residue fields? Show
that 1+ a is invertible in A for all members a € (6).

(2.31) Let py,..., pr be distinct prime numbers and let A be the subset of Q whose

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193

The residue class field
(the residue class field)



56

IDEALS

members can be written as m/n with n relatively prime to p; for 1 <i < r. Show that

A is a semi-local ring. Describe the maximal ideals and the residue fields. What is the

Jacobson radical?

(2.32) Let ky,...,k be fields. Show that the product ring [ [; k; is a semi-local ring.

What are the maximal ideals?

(2.33) Let f(x) be any polynomial in k[x] where k is a field. Show that k[x]/(f(x)) is

semi-local.

(2.34) Let A be a principal ideal domain with infinitely many maximal ideals. Show

that J(A) = (0).

(2.35) Show that the polynomial ring C[x3, ..., x,] has a vanishing Jacobson radical.
H*

2.7 Direct products and the Chinese Remainder Theorem

Ideals in a direct product

Let A = []<;<, A be a direct product of rings A;. There is a simple description of
all the ideals in A in terms of ideals in the A;’s. One produces an ideal a in A from a
sequence of ideals a; in the A;’s simply by putting a = [ [; a;. And, indeed, all ideals in A
are of this shape. To see this, let {¢;}1<;<r be the orthogonal idempotents corresponding
to the decomposition of A as a direct product. Then A; = ¢;A and each e;a is an ideal
in A; contained in a, and because ) ; ¢; = 1, it holds true that a = ), e;a.

PROPOSITION 2.68 The ideals of A = [ [1<;<, A; are all of the form | [, ;<, a; where each a;
is an ideal in A;. It holds true that A/a ~ [ [<;<, Ai/a;. The ideal p is a prime ideal if and
only if p; = A; for all but one index iy and p;, is a prime ideal.

Proor: The first claim is already dealt with. To the second: the projections A — A;,
coinciding with multiplication by e;, send an ideal a to a; = ¢;a, and hence they induce
maps A/a — A;/a;. In their turn these give rise to a ring-map A/a — [[; A;/a;, which
is surjective: ) e;a; maps to (e;a;) since the idempotents are orthogonal. If x is an
element in A such that e;x € a; for each i, the element x belongs to a since x = > ; e;x
and a = }; a;, and the map is injective.

What remains to be verified is the statement about the prime ideals: it follows since
the principal idempotents in [ [; A;/a; are orthogonal, and so when at least two of them
are non-trivial, the product | [; A;/a; is not an integral domain. a
(2.69) It is appropriate to give a comment about the zero ring at this stage. In Proposi-
tion 1.27 the idempotents e;’s are not required to be different from zero, but if ¢; = 0, of
course ¢;A is the zero ring, and does not contribute in a significant way to the product
(it holds true that 0 x A ~ A). This is particularly pertinent for the formulation of
Proposition 2.68; it might happen that a; = A; so that A/q; is the zero ring.
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ExaMPLE 2.26 The description of the ideals in Proposition 2.68 is not valid for infinite
products. For instance, the ideals in an infinite product [ [,.; k; of fields are described
by so-called filters and ultrafilters on the index set I. One simple example not among
those described, is the set a of strings (a;) with a; # 0 only for finitely many i (which
by the way equals the direct sum of the k;’s). This is easily checked to be an ideal; it is
certainly not prime, but is contained in at least one maximal ideal as every proper ideal
is. Ideals containing a can not be of the form described in the theorem since a contains
each k;. ¥

The Chinese Remainder Theorem

A classical result which at least goes back to third century AD, is the so called Chinese
Remainder Theorem. It seems that the first written account of this result appears
in the book Sunzi Suanjing by a Chinese mathematician “Master Sun”— hence the
Chinese theorem. A more informative name would be the Theorem of Simultaneous
Congruences: As long as two integers, 11 and 7y, called the moduli, are relatively prime,
two congruences x = y; mod n1 and x = ¥ mod 1y have a common solution.

(2.70) This can be generalized to any number of congruences as long as the moduli
are pairwise relatively prime, and there is a formulation for general rings with the
moduli replaced by ideals. The appropriate condition on the ideals that replaces the
moduli being relatively prime, is as follows: two ideals a and b are said to be comaximal
if a + b = A, equivalently, if one can write 1 =a+b withaeaand b € b.

(2.71) Given a finite collection {a;}1<;<, of ideals in the ring A. There is an obvious
map

A—J[A/q
i

sending a ring-element a to the tuple whose i-th component is the residue class of a
modulo g;. Its kernel consists of the elements in A lying in all the a;’s, and hence there
is induced an injective map

P A/a1m...marHHA/ai.
i

The Chinese statement is that, under certain circumstances, this map is an isomorphism.

THEOREM 2.72 (THE CHINESE REMAINDER THEOREM) Let A be a ring and assume we are
given a finite collection of pairwise comaximal ideals {a;}1<i<,. Then the canonical reduction
maps induce an isomorphism A/a; n...nvar >~ [[1¢ic, A/ a;.

Proor: It suffices to find elements a; in A which are congruent one modulo a; and
congruent zero modulo all the other ideals in the collection. Indeed, the sum }; y;a;,
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with the y;’s being arbitrary ring-elements, will then have the same residue class as y;
modulo a;.

For each pair of indices i and j with i # j we may write 1 = ¢;; + ¢j; with ¢;; € a; and
¢ji € a;. Then ¢;; is congruent one modulo a; and congruent zero modulo a;. Hence the
product a; = [];; cjj is congruent one modulo g; and congruent zero modulo a; for
j # i; and we are done. |

Exercises

(2.36) Let a and b be two comaximal ideals such thatanb=0.Ifa+b=1withaeca
and b € b, show that a and b are idempotents.

(2.37) Show that two ideals whose radicals are comaximal, are comaximal.

(2.38) Show that 28y — 27z solves the simultaneous congruences x = y mod 9 and
x =z mod 4.

(2.39) Let A be a semi-local ring. Show that A/J(A) is a product of fields.
(2.40) Assume that ay, ..., a, are pairwise comaximal ideals in the ring A.

a) Show that a; and a5 - ... - a, are comaximal;

b) Show thatonehasa;-...-a,=a;n...Nnay

c) Foreachiwithl <i<rleth; = H#i a;. Prove that the by, ..., b, are comaximal
ideals; i. e. that by + ...+ b, = A.

(2.41) Determine integers representing the idempotents in Z /30Z and Z/105Z.

(2.42) Prove that a reduced ring decomposes as A ~ A; x ... x A, where each A; is an
algebra over a finite field.

(2.43) Locally nilpotent ideals. One says that an ideal n in a ring A is locally nilpotent if
each element in A is nilpotent. Show that for each ideal a in A it holds that y/a+n = y/a
whenever n is locally nilpotent. Let A — B be a surjection of commutative rings whose
kernel is locally nilpotent. Show that the map Spec B — Spec A is a homeomorphism.

(2.44) Lifting of idempotents. Let A — B be a surjective map of (not necessarily
commutative*) rings whose kernel a is locally nilpotent; that is, every element of a is
nilpotent. Let ¢ be an idempotent in B. The aim of the exercise is to show that there is
an idempotent € in A mapping to e. Choose any element x in A that maps to e and let
y=1-—x

a) Show that xy € a.

b) Let n be such that (?cy)” =0 and define the two elements e = )., (21” Yxiy?n—i

and v = Y, (3")x'y?"~". Show that 1 = € + 7 and that e = 0.
¢) Conclude that € is an idempotent in A that maps to e.
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2.8 Graded rings and homogenous ideals

Recall that any polynomial can be written as the sum of its homogenous components.
Several techniques, useful when working with polynomials, involve such a decomposi-
tion; just to mention two powerful tools: induction on the degree of the lowest or the
highest term. A class of rings sharing some of these nice properties polynomials have,
are the so-called graded rings whose elements possess a decomposition mimicking the
one of polynomials into homogeneous terms.

Even more forceful techniques are available to handle graded rings which satisfy
appropriate finiteness conditions. For instance, when all the homogenous components
Ry are finite dimensional vector spaces over some field k< Ry, the so called Hilbert
function hg(v) = dimy Ry is a very strong invariant of R.

A the present stage of the course we merely scratch the surface of the theory of
graded rings, but they will reappear later at several occasions.

(2.73) A graded ring R is a ring together with a decomposition of the underlying abelian
group as a direct sum

R= @ Ry (2.5)

VEZ

of additive subgroups R, subjected to the rule that Ry - R, = Ry for any pair of indices
v, 1.
(2.74) Elements from the subgroup R, are said to be homogenous of degree v. Notice that
the zero element 0 lies in every one of the subgroups R,, and one can not attribute a
well-defined degree to it, but it will rather be considered to be homogeneous of any
degree. From a decomposition as in (2.5) ensues that each non-zero element 4 in R can
be expressed as a sum a = ), a, whose terms a, are homogenous of degree v merely
finitely many of which are different from zero. The a,’s are uniquely determined by a
and go under the name of the homogenous components of a.

Notice that Ry - Rg S Ry, so R is a subring of R. Similarly, for every v it holds true

that Ry - Ry < Ry, and the ring R of elements homogeneous of degree zero acts on the
group of those homogeneous of degree v. In particular, if k < R is a field, the additive
subgroups R, will all be vector spaces over k.
(2.75) If a is an ideal in the graded ring R, we denote by a, the subgroup a, = an R,
consisting of the homogenous elements of degree v that lie in a. One says that a is
a homogenous ideal whenever a =} a,; in other words: if a belongs to a then all the
homogeneous components of a belong to a as well. Since homogenous components are
unambiguously defined (or if you prefer, because ay, nay, = (0) whenever v # p), the
sum is a direct sum, and we are entitled to write a = @, a.

PROPOSITION 2.76 Let a be an ideal in the graded ring R. The following three statements are
equivalent.
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i) The ideal a is homogenous;
ii) All homogenous components of elements in a belong to a;
iii) The ideal a may be generated by homogenous elements.

ProofF: That the first two statements are equivalent, is just a rephrasing of how homoge-
nous ideals were defined. Let us then prove that i) and iii) are equivalent; so assume
that a is a homogenous ideal. The homogeneous components of all members of any
set of generators of a then belong to a, and obviously they generate a (the original
generators are sums of them).

The other implication is also straightforward. Let {a;};c; be a set of homogeneous
generators for a, and say 4; is of degree d;. Any element a € a can then be expressed as
f =2 fi-a; with f; € R, and expanding the sum into a sum of homogenous term we

find
f:Zfi'aiZZ(Zfi,v-ai)ZZ( > fiveai),

i A v+di=d

where f;, denotes the homogeneous component of f; of degree v, and where we in the
last sum have recollected all terms f; , - a; of the same degree d. Hence ), td=d fiv-a;
is the homogeneous component of f of degree d, and it belongs to a since the a;’s lie
there. O
(2.77) A rich source of graded rings are the quotients of polynomial rings by homogenous
ideals, or more generally the quotient of any graded ring by a homogenous ideal.

PROPOSITION 2.78 Let R be a graded ring and a € R a homogeneous ideal. Then the quotient
R/ is a graded ring whose homogeneous components are given as (R/a)y, = Ry /ay.

Proor: This follows without great effort from the direct sum decompositions R = @, R,
and a = @, a,. Notice first that as R, n a = a,, there are natural inclusions R, /a, < R/ a.
Hence any class [a] € R/a with a decomposing as a = > ;4; in homogeneous terms
decomposes as [a] = Y ;[a;], where we at will can consider the [4;]’s to be elements
in R/a or in R;/a;. Moreover, the classes [4;] are unique because if };a; and }; b;
were two such decompositions inducing the same element in R/a, it would hold true
that >};(a; — b;) € a. The ideal a being homogeneous and each term a; — b; being
homogeneous of degree i, it would follow that a; — b; € a, and hence [a;] = [b;]. a

ExamrLE 2.27 A weighted grading: There is a way of giving polynomial rings another
grading than the traditional one, which sometimes turns out to be useful. We shall
illustrate this in the of case two variables R = k[x, y]. The idea is to give each variables
x and y a weight, that is putting deg x = « and degy = B where « and j can be any pair
of integers. The degree of the monomial x'/ is then defined as deg x'y/ = ix + jB. This
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defines a graded structure on the polynomial ring with

Ro= @ k-xy.
in+jp=v

Since already R is the direct sum R = P ; k- x'y/, one arrives at the direct sum R =
@, Ry by just recollecting terms k - x'y/ with the same degree; that is, the polynomials
in Ry satisfy ia + jB = v. Some call these polynomials isobaric. *

ExaMPLE 2.28 A natural and useful condition on a graded ring is that R, = (0) for
n < 0; that is, the degrees of any non-zero element is non-negative (it opens up for
induction arguments). However, several graded rings occurring naturally are not like
that. One example is the subring R of k(xq,...,x,) consisting of rational functions
shaped like f/g" where g is a fixed homogenous polynomial, and f € k[xq, ..., x,] and
v e Ny. Putting deg f/g" = deg f — v - deg ¢ makes R a graded ring (check that!), and
then deg1/g" = —v - degg. *

Exercises
(2.45) Generalize Example 2.27 above to polynomials in any number of variables by
giving each variable x; a weight a;.
(2.46) With reference to the Example 2.27 above , show that the subring Ry of elements
of degree zero in the case « = 1, = —1 is isomorphic to the polynomial ring over k in
one variable. Describe R; for all i.
(2.47) Homogeneous prime ideals. Let p be a homogenous ideal in a graded ring R. Show
that p is a prime ideal if and only of x -y € p implies that either x € p or y € p for
homogenous elements x and y.
(2.48)  Monomial ideals. An ideal a in the polynomial ring k[xy,...,x,] is said to
be a monomial if it holds true that a polynomial f belongs to a if and only if every
monomial occurring in f lies there. Show that this is equivalent to a being generated by
monomials.
(2.49) Assume that k is an infinite field. The multiplicative group k* acts on the
polynomial ring k[x1, ..., x,] in a natural way; the result of the action of « € k* on the
polynomial f(xq,...,x,;) being f*(xq,...,x,) = f(axy, ..., ax,).

a) Show that the polynomial f is homogeneous of degree d if and only if f* = a“ - f

for all a.
b) Show that an ideal a is homogeneous if and only if a is invariant under this
action.

(2.50) Assume that k is an algebraically closed field and that f(x,y) is a homo-
geneous polynomial in k[x, y]. Show that f(x,y) splits as a product of linear factors.
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HinT: If f is of degree d, it holds that f(x,y) = y/f(x/y,1). Consider f(x/y,1) as a
polynomial in t = x/y.
(2.51) Homogenization of polynomials. Let k be a field and let f € k[xy, ..., x;] be any non-
zero polynomial. Let d be the degree of f. Define a fresh polynomial f € k[xo, ..., x/]
in one more variable by putting ff (xo,...,x,) = xdf(x1/x0,...,%+/X0). Show that fH
is homogenous of degree d. Show the quality fH(l, X1, X)) = f(X1,...,Xp).
(2.52) Dehomogenization of polynomials. The homogenization process described in the
previous exercise has a natural reverse process called dehomogenization It is not canonical,
but depends on the choice of a variables, which will be xj in this exercise. When
g € k[xp, ..., x,] is homogenous of degree d, one puts gD(xl, ce X)) = g(1,x1, .., Xp).
Show that g = x5(g"”)H for some non-negative integer s < d. Give examples to see that
s actually can have any value between 0 and 4.
(2.53) Assume that A = ;- A; is a graded integral domain with Ag being a field.
Show that any element homogenous of degree one is irreducible. Conclude that
k[x,y,z,w]/(xy — zw) is not a UFD. HINT: Work with components of highest degree.
(2.54) Let A = Z[x,y,z,w]/(xy — wz) show that the class of x is irreducible but not
prime.

*

2.9 The prime spectrum and the Zariski topology

Every ring has a geometric incarnation called the prime spectrum. It is denoted Spec A if
the ring is A, and its points are the prime ideals in A. The spectrum carries a topology
called the Zariski topology after Oscar Zariski. The topological space Spec A depends
functorially on the ring A; a ring map ¢: A — B induces a map ¢: Spec B — Spec A
simply by sending a prime ¢ in B to the inverse image ¢! (a) (which is a prime ideal
in A).

The spectra of rings are the building blocks for the schemes as constructed in the
ingenious scheme theory of Alexander Grothendieck; they form an infinitely larger
ocean with as yet huge unexplored regions, where the spectra merely constitute the
shore.

In happy marriages the spouses exert a strong mutual influence, so also in the
relationship between algebra and algebraic geometry. Several geometric features of
Spec A are paramount to understanding algebraic properties of the ring A, and vice
versa. Both modern number theory and modern arithmetic are inconceivable without
the geometric language and the geometric intuition of spectra and schemes. However, in
these matters, we shall only superficially scratch the surface; giving the basic definitions
and a few examples.
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There is another geometric construct antecedent of the schemes by about a century.
Basically it goes back to René Descartes’s idea of using coordinates and equations to
describe geometric objects. We have all experienced parts of the menagerie of plane
curves and surfaces in the space. In general, subsets of C” (or subsets of k" for any
algebraically closed field k) being the common zeros of a set of polynomials, are called
closed algebraic sets. When they satisfy certain additional conditions, they are called
varieties, and varieties are the main objects of interest for many algebraic geometers.

Prime spectra

(2.79) In order to make it a genuine geometric object, the prime spectrum will be
endowed with a topology, which is called the Zariski topology, named after one of the
fathers of modern algebraic geometry, Oscar Zariski. This topology is best defined by
giving the closed subsets. With any ideal a in A is associated a closed subset denoted
V(a) whose members are the prime ideals containing a; that is, one has

V(a) ={p< A |paprimeideal p2a}.

There are some axioms to be verified. First of all, V(0) = Spec A and V(A) = & (recall
that prime ideals by definition are proper ideals), so the empty set and the entire space
are both closed. The two other axioms for a topology require that the union of finitely
many closed subsets is closed (it suffices to check it for the union of two) and that the
intersection of any family of closed sets is closed. To the former, observe that V(a) u
V(b) = V(ab) since both ab< a and ab = b hold. The inclusion V(ab) = V(a) u V(b)
follows since if ab < p, either a < p or b < p according to Proposition 2.28 on page 4o.
Hence V(a) U V(b) = V(ab). To verify the latter axiom, notice the trivial fact that ), a;
lies in a if and only if each summand q;’s lies in a. Summing up, we have shown most
of the following proposition.

PROPOSITION 2.80 (THE ZARISKI TOPOLOGY IS A TOPOLOGY) Let A be a ring.
i) V(0) =Spec Aand V(1) = &;
ii) For any ideals a and b in A it holds true that V(a) U V(b) = V(ab);
iii) For any family {a;}ie; of ideals one has V(X ;c; ;) = (ier V(ai);
iv) Ifach, then V(b) < V(a)
v) V(a) = V(y/a).

Proor: What remains to be observed are the two last assertions. It is trivial that
a < b implies that V(b) < V(a), and the last assertion ensues from the radical /a being
contained in any prime ideal containing a. Qa
(2.81) The Zariski topology has certain peculiar features never met when working with
mundane topologies like the ones of manifolds. For instance, there are lots of points
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in Spec A that are not closed; so in particular the prime spectra tend to be seriously
non-Hausdorff. One has:

LEMMA 2.82 The closed points in Spec A are the maximal ideals.

Proor: We saw that every proper ideal is contained in a maximal ideal (Theorem 2.50
on page 2.50); hence V(a) will always have a maximal ideal as member. So if {p} is
closed; that is, equal to V(a) for some a, the prime ideal p must be maximal.

On the other hand whenever m is maximal, obviously V(m) = {m} since no prime
ideal strictly contains m. a

Examples

We do not intend to dive deeply into a study of prime spectra, but only to give a faint
idea of what might happen, let us figure out which of the topological spaces with only
two points can be a prime spectrum.

There are three non-homeomorphic topologies on a two-point set; the discrete
topology with all points being closed (and hence all being open as well), the trivial
topology whose sole closed sets are the empty set and the entire space, and finally, we
have the so-called Sierpiriski space, a two-point space with just one of the points being
closed (and consequently the other being open). And two of these occur as Zariski
topologies.

(2.29) The direct product of two fields A = k x k' has merely the two prime ideals
(0) x k" and k x (0) which both are maximal. Hence Spec k x k” consists of two points
and is equipped with the discrete topology.

(2.30) The ring Z ) of rational numbers expressible as fractions with a denominator
prime to p has just two prime ideals, namely (0) and the principal ideal (p) (Exam-
ple 2.23 on page 55). Hence {(0)} is an open set being the complement of the closed
point (p). Hence Spec A is the Sierpiniski space.

(2.31) Finally, the trivial topology having no closed point, can not be the Zariski topology
of any non-empty prime spectrum: in every ring different from the null-ring there are
maximal ideals, and the spectrum of the null-ring is empty.

(2.32) The spectrum of a polynomial ring: As a counterweight to the peculiarity of the
previous examples, let us consider a more mainstream situation, namely the spectrum
Spec k[t] of the polynomial ring over an algebraically closed field k (let it be C, if you
want). Ideals in k[t] are all principal and are prime when generated by irreducible
polynomials. But k being algebraically closed, the only irreducible polynomials are the
linear ones, and so all non-zero prime ideals are maximal and of the shape (t —a) for
a € k. Thus the closed points of Spec k[t] are in a one-to-one-correspondence with k.
Additionally, Spec k[t] contains one point (0) (the zero-ideal is prime). It is neither open
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nor closed, and its closure is the entire spectrum Spec k[t], and it goes under the name
of the generic point. This looks familiar when k = C, we just get C adjoined one generic
point, but be aware that the topology is far from being the usual one. The only closed
sets are the finite unions of closed points. This topology is frequently called the finite
complement topology since the non-empty open sets are precisely those with a finite and
closed complement (see also Exercise 2.56 below).

*

Functoriallity

(2.83) The spectrum Spec A depends functorially on the ring A; it is a functor from
the category of (commutative) rings to the category of topological spaces. To justify
this assertion, we have got to tell how maps between rings are affected. If ¢: A — B
is a map of rings, pulling back ideals along ¢ takes prime ideals to prime ideals;
indeed, that ab € ¢~!(p) means that ¢(a)¢(b) € p, and so either ¢(a) € p or ¢p(b) € p
whenever p is prime; hence ¢~!(p) is prime. This allows the definition of the map
¢: Spec B — Spec A simply as the inverse image map, the important observation being
that ¢ is continuous:

PROPOSITION 2.84 The map ¢ is continuous.

PrOOF: Let a < A be an ideal. The one has ¢~ 1(V(a)) = V(aB); indeed, tautologically it
holds true that a< ¢~ 'a if and only if ¢(a) < a. a

It is clear that when ¢ and i are composable maps between rings, it holds true that
¢ o =po¢,and it is totally trivial that id, = idspec 4+ So sending A’s to Spec A and
¢’s to ¢ indeed yields a functor.

Inverse images

(2.85) A byproduct of the proof above is that the inverse image under ¢ of the closed
set V(a) is homeomorphic to Spec B/aB. Indeed, the prime ideals in B/aB are in a
one-to-one correspondence with the prime ideals in B containing aB (Theorem 2.19
on page 36), and these are, as we saw in the proof, precisely the points in Spec B
mapping to points in V' (a). Moreover, the whole lattice of ideals Z(B/aB) is isomorphic
to the lattice of ideals in B containing aB. This takes care of the topology; closed sets
correspond to closed sets, and we have established the following:

PROPOSITION 2.86 Let ¢: Spec B — Spec A be induced by ¢p: A — B. Then the inverse
image ¢~ (V(a)) is homeomorphic to Spec B/aB. In particular, for any point a € Spec A the
fibre over a is naturally homeomorphic with Spec B/ aB.
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Exercises
(2.55) Let A and B be two rings. Show that Spec (A x B) is the disjoint union of Spec A
and Spec B.
(2.56) Finite complement topology. Let Y be an infinite set and let # be a point not in Y
(whatever you want but a point in Y). The union X = {#} U Y has a topology* whose
closed sets, apart from {7}, & and X itself, are the finite subsets of Y.
a) Show that this is a topology.
b) Let k be a field and let Y be the set of monic irreducible polynomials with
coefficients from k. Show that X is homeomorphic to Spec k[t].
c) Show that if k and k’ are two fields of the same cardinality, then the spectra
Spec k[t] and Spec k’[t] are homeomorphic.
(2.57) Let c: C — C for a moment denote complex conjugation. Describe the action of
¢ on the spectrum Spec C|[t]. What are the fixed points? Describe the map Spec C|t] —
Spec R[t] induced by the inclusion R[t] < C[t].
(2.58) Distinguished open sets. The Zariski topology has a particular basis of open sets
called the distinguished open sets. For each element f € A there is one such open set D( f)
whose members are the prime ideals not containing f; thatis, D(f) = {p | f ¢ p}.
a) Show that D(f) is open.
b) Show that the distinguished open sets form a basis for the Zariski topology on
Spec A.
c) Let a be an ideal in A and let {D(f;)} be a family of distinguished open sets.
Show that they form a cover of Spec A\V(a) if the f;’s generate a.
d) Show that Spec A has the compactness property: any covering by distinguished
open sets can be reduced to a finite covering. HINT: Spec A is the complement
of V(1).
*
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Lecture 3

Unique factorization domains

When working with integers the Fundamental Theorem of Arithmetic is a most valuable
tool used all the time, consciously or unconsciously. In a general ring however, a
corresponding theorem does not hold, and one has to do without it. The birth of
algebraic number theory, and by that, the beginning of commutative algebra, came as
a response to this “defect”. Luckily, in certain nice rings the Fundamental Theorem
persists. These rings are called unique factorization domains or factorial rings, and are the
objects we shall study in this chapter. Out of the inherent human laziness springs the
acronym UFD, which is in widespread use.

3.1 Being a unique factorization domain

(3.1) To be precise, a UFD is a domain where every non-zero element which is not a unit,
can be expressed in an essentially unique way as a product

a=pr-...-pr (3.1)

of irreducible elements p;. The qualifyer "essentially unique" must be understood in the
large sense; the order of the factors can of course be changed at will, and replacing a
factor p; with up;, where u is a unit, can be compensated by multiplying another factor
by the inverse u~!. So "essentially unique" means that the factors are unique up to
order and multiplication by units. Or in the terminology introduced in Paragraph 2.6
on page 31, the factors are unique up to order and association.

The definition has two separate conditions—a stipulation of existence and a unique-
ness requirement—and the two are of a quite different flavour. Before proceeding with
the theory, we shall take a closer look at each separately.

Existence
(3.2) The first conditions stipulates that any element can be expressed as a finite product
of irreducibles. This is in essence a finiteness condition on A, which is fulfilled e.g. in

Unique factorization
domains (entydig-
faktoriseringsomrdider)

Factorial rings
(faktorielle ringer)

UFD’s (UFD)
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the so-called Noetherian (important rings to be introduced later). It does certainly not
hold in general rings; an example can be the ring of entire functions in the complex
plane C. The irreducibles in this ring are of the form u(z)(z — a) where u(z) is a unit
(i. e. a non-vanishing entire function) and a € C is any point, so any entire function
with infinitely many zeros—like our good old friend sin z—can not be expressed a finite
product of irreducibles.

One can always attempt a recursive attack in the search for a factorization. Any
ring element a which is not irreducible, is a product a = 414, of two non-units. These
being irreducible, makes us happy—we have a factorization—but if one or both are not,
they are in their turn products of non-units. If all the fresh factors are irreducible, we
are again happy; if not, some split into products of non-units. Continuing like this we
establish a recursive process which, if terminating, yields a finite factorization of a into
irreducibles.

In general the process may go on for ever—like it will for e.g. sinz—but in many
cases there are limiting condition making it end. For instance, in the case of the ring
of integers Z, the number of steps is limited by the absolute value |a|, and in the case
of polynomials in k[x] by the degree of a. There is a general finiteness condition that
guarantees the process to stop as expressed in the following lemma. It comes in the
disguise of a condition of the partial ordered set of principal ideals and is an anticipation
of the notion of Noetherian rings.

LEMMA 3.3 Let A be a domain such that any non-empty collection of principal ideals has a
maximal element. Then every element in A can be expressed as a finite product of irreducibles.

ProoF: Let X be the set of principal ideals (a) where a runs through all counterexamples
to the lemma; that is, all elements not expressible as a finite product of irreducibles.
If the lemma were false, the set ¥ would be non-empty, and by assumption it would
have a maximal member, say (b). By construction b can not be irreducible and may be
factored as b = byb, with neither by nor b, being a unit; hence (b) is strictly contained
in both (by) and (by). On the other hand, b is not a finite product of irreducibles, and
a fortiori the same holds for either by or b,. Therefore either (by) or (by) belongs to %,
which is impossible since both strictly contain the maximal member (b). |
ExErcist 3.1 Apply Zorn’s lemma to prove that any principal ideal domain satisfies the
condition in Lemma 3.3. HINT: Any ascending chain of principal ideals must terminate.

*

Uniqueness

(3-4) The second condition a UFD must abide to is the uniqueness requirement, which is
of a more algebraic nature. It generally holds true that prime elements are irreducible,
and the uniqueness requirement essentially boils down to the converse holding true; i. e.
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that irreducible elements be prime. In fact, in any domain the uniqueness requirement
holds automatically for finite factorizations into prime elements:

LEMMA 3.5 Let A be a domain. Assume that {p;}1<i<r and {q;}1<i<s are two collections of
prime elements from A whose products agree; that is, it holds true that

pl...pr:ql...qs'
Then the p;’s and the q;'s coincide up to order and unit factors.

Proor: The proof goes by induction on r. Since p; is prime, it divides one of the g;s,
and after renumbering the g;’s and adjusting g1 by a unit, we may assume that p; = g;.
Cancelling p1 gives pa---pr = g2 - - - 45, and induction finishes the proof. Q
(3.6) Since irreducibles are prime in both the rings of integers Z and of polynomials
k[x] over a field k (both are principal ideal domains), we immediately conclude that Z
and k[x| are factorial rings.

Examples

The main examples of factorial rings are principal ideal domains and polynomial
rings over those—as we shortly shall see—but producing other examples demands
some technology not available to us for the moment. So we confine ourselves to give
some classical examples of non-factorial rings, one from number theory and two from
algebraic geometry.

(3.1) Our first example, the ring Z[i\/5], is ubiquitous in number theory texts, and
we already met it on page 46. In Z[i/5] the number 6, for instance, has two distinct
factorizations in irreducibles (see Example2.18 on page 46):

6=2-3=(1+iy/5)(1—iV5).

(3.2) One of the standard example from algebraic geometry, which geometers would call
the coordinate ring of "the cone over a quadratic surface in projective 3-space”, is the
quotient ring A = k[X,Y,Z,W|/(XY — ZW). Indicating the classes in A of the variables
by lower case versions of their name, we have A = k[x, y, z, w] with constituting relation

Xy = zw. (3.2)

In Example 3.4 on page 79 we saw that A is a domain, and the polynomial XY — ZW
being homogenous, A is a graded ring. It is not too challenging to see that the class of
any non-zero linear form is irreducible in A (see Exercise 2.53 on page 62). Hence the
relation (3.2) shows that A is not factorial.
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This also gives an easy example of the intersection of two principal ideals being non-
principal; i. e. their intersection is distinct from their product, in that (x) n (z) = (xy, x2).

(3-3) Elliptic curves I: Another famous example from algebraic geometry is the ring
A = k[X,Y]/(Y?> = X(X —a)(X — b)) where a and b are elements in a field k whose
characteristic does not equal two. In Exercise 3.2 below you are asked to show that A is
an integral domain. The relation

v =x(x—a)(x-b), (33)

where x and y denotes the classes of X and Y in A, holds in A and gives two different
decompositions of an element into irreducibles; of course one must verify that the
involved linear factors are irreducible (see Exercise 3.6 on page 81 below). Plane curves
given by equations like

v —x(x—a)(x—b)

with a,b € k are called elliptic curves when a and b are different and non-zero; to be
precise one should say affine elliptic curves on Weierstrass form*. Elliptic curves have
always been at the centre-stage of algebraic geometry and are closely related to the
so-called elliptic functions—in fact, they were the very starting point for the development
of modern algebraic geometry.

Above we have included the sketch of the real points of such a curve with a and b real.
Pictures can be beautiful and instructive, but should be taken with a grain of salt. If the
ground field for instance, is the algebraic closure of the field [F3 with three elements,
or for that matter, the closure of the rational function field Q(t), the picture is of no
relevance.

*

Exercises
(3.2) The aim of the exercise is to prove that for any field k the cubic polynomial
y?> — x(x — a)(x — b) is irreducible in the polynomial ring k[x,y]. Were it not, it would

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



BEING A UNIQUE FACTORIZATION DOMAIN 71

have a linear factor, and one could write

v —x(x—a)(x = b) = (ax + Py +7)Q(x,y) (34)

with a, B and 7y constants from k and not both « and j being zero.
a) If B # 0, substitute y = —B =1 (ax + ) in (3.4) to obtain the impossible polyno-
mial identity
B2 (ax+7)* = x(x—a)(x—b) = 0.

b) If B = 0, substitute x = —a~'7 to make the right side of (3.4) vanish. Conclude
that the left side will be a monic quadratic polynomial in y which is identically
zero; which is absurd!

(3.3) Let the k-algebra A = k|[x,y, z] have the constituting relation
v?z — x(x — az)(x — bz)

where a are b are scalars.
a) Show that A is a graded domain HiNT: Cast a glance at Exercise 3.2.
b) By evoking Exercise 2.53 on page 62, prove that y and x — zc for any ¢ € k are
irreducible elements in A.
e

Irreducibles and primes in a UFD

(3.7) As we saw (Proposition 2.41 on page 45), in a domain prime elements are always
irreducible, and as we are going to see, in factorial domains the converse holds as well.
Among domains satisfying an appropriate finiteness condition that guarantees existence
of a factorization—as for instance the Noetherian domains we shall come to—this even
characterizes the factorial domains (Lemma 3.5 above).

PROPOSITION 3.8 For members of a UFD being prime is equivalent to being irreducible.

Proor: We merely need to see that irreducibles are prime. So assume that a is irreducible,
and that a|xy. Let x = p1---ps and y = g1 - - - g+ be decompositions into irreducibles.
Then of course

xy:pl...ps.ql...qr
is a factorization into irreducibles as well. On the other hand, xya~! is an element in A
and has a factorization xya_l = rq -1y into irreducibles; hence

a.rl...rm:pl...ps.ql...qr

are two equal products of irreducibles. The ring we work in being a U¥D, irreducible
factors coincide up to order and units, and this means that, up to a unit, a is either one
of the p;’s or one of the g;’s. Phrased differently, a divides either x or y. EI
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3.2 Common divisors and multiples

(3.9) In a uFD any two elements a and b have a greatest common divisor, which we shall
denote by gcd(a, b). Recall that this is an element d such that x|a and x|b implies that
x|d. Expressed in terms of ideals, d is an element whose principal ideal (d) is least
among the principal ideals containing both principal ideals (2) and (b). The greatest
common divisor of is only determined up to an invertible factor; however, the principal
ideal (d) is unambiguously defined.

The notion of a greatest common divisor of two elements is meaningful in any
domain, but in most domains not every pair has one. However, as mentioned above, in
a factorial ring, any two elements do. The UFD’s share this property with several other
classes of rings, for instance, the rings of holomorphic functions in open domains in
the complex plane C. These rings are not UFD’s, but have the property that any finitely
generated ideal is principal.

(3.10) Two elements may also have a least common multiple: an element m in A so that
the principal ideal (m) is greatest among the principal ideals contained in () and (b);
or phrased in terms of divisibility, it holds that a|m and b|m, and for any other member
x of A it ensues from a|x and b|x that m|x. We shall denote the least common multiple
of a and b by lem(a, b) Again, merely the principal ideal () is unambiguously defined.

PROPOSITION 3.11 In a UDF any two elements have a greatest common divisor and a least
common multiple.

ProoF: Let a and b be the elements. Proceed to write down factorizations of a and b
into irreducibles, say a = p1 - - - pr and b = g1 - - - 45, and pick up the “common factors”:
Reordering the factors, we find a non-negative integer ¢ so that (p;) = (¢;) for i <t and
(pi) # (q;) for t > i. Thend = p; - - - p; is a greatest common divisor. It might of course
happen that no (p;) equals any (q;), in which case t = 0, and the greatest common
divisor equals one.

To lay hands on a least common multiple of 2 and b mimic what we just did, or
verify that a - b/ ged(a, b) is a least common multiple of a and b. a

Exercises
(3.4) Show that two elements a and b from a domain A have a least common multiple
if and only if the intersection (a) n (b) is a principal ideal.
(3.5) Let a and b be two elements having a gcd(a,b) and a lem(a,b). Show that
ged(a,b) -lem(a, b) = ab up to a unit.
(3.6) Prove that in a ring where all finitely generated ideals are principal, all pairs of
elements have a gcd and a lem.

*
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3.3 A criterion of Kaplansky’s

(3.12) The author is especially fond of the formulation* in the following criterion found
in Irving Kaplansky’s book [?] and whose proof is an elegant application of the Basic
Existence Theorem.

PROPOSITION 3.13 A domain A is a UFD if and only if every non-zero prime ideal contains a
prime element.

Proor: The implication one way is clear: Let p be a non-zero prime ideal and consider
any of its non-zero elements. It factors as a product of primes, and one of the factors
must lie in p.

To prove the other implication it suffices, in view of Lemma 3.5 on page 69, to show
that any non-zero member of A is either a unit or a finite product of prime elements,
so let X be the set of elements in A that can be expressed as a finite product of prime
elements. It is certainly multiplicative closed, and A having at least one maximal ideal
it is not empty (maximal ideals are prime and contain prime elements by assumption).
We contend that X coincides with the set of non-zero non-units of A.

Assume this is not true; that is, there is a member x of A, neither zero nor a
unit, which does not lie in . Then (x) n £ = J; indeed, if there was an expression
xy = pj - - - pr with the p;’s being prime elements, we could chose one with * minimal,
and this would force all the p;’s to divide x. Hence y would be a unit, and consequently
x € X. By the Basic Existence Theorem (Theorem 2.49 on page 49), there is a prime
ideal in A maximal subjected to not meeting X and containing x. That prime ideal is
not the zero ideal and by assumption therefore has a prime element as member, which
is a contradiction since all primes lie in X.. Hence X fills up the entire set of non-zero
non-units in A. O
An immediate corollary is the following (which also can be proved in several other and
more elementary ways):

COROLLARY 3.14 Every PID is a UFD.

ProoF: Prime ideals are generated by prime elements. (W
There is an important corollary of Kaplansky’s criterion valid for domains for which
every non-zero ideal contains a prime ideal minimal among the non-zero prime ideals.

3.4 Gauss’ lemma and polynomials over factorial rings

Every domain A is contained in a canonically determined field called the fraction field of
A. The elements are fractions of shape a/b with a and b elements from A and, of course,
with b # 0. The arithmetic of these fractions is governed by the usual rules for rational
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fractions. For the moment we have not shown that such fields exist, but shall assume it.
Later on they will be constructed as particular cases of a general “localization process”.

Several of the domains we have met so far are a priori contained in a field, like Z
and Z[+/d] which are subrings of C, and a polynomial ring k[x1, ..., x,] over a field k
is contained in the rational function field k(x1,...,x;). So a priori these rings have a
fraction field.

(3.15) The objective of the current section is to establish the important result that
polynomial rings over UFD’s are UDF’s; a result that hinges on the key concepts of a
primitive polynomial and the content of a polynomial, and a key lemma, the so-called
Gauss’ lemma.

Gauss’ lemma was initially an approach to comparing factorizations of a polynomial
in Z[x] and Q[x], but has a much broader horizon nowadays. As an illustration of
the general mechanism consider, for instance, the simple polynomial 12x + 57, which
has the factorization 3 - (4x + 19). When viewed as a polynomial in Z[x], it is not
irreducible—neither 3 nor (4x + 19) is a unit—but considered an element in Q[x] it is.
Indeed, 3 becomes invertible in Q[x].

Content and primitive polynomials

(3.16) Proceeding along the lines of the example in the previous paragraph, imagine
a general polynomial f(x) = ag + a1x + ...+ a,x" with coefficients from a factorial
ring A. Extracting the greatest common divisor ¢ of the coefficients a; one may write
f=crf % where f% € A[x] is a polynomial whose coefficients have no common divisor.
This naturally leads to the concept of a primitive polynomial: a polynomial over a UFD
is called primitive if the greatest common divisor of the coefficients equals 1.

With a splitting f = c¢ - f # as above, where f* primitive and ¢ ¢ € A, it is widespread

usage to call the element ¢ the content of f. It is not unambiguously determined by
f; being a greatest common divisor, it is merely unique up to an invertible factor, and
of course, f* suffers the same ambiguity. Strictly speaking one should consider ¢ fan
element in the quotient group K*/A* or equivalently, as the ideal (cf) in the set of
principal ideals.
(3.17) The notion of content may be extended to polynomials from K[x| as well: Any
such polynomial may be expressed as f = cf - f* with ¢ € K* and f* a primitive
polynomial in A[x]; just multiply f by an element d € A so that d - f has coefficients in A
(for instance, use the least common multiple of the coefficients), and put ¢y = d .y 7
and ff = (df)%

Both ¢ and f # will automatically be unique up to units in A. Indeed, if a relation
cg = c'g’ with g, ¢’ primitive polynomials in A[x] and ¢, ¢’ € K* holds true, for some
a € A one has acg = ac’g’ with ac,ac’ € A. The content of polynomials in A[x] being
unique up to a unit, it ensues that ac = uac’ for some unit u € A*. Cancelling a shows
that ¢ = uc’.
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Notice that f has coefficients in A if and only if the content c¢; belongs to A, and
that f is primitive if and only if ¢ is a unit in A.

Gauss'’s lemma

(3.18) This is one of many basic results to be found in Gauss” immortal Disquisitiones
Arithmeticae. He wrote it in 1798 when he was 21 years old, and it was published in 1801.
The Disquisitiones Arithmeticae is one of the most influential mathematical publications
ever written; certainly among the all time top ten.

LEMMA 3.19 (Gauss’s LEMMA) Assume that A is a UFD. Let f and g be primitive polynomials
in A[x]. Then the product fg is primitive.

Proor: Write f = Yo i, ax' and § = Ycic,, bix’. Let d be a non-unit in A. The
polynomial f being primitive, there is a least iy so that d does not divide 4;, and ditto a
least jo so that d does not divide bj,. Consider the coefficient of x0*tfo in the product fg;

Z aib]-.

i-+j=io-+o

that is, the sum

If i # ip and j # jo, either i < ig or j < jo; in the former case d|a; and in the latter d|b;,

so in both cases d[a;b;. Hence all terms of the sum are divisible by d except a;b;,, and

O/
consequently the sum is not divisible by 4. Q
(3.20) The next lemma is an equivalent version of Gauss’ lemma formulated in terms
of the content of polynomials. It clearly implies Gauss’ lemma, just apply it to two

primitive polynomials, but as noted, the lemmas turn out to be equivalent.

LEMMA 3.21 Assume that A is a UFD with fraction field K. For non-zero polynomials f and g
in K(x] it holds true that c¢q = cgcg up to a unit factor.

PrOOF: One has f = ¢y ffand g = Cq - g% which gives fg = cfcgfﬁgﬁ, but according to
Gauss’ lemma f%gf is a primitive polynomial, and from the unicity of the content we
deduce that cry = cfcg up to units. EI
(3.22) To facilitate future reference (and hopefully to make things clearer for the
students) we sum up what we so far have done in this section:

PROPOSITION 3.23 Let A a UFD with fraction field K. With very non-zero polynomial f € K[x]
is associate an element cg € K* called the content of f, unique up to a unit factor. It holds true
that f = cy - f% where f* is a primitive polynomial in A|x], and this characterizes c ¢ and fup
to unit factors.

a) The content depends multiplicatively on f; that is, cre = cgcg up to units;

b) f lies in Alx] if and only if cf € A;

c) f is primitive if and only if cf € A*.
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Factoring polynomials over A and over K

We return to the issue mentioned in the beginning of the section: how does the
factorizations of polynomials in A[x] relate to its factorization in K[x]? And our
approach will be in a setting with A a UFD and K its field of fractions.

(3.24) Let f be a primitive polynomial in A[x] and assume that f splits as a product
f = ghin K[x]. It follows that f = c¢cy, ¢fht, and from the content being unique up to
units it ensues that cgc;, being an associate to ¢y is a unit in A. Incorporating cgcj, in
either ¢ or hf, we arrive at a factorization f = ¢’h’ with f, ¢’ € A[x]. Notice that the
new factors ¢’ and K’ are obtained from f and g merely by multiplying by elements from
A, hence the degrees are preserved. We thus have established the following lemma:

LEMMA 3.25 Assume that A is a UFD with quotient field K. A primitive polynomial f € Alx]
that splits as product in K[x|, splits as a product in A[x| with factors of the same degree. In
particular, if f is irreducible in A[x], it remains irreducible in K|x]|.

(3.26) We then have come to one of our main objectives in this chapter:

THEOREM 3.27 If A is a U¥D, then the polynomial ring A[x] is a UFD. The irreducible elements
in A[x] are the irreducible elements in A and the primitive, irreducible polynomials in A[x].

Induction on the number of variables and the fact that k[x] is a UFD immediately give the
corollary that polynomial rings over fields are UFD’s. It is also worthwhile mentioning
that the same applies to polynomials rings over the integers.

COROLLARY 3.28 If A is a UFD, the polynomial ring A[xy,...,x,] is a UED. In particular the
rings Z[x1, ..., xy] and k[x1, ..., x,] where k is a field, are UFD’s.

Proor oF 3.27: Invoking Kaplansky’s criterion (Proposition 3.13 above) it suffices to
see that any prime ideal p in A[x| contains a prime element. If p N A is non-zero, this
follows from A being a UFD. If not, let f € p be a primitive polynomial of minimal
degree. We contend that f is prime; so assume that f|gh. Certainly f will be irreducible
(it is of minimal degree in p and p n A = 0), it persists being irreducible in K[x] and
is therefore prime in K[x] (the ring K[x] is factorial). Consequently f divides either g
or h, say § = pf with p € K[x]. But p is forced to lie in A[x]; indeed, g = c,p*f, and ¢,
equals cg up to a unit in A, hence belongs to A. 3

Ideals in polynomial rings over PID’s.

Gauss’ lemma helps us better understand the prime ideals in the polynomial rings Al[x]
over a PID A—this includes the polynomial rings k[x, y] in two variables over a field k
and the ring Z[x]—and hopefully it will make you better appreciate David Mumford’s
drawing of Spec Z[x] in his famous red book [?], a copy is shown below.

(3.29) The description of Spec A[x] we are about to give, requires the principal ideal
domain A to have infinitely many maximal ideals. When Spec A is finite, some of the
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principal ideals (g(x)) might be maximal as illustrated in Exercise 3.8 below which
treats the case when A has just one maximal ideal.

PROPOSITION 3.30 Let A be a PID with infinitely many maximal ideals. Then the non-zero
prime ideals p in Alx] are of two kinds.

i) If p is maximal, then p = (g(x), p) where p € A is a prime element and g(x) is a
polynomial in A[x] which is irreducible mod p.

ii) If p is not maximal, it is principal and generated either by an irreducible and primitive
polynomial or by a prime element in A.

Proor: The trick is to consider the intersection q = p n A and separately treat the two
cases according to g being zero or not. Let K be the fraction field of A.

Assume first that ¢ = 0. Then pK[x] is a proper ideal: Assume there is a relation
1 =3 a;f; with a; € p and f; € K[x] and multiply through by a common denominator d
of all coefficients of the f;’s, and thus obtain d € p. Now d € A and p n A =0, and we
have a contradiction.

It ensues that pK|[x] is principal, say generated by f. Replacing f by its primitive
avatar ff, we may assume that f belongs to A[x] and is primitive. We contend that
p = (f(x)). Indeed, if g € p we may write g = hf were h a priori belongs to K[x].
However, since f is primitive, we find that ¢, = ¢;cf = cg lies in A, and hence h lies in
Alx].

Now, an ideal (g(x)) generated by an irreducible polynomial g(x) is not a maximal:
if it were, it would hold that (g(x), p) = A[x] for all primes p € A; in other words,
¢(x) would be a unit in the polynomial ring A/pA[x] for all primes p. But the leading
coefficient of g(x) has only finitely many prime factors (up to units), and the leading
term survives in the reduction of g(x) modulo any prime not among those. Our ring A
is assumed to have infinitely many primes, so the reduction of g(x) mod most of the
primes in A (in fact, infinitely many) is not a unit. Contradiction.

Next, if g # 0, it holds that ¢ = (p) for some prime element p € A. Consider
Alx]/pA[x] = k[x] were k is the residue class field k = A/pA. The ideal p/(p) is either
zero, in which case p = pA[x], or it is generated by an irreducible polynomial a(x), and
any lift g(x) of a(x) to A[x] will then generate p together with p; that is, p = (p, g(x)).

a
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(3.31) Specializing A to be the polynomial ring k[y] with k being an algebraically closed
field, Proposition 3.30 yields the following description of the maximal ideals in k[x, y],
which is a precursor to the fabulous and all important Nullstellensatz of David Hilbert:

THEOREM 3.32 (NULLSTELLENSATZ IN DIMENSION TWO) Let k denote a field that is algebraic-
ally closed. Then every maximal ideal m in the polynomial ring k[x,y] is of the form m =
(x—a,y—Db) witha, bink.

ProoF: Indeed, the only irreducible polynomials in k[x] are the linear ones. a

Exercises
(3.7) Assume that p(x) is a monic polynomial in Z[x] which factors as p(x) = r(x)s(x)
in Q[x]. Show that r(x) and s(x) both lie in Z[x] and are monic. HINT: Multiply through
by the least common multiple of the coefficients’ denominators and appeal to Gauss’s
lemma
(3.8) Polynomial rings over bvR’s. Let A be a local PID (such rings are called discrete
valuation rings abbreviated with the initialism DVR; they will be treated extensively in a
later chapter) and let 7 be a generator for the maximal ideal; for instance, localizations
like Z, or C[t](;_,) are shaped like that.
a) Show that the principal ideal a = (7rx — 1) in the polynomial ring A[x] is
maximal. HINT: Let K be the fraction field of A and show that a equals the
kernel of the map A[t] — K that sends f(x) to f(1/m).
b) Show that any maximal ideal m in A[x] either is shaped like (g(x), r) with
g(x) a polynomial in A[x] which is irreducible modulo 7, or like (g(x)) with
g(x) being an irreducible polynomial in A[x] that is invertible modulo 7.
Hint: Adapt part of the proof of Proposition 3.30.
(3.9)  Separable polynomials and derivatives. = Let A be UFD with fraction field K.
Polynomials without multiple roots in any field extension of K are said to be separable.
Show that a polynomial p(t) is not separable; that is, it has a multiple root in some
field extension K’ of K, if and only if there is a polynomial 4(t) € A[t] of positive degree
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which divides both p(t) and its derivative p’(t). HINT: Let a be the multiple root. Show
that p(a) = p’(a) = 0. Consider the minimal polynomial of « over K and make it
primitive.

*

Factoring homogenous polynomials

(3-33) Factoring a polynomial into a product of irreducibles, or for that matter, showing
a polynomial is irreducible, is often an unpleasant task. Knowing that the polynomial
is homogenous might sometimes be helpful as one then a priori knows that every
irreducible factor will be homogeneous; indeed, one has the following proposition.

PROPOSITION 3.34 Let R be a graded factorial domain satisfying R, = 0 for n < 0. Then the
irreducible factors of a homogeneous element are homogeneous.

PRrOOF: Let a; be the irreducible factors of a homogeneous element a and develop each
a; as a sum a; = ), a;, of homogeneous components. Denote by g; ,, the non-zero
component of a; of lowest degree. Since the degree of every element is non-negative, it
holds true that
a= H a; = n a;,y; + terms of higher degree,
1 1

and | ;a4 ,, is non-zero as R is assumed to be a domain. But now, homogeneous
components are unambiguously defined, and a is homogenous. Hence the sum of the
high degree terms vanishes, and we have expressed a as a product of homogeneous

a = Hai,w.
i

By induction on the degree, each 4; ,, has only homogeneous irreducible components,

elements

and the same applies therefore to a. D

ExaMPLE 3.4 The polynomial f = xy — wz is irreducible. If f were the product of two
linear terms, each variable would occur in precisely one of them since no term of f is a
square, hence cross-terms like xw or xz would appear in f. *

ExaMPpLE 3.5 The polynomials y” — x7 are irreducible when p and g are relatively prime.
To see this give k[x, y] the grading for which deg x = p and degy = q. An irreducible
polynomial without constant term, unless it equals « - x or B - y, necessarily contains
non-zero terms both of the form & - ¥ and of the form - x™ for natural numbers n and
m and scalars « and B. If it additionally is homogeneous, it holds true that nqg = mp
and hence n = ap and m = bq for some non-negative integer a. It follows that if f is an
irreducible factor of y” — x1 it is of degree at most pg, so either it reduces to x or y, or
its degree is pg; the former case does obviously not occur, so f has degree pq, which is
the same as the degree of y” — x7, and the two are equal up to a scalar. *
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*This includes all
connected Lie groups.
For students initiated

in Lie—theory, it is a
nice exercise to verify
this (What is the
derivative of the
n-power map?).

Exercises
(3.10) Show that if n > 3, it holds that g(x) = >}, ¢
unless that characteristic of k equals two.

2

x; is irreducible in k[xq, ..., x;]

i<n
(3.11) Let p1, p2 and p3 be pairwise coprime integers. Consider the polynomial
f = x" + x5* + x£* in the polynomial ring k[x1, x, x3] over the field k. Show that f is
irreducible.

(3.12) Let R be a graded ring satisfying R, = 0 for n < 0. Show that only homogeneous
units in R are those in Rj

(3.13) Let G be a group without finite quotients* and A a factorial ring. Assume
that G acts on A in away that the units are invariant. Show the irreducible factors
of any polynomial semi-invariant under G are semi-invariant. (Recall that f is called
semi-invariant if there is a group homomorphism xs: G — A* so that f& = x¢(g)f.)
#*

3.5 Example: Quadratic extensions and the norm

An indispensable tool in algebraic number theory is the norm, but also in algebraic
geometry it certainly plays a significant role. After having treated so-called integral
extensions we shall expound on the norm and its stablemate the trace—but being
indispensable in certain important examples we give this ad hoc treatment exclusively
for the class of quadratic extensions.

We have already have come across the norm at occasions, e.g. when showing that 2
and 3 were irreducible elements in the quadratic extension Z[iv/5], but in the guise of
the square of the ordinary absolute value of complex numbers.

We have seen several examples where adjoining a square root to a ring is a central
feature; the quadratic extensions Z[/n| where 7 is an integer are shaped like that, as is
the coordinate ring of an affine elliptic curve: it equals k[x, y| with constituting relation
y? = x(x — a)(x — b) so obtained form k[x] by adjoining /x(x —a)(x — b).

Of course, one is not confined to use cubic polynomial, but can adjoin /p(x) where
p(x) is any polynomial (well, it must have certain good properties as being without
multiple roots). The rings one obtains in this way are coordinate rings of the so-called
affine hyperellipitic curves (they will be more closely discussed in Exercise 3.20).

These ring extensions have many features in common, and here we shall explore
some. So we set the staging by assuming that A is a domain, and pick an element d
from A which is not a square; furthermore we let B = A[t]/(#?> — d). Denoting the class
of t by 4/d, one may write B = A[4/d] and think about B as A with the square root /d
adjoined.

Every b € B can be written as b = x + y+/d with x and y unique elements from a.
indeed, no polynomial in A[t] of degree one lies in (> — d), just consider the top term.
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The multiplication in B is given by the formula

(x 4+ vdy) (x" + vdy') = (xx’ +yy') + (xy' + xy)/d. (3-5)

The extension B comes equipped with a conjugation ¢: B — B map defined by
o(x +y4/b) = x —y4/b. The multiplication formula above immediately gives the
relation o(ab) = o(a)o(b), and as evidently the conjugation is additive, it is a ring
homomorphism. It is obviously an involution (applied twice it gives the identity), and
if the characteristic of A is not two (in characteristic two ¢ degenerates into he identity),
the invariant elements are precisely the members of A; indeed x + y+/ = x —y4/d if and
only if ¥ = 0 since we are in characteristic different from two. We have shown:

LEMMA 3.35 The map o is an involutive ring homomorphisms whose ring of invariants equals
A.

Next we introduce the norm N(b) of elements from B as the product N(b) = bo (D).

PROPOSITION 3.36 Let A, B and d be as above.
i) The norm is multiplicative; i. e. N(ab) = N(a)N(b);
i) N(x +yyd) = x> — dy%;
iii) An element b € B is invertible in B if and only if the norm N(b) is invertible in A.

Proor: The statement i) follows as the conjugation is a ring map: N(ab) = abo(ab) =
abo(a)o(b) = ac(a)bo(b) = N(a)N(b). Next ii) ensues directly from the multiplication
formula (3.5). Finally we prove iii): if b is invertible it holds that N(b)N(b~1) =
N(bb~1) = N(1) = 1; and if N(b) is invertible, N(b) "o (b) serves as the inverse of b. O

ExaMmrLE 3.6 Elliptic curves II: Let k be field and a and b two elements from k. Let A be
the coordinate ring of an affine elliptic curve on Weierstrass form; that is, A = k[x, y]
with constituting relation y> = x(x —a)(x — b). We let p(x) = x(x —a)(x — b). The aim
of this example is to complete Example 3.3 on page 70 by showing that A is not factorial.
It remains to see that the factors in (3.3) are irreducible.

We consider the extension k[x] S k[x,y] = A where y = /p. Elements are of the
form f + yg with f, g € k[x], whose norm equals N(f +yg) = f> — pg>.

A salient points is that the norm N(f + yg) is of degree as least three when g # 0;
indeed, f? is of even degree and the degree pg? is odd, so dominating terms can not
cancel. Hence N(f + yg) is a scalar if and only if g = 0 and f is constant; and citing
Proposition 3.36 above we conclude that the non-zero constants are the only units in A.
Moreover, the norm N(f + yg) is never of degree one.

With these observation up in our sleeve, we can check that any linear expression
z =ay+ B(x —y) in x and y is irreducible (where &, f and 7y lie in k). Assume there is
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Pell’s equations (Pell’s
ligning)

a factorization z = uv and apply the norm to obtain

N(u)N(v) = (x = 7)* — ’p.

If « 0, the degree of the right hand side is three, and one of N(u) and N(v) must be
of degree three and the other constant (degree one is forbidden) ; or if « = 0, the right
hand side is of degree two, so that either N(u) or N(v) must be of degree two and the
other constant. In both cases, either u or v is invertible, and that is the end of the affair.

*

ExamrLE 3.7 Units in real quadratic extensions: ~Contrary to the imaginary quadratic
extensions Z[iy/n] that have a finite unit group, the real quadratic extensions Z[/n] (in
both cases 7 is a natural number that is not a square) have infinitely many units, which
constitute a group isomorphic to Z x pp. We shall not prove this, but indicate why it
holds true.

So let a = x + y4/n with x,y € Z be an element in Z[/n]. Its norm is given as
N(a) = x* — my? and according to statement iii) of Proposition 3.36 above, a is a unit if
and only if N(a) is a unit; that is if and only if x and y satisfies the equation

2 —ny? = +1.

This equation is called Pell’s equations; iits history and can be traced far back and is
loaded with anecdotes. It seems that the Indian mathematician Brahmagupta treated it
extensively as early as in the year 628. It is not very deep, but requires a certain amount
of work, to see that

-yt =1

has a solution for any natural number 7.

Let us take for granted there is a nontrivial unit v in Z[/n], and from that deduce
there are infinitely many. We begin with showing there is a smallest unit larger than one.
Indeed, if u = x + y+/n, it holds that u~! = £1(x — y/n) (the sign is chosen according
to N(u) = 1 or N(u) = —1) so that u —u~! = 2y\/n or u —u~! = 2x. In both cases
u — u~! will be bounded away from zero since x and y are integers; so no sequence of
units can approach 1 from above, and hence there must be a smallest one larger than
one. Denote that smallest unit by uy; it is called the fundamental unit, and we contend
that every other unit is up to sign a power of uj: Let u be any non-trivial unit. By

1

exchanging u with —u or u~! or —u~! if necessary, we may assume that u > 1, and

thus u > ug. Let r be the smallest natural number so that u{, > u. Then 1 < ugu_1 < ug;
and in view of the minimality of 1y we conclude that uju~! =
Apart from the existence of nontrivial units, we have thus shown that Z[/n]* ~

“uzXZ. ¥

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



EXAMPLE: QUADRATIC EXTENSIONS AND THE NORM 83

Exercises

(3.14) Consider the ring Z[iy/2k] with k > 3 an odd natural number. Show that
p = (2,iy/2k) is not a principal ideal, but that p> = (2). Prove that the ring Z[i/2k] is
not factorial.

(3.15) Show that 3 and 5 are irreducible members of Z[i/14] that are not prime.
(3.16) Consider the ring Z[ir/14]. Prove that

3* = (54 2iV14)(5 — 2iV/14)

and show that all the involved elements are irreducible elements of Z[iv/14].
(3.17) Assume that d is an integer such d =1 mod 4. Let & = (1 + +/d)/2. Show that

a?> = a + (d — 1) /4. Prove that A = Z[«] is free Z-module of rank 2 with 1,« as a basis.

Determine the matrix of the map x — ax in this basis and compute the characteristic
polynomial. Describe the norm-map.

(3.18) The ring of real trigonometric polynomials. The ring A = R[x, y] with constituting
relation x2 + y? = 1 is the ring of real polynomial functions on the unit circle in R?, or
if you wish, you may view it as the ring of trigonometric polynomials; just put x = sin ¢
and y = cost.

a) Show that R[x] is a polynomial ring and that A is a free module of rank two
over R[x] with 1 and y as a basis;

b) Let N denote the norm defined by the extension R[x] € A. Show that the norm
is given as N(f(x) + g(x)y) = f2(x) — ¢*(x)(1 — x?), and that the non-zero
constants are the only units in A;

c) Show thaty, (1 —x) and (1 + x) are irreducible elements in A and conclude that
Aisnota urp. HiNT: 12 = (1 —x)(1 + x).

(3.19) The ring of complex trigonometric polynomials. Contrary to the ring A from the
previous exercise, the ring B = C|[x, y] with constituting relation x> + y?> = 1is a UFD, it
is even a PID.

a) Show that all non-zero and proper ideals in B are of the form (x —a,y — b) with
a, b complex numbers such that a2 + b> = 1. HinT: Theorem 3.32 on page 78;

b) Show that B = C|u, u] with u = x +iy and & = x — iy and that uit = 1;

c) Show that (x —a,y —b) = (u —c) where u = x +iy and ¢ = a + ib.

(3.20) Huyperelliptic curves. Let k be a field. Let p be a polynomial in k[x] of degee n
without multiple roots, and let A = k[x,y] with constituting relation y> = p. This ring
is the coordinate ring of a so-called hyperelliptic curve

a) Show that A is an integral domain which is a free k[x]-module of rank two;

b) Compute the norm map A — k[x|;

¢) Assume that the degree of p is odd. Show that the units in A coincide with the
non-zero constants and that A is not factorial;
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d) Assume the characteristic of k is not two. Show by way of examples that for
each even 7 there are hyperelliptic curves with non-constant units. HiNT: Let g
be a polynomial of degree v assuming each of the values 1 and —1 in v distinct
points and consider p = (1+4)(1 —g).

(3.21) Determine the fundamental unit in Z[2], Z[+/3] and Z[,/5].
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Lecture 4

Modules

Along with every ring comes a swarm of objects called modules; they are the additive
groups on which the ring acts. The axioms for modules resemble the axioms for a vector
spaces, and modules over fields are in fact just vector spaces. Over general rings however,
they are much more diverse and seriously more complicated. Ideals for instance, are
modules, and any over-ring is a module over the subring, to mention two instances.
An abelian group is nothing but a Z-module, and a module over the polynomial ring
k[t] over a field k is just a vector space over k endowed with an endomorphism; so the
module theory encompasses the theory of abelian groups and the entire linear algebra!

4.1 The axioms

(4.1) A module M over the ring A, or an A-module as one also says, has two layers of
structures. It is endowed with an underlying structure as an abelian group, which will
be written additively, on top of which lies a linear action of the ring A. Such an action
is specified by a map A x M — M, whose value at (4, m) will be denoted by a - m or
simply by am. It is subjected to the following four conditions:
iy alm+m') = am+ am’;

ity (a+a")ym = am+ a'm;

i) 1-m=m;

iv) a-(a'm) = (aa’)-m.
where a,a’ € A and m,m’ € M are arbitrary elements. The first condition requires the
action to be A-linear; or in other words, the map A — Homges(M, M) that sends a
to the “multiplication-by-a-map” m — am must take values in the ring Homa, (M, M)
of group-homomorphism. The last three requirements ensure that this map is a ring
homomorphism,; it is the ring A that acts.
(4.2) One recognizes these conditions from linear algebra; they are word for word the
same as the vector space axioms, the sole difference being that A is not required to be a

Modules (moduler)
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field, but can be any ring. So in case A is a field k, there is nothing new; a k-module is
just a vector space over k. However, one should not draw this analogy to far; general
modules are creatures that behave very differently from vector spaces.

Examples

(4.1) The primordial examples of modules over a ring A are the ideals a in A and the
quotients A/a. Already here, the difference from the case of vector spaces surfaces;
fields have no non-zero and proper ideals. There are also the "subquotients” b/a of two
nested ideals. Of course, these examples include the ring itself; every ring is a module
over itself.

(4.2) Another examples more in the flavour of vector spaces are the direct sums of
copies of A. The underlying additive group is just the direct sum A@AD...® A
of a finite number, say r, copies of A. The elements are r-tuples (ay,...,4,), and
addition is performed componentwise. The action of A is also defined componentwise:
a-(ay,...,a,) = (a-ay,...,a-a,). We insist on this being an additive* construction and
shall write A for this module, as distinguished from the common usage A" in linear
algebra.

(4.3) Another familiar class of modules are the abelian groups. They are nothing but
modules over the ring Z of integers. An integer # acts on an element from the abelian
group by just adding up the appropriate number of copies of the element and then
correcting the sign.

(4.4) Over-rings form an abundant source of examples—when A is a subring of B,
multiplication by elements from A makes B into an A-module. So for instance, k[x, y] is
a k[x]-module as is k[x, x~!]. And k[x] will be a module over the subring k[x?, x3]. If
1 € C is a root of unity, Z[y] is a Z-module .

More generally, any ring homomorphism ¢: A — B induces an A-module structure
on B through the action a-b = ¢(a)b of an element a € A on b € B. This gives B the
structure of an A-algebra as defined in Paragraph 1.12 on page 19.

(4.5) Suppose that k is a field. Giving a k[t]-module is the same as giving a k-vector
space M and an endomorphism of M; that is, a linear map 7: M — M. A polynomial
p(t) in k[t] acts on M as p(t) - m = p(T)(m).

¥
ExEeRrcisk 4.1 Let A and B be two rings and assume that B has an A-module structure
compatible with the ring structure; i. e. a-bb’ = b(a-b’). Show that there is ring
homomorphism A — B inducing the module structure. H*

Homomorphisms between modules
A new concept in mathematics is always followed by a fresh class of relevant maps; so
also in our present case of modules. An A-module homomorphism ¢: M — N between
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two A-modules M and N is a homomorphism of the underlying abelian groups that
respects the action of A; that is, ¢(am) = a¢(m) for all a’s in A and all m’s in M. Simply
said, a module homomorphism is just an A-linear map from M to N. With this notion
of morphisms, the A-modules form a category Mod4. (It is easily checked that the
composition of two A-linear maps is A-linear and, of course, identity maps are A-linear
as well.) An A-module homomorphism ¢: M — N is said to be an isomorphism if there
is another one : N — M which is a two-sided inverse to ¢; i. e. it holds true that
¢ o =idy and P o ¢ = idps. One easily verifies that it suffices to be bijective for ¢ to
be an isomorphism.
(4.3) The set Homy (M, N) of A-linear maps from M to N is naturally contained in the
set Homyz (M, N) of group homomorphism from M to N (which are just the additive
maps), consisting of those commuting with the actions of A on M and N. It is well-
known that the sum of two additive maps is additive, and when both commute with the
actions of A, the sum does so as well. Therefore Hom 4 (M, N) is an abelian group, and
defining a - ¢ as the map that sends m to a¢(m), gives it an A-module structure. One
must of course verify that a - ¢ is A-linear, but this is easy: if b € A is another element,
one finds

a-p(bm) = a(bgp(m)) = bag(m)),
where the first equality holds since ¢ is A-linear and the second because A is commuta-
tive*. The module axioms follow readily.
(4-4) The module Hom 4 (M, N) depends functorially on both variables M and N, and
historically, it was one of the very first functors to be studied. The dependence on
the first variable is contravariant—the direction of arrows are reversed— whereas the
dependence on the second is covariant—directions are kept. The induced maps are
just given by composition. Of course, such constructions are feasible in all categories,
what is special in Mod 4 is that Hom 4 (M, N) is an A-module and the induced maps are
A-linear. The technical name is that category Mod 4 has internal homs—the set of maps
stay within the family To be precise let M, N and L be three A-modules and : N — L
an A-linear map. Sending ¢ to ¢ o ¢ yields an associated map

P Homy (M, N) — Homu (M, L).

It is A-linear, and if ¢: L — L’ is another A-linear map, one has (¢’ o ) = ¢}, o . In
a similar fashion, the contravariant upper-star version

¢*: Homy (N, L) - Homy (M, L),

which sends ¢ to i o ¢, is A-linear as well, and it is functorial; i. e. (¢’ 0 ¢)* = ¢* o ¢'*
for composable maps ¢ and ¢'.
(4.5) It follows readily from the involved maps being A-linear that composition of
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composable maps is an A-bilinear operation. That is, one has

polap+a'y))=apoy+dpoy and (ap+a'¢')oyp =apoy+a¢/oy,
where the maps are composable*, and a and 4’ denote ring elements.

Submodules

(4.6) A submodule N of an A-module M is a subgroup closed under the action of A; in
other words, for arbitrary elements a € A and n € N it holds true that an € N, and of
course, N being a subgroup the sum and the difference of two elements from N belong
to N.

Examples

(4.6) Ideals in the ring A are good examples of submodules, and in fact, by definition,
they are all the submodules of A.

(4.7) If ac A is an ideal and M an A-module, the subset aM of M formed by all finite
linear combinations ) ; a;m; with a; € a and m; € M is a submodule.

(4.8) Given an ideal a in A. The set (0 : a)y; of elements in M annihilated by all
members of a form a submodule. It holds true that ¢ — ¢(1) gives an isomorphism
Homy (A/a, M) ~ (0 : a)y. Indeed, the value ¢(1) of a map ¢: A/a — M is killed by a
since for a € a it holds true that a- ¢(1) = ¢(a-1) = ¢([a]) = 0. To obtain a resiproque
map, assume that m € (0 : a)y is given. The product x - m does only depend on the
class [x] of x as (x +a)-m = x-m for elements a that kill m. Hence [x] — x-m is a
legitimate definition of a map A/a — M, and it takes the value m at 1.

*

Exercises
(4.2) Show that there is a canonical isomorphism Homy (A, M) ~ M. HiNT: The
correspondence is ¢ < ¢(1).
(4.3) Show that Hom4(A/a, A) = 0 whenever a is a non-zero ideal in a domain A.
Show, e.g. by giving examples, that the equality does not necessarily hold true when A
is not a domain. Find an example with A having just four elements.
(4.4) Let p and g be two prime numbers. Show that Homy(Z/pZ,Z/qZ) = 0if p +# q,
and that Homy (Z/pZ,Z./vZ) ~ Z/ pZ.
(4.5) Let aand b be two ideals in the ring A. Show that there is a canonical isomorphism
Homu(A/a,A/b) ~ (b: a)/b. HINT: The correspondence is ¢ < ¢(1).
(4.6) Assume that M is an A-module. For each element a € A let [a] denote the
"multiplication-by—a” map in M. Let N be a second A-module. Show that [a]s = [4]
and [a]* = [a] (for each occurrence of [a], it should self-explanatory in which of the
modules M, N or Hom4 (M, N) multiplication by a takes place).

*
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The lattice of submodules
(4.7) Just as the ideals in A the submodules of a given A-module M form a partially
ordered set under inclusion*, which we shall denoted Z(M).

The intersection ();c; N; of a collection {N;};c; of submodules of M is a submodule.
It is the largest submodule of M contained in all the submodules from the collection. In
the similar way, the smallest submodule containing all the modules in the collection is
the sum },.; N;, whose elements are finite A-linear combinations of elements from the
N;’s; that is, the elements are shaped like

Z a;m;, (4-1)

where m; € N;, and the 4;’s are elements from A only finitely many of which are non-
zero. More generally, for any set S = M there is a smallest submodule of M containing
S, it is called the submodule generated by S and consists of elements as in (4.1) but with
the m;’s confined to S.

Exercrsk 4.7 This exercise parallels the list of properties of direct and inverse images of
ideals in Propositions 2.11 and 2.13 on pages 33 and 33. Let ¢: M — N be an A-linear
map.

a) Show that for any submodule L < N the inverse image ¢! (L) is a submodule
of M, and that the induced map ¢~': Z(N) — Z(M) respects inclusions and
takes arbitrary intersections to intersection. What about sums of ideals?

b) Moreover, if a is an ideal show that ag—!(L) = ¢~'(aL), and give examples that
strict inclusion may occur (one can even find examples with ¢ an inclusion);

¢) In the same vein, show that ¢(L) is a submodule of N for each submodue L < M,
and that the induced map Z(N) — Z(M) respects inclusions. What happens
with intersections and sums? And what about ¢(aL)?

e

Kernels and images

(4.8) An A-module homomorphism ¢: M — N is in particular a group homomorphism
and as such has a kernel and an image. Both these subgroups are submodules as well;
this ensues from the equality a¢(m) = ¢(am) satisfied by A-linear maps. Indeed, one
immediately sees that the image is closed under multiplication by elements from A,
and if ¢p(m) = 0, it follows that ¢(am) = ap(m) = 0 as well.

Quotients

(4.9) Just as with ideals in a ring, one can form quotient of a module by a submodule
and the construction is word for word the same. Let M be the module and N the
submodule. From the theory of abelian groups we know that the two underlying
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additive groups have a quotient group M/ N, which is formed by the cosets [m] = m+ N
for m ¢ M. Endowing M/N with an A-module structure amounts to telling how
elements a € A act on M/N, and one does this simply by putting a - [m| = [am]. Of
course, some verifications are needed. The first is to check that the class [am] only
depends on the class [m] and not on the representative m, which is the case since
a(m+ N) = am +aN Cam + N. Secondly, the module axioms in Paragraph 4.1 must
be verified; this is however straightforward and left to the zealous students.

(4.10) The quotient group M/N comes together with the canonical defined additive
map 77: M — M/N that sends m to the class [m]. Moreover, by the very definition
of the module structure on M/N, this map is A-linear, and it enjoys the important
universal property that any A-linear map that vanishes on N, factors through it:

PROPOSITION 4.11 (UNIVERSAL PROPERTY OF QUOTIENTS) Let N be a submodule of the A-

M—"5M/N
‘/ module M. The quotient map t: M — M/ N enjoys the following universal property. For
' every A-module homomorphism ¢: M — L with N < ker ¢ there exists a unique A-linear map
¢ L p: M/N — L so that ¢ = po .
L

Proor: The proof is mutatis mutandis the same as for (abelian) groups. The map ¢
vanishes on N and is therefore constant on the residue classes [m] = m + N, and ¢([m])
is defined as (and compelled to be) that constant value. Since ¢ is A-linear and vanishes
on N, the constant value on [m + m'] = m + m’ + N equals ¢(m) + ¢(m’), and on
[am] = am + N it is ap(m). Hence p is A-linear. a

COROLLARY 4.12 (THE FIRST ISMORPHISM THEOREM) An A-linear map ¢: M — N which

- is sutjective, induces an isomorphism M/ ker ¢ ~ N.
M —— M/ ker ¢

! Proor: By the universal property ¢ factors through a map : M/ ker¢ — N. This is
surjective since ¢ is, and injective since it kills the kernel. (That a class [x] goes to zero,
implies that ¢(x) = 0, hence x € ker ¢). a
(4.13) One easily establishes the two following results. The analogue assertions for

‘ ~
=
( +
N
abelian groups are well known, and the proofs persist being valid for modules as
well. The proofs are left as exercises; for inspiration either recall the proofs for abelian
groups (these proofs go through mutatis mutandis) or take a look at the corresponding
statements for ideals.

PROPOSITION 4.14 Let 7t: M — M/ N be the quotient map. The “inverse-image-map”
1 T(M/N) - (M)

that sends and ideal a to 77~ (a), is a one-to-one correspondence between submodules of M
containing N and submodules of M/ N. It respect inclusions, arbitrary intersections and
arbitrary sums.
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Proo¥F: The proof is similar to the proof of Proposition 2.19 on page 36 and is left to the
students as an exercise. Q

PROPOSITION 4.15 (THE SECOND ISOMORPHISM THEOREM) Assume N and N’ are two sub-
modules of M. There are then canonical isomorphisms where in the second one assumes that
N'cN:

i) (N+N)/N ~N/NnN,;

ii) (M/N")/(N/N') ~ M/N.

Proor: The proof is similar to the proof of the isomorphism theorem for ideals (Theo-
rem 2.21 on page 37) and is left as a DIY-proof. Q

Cokernels

(4.16) In a famous paper Alexander Grothendieck introduced axiomatically the notion
of an abelian category. The axioms reflect the main categorical properties of the module
category Mod 4. Among the requirements is that there is a zero-objects, that all hom-sets
are abelian groups and that all composition maps are bilinear (as we discussed in
Paragraph 4.4). Moreover, all maps are requested to have kernels and a cokernels, and
finally, there is an axiom which fabulously can be formulated as “the kernel of the
cokernel equals the cokernel of the kernel”.

Let us also mention that a category with a zero object whose hom-sets are abelian

groups and whose compositions are bilinear is called an additive category. When, as is
true of Mod 4, the hom-sets are A-modules and the compositions A-bilinear, it is said to
an A-linear category. And not to forget, a zero-object in a category is an objcet 0 so that
for each object C in the category, there is precisely one arrow from 0 to C (so that 0 is
an initial object) and dually, for each C there is precisely one arrow from C to 0 (and 0
is thus a final or a terminal object).
(4.17) The definition of the cokernel in a categorical vernacular must be formulated
exclusively in terms of arrows and therefore given as a universal property. The cokernel
of an A-linear map ¢: M — N is an A-linear map 71: N — coker ¢ such that To¢ =0,
and which is universal with respect to that property. By The First Isomorphism Theorem
(Theorem 4.12) the quotient N/ im ¢ fulfils that requirement, and hence serves as the
cokernel of ¢. The two stablemates kernel and cokernel are from a categorical viewpoint
dual concepts, and a definition of the kernel just in terms of arrows is as indicated with
a diagram in the margin: The kernel is an arrow :: ker ¢ — M satisfiying ¢ o1 = 0 with
the universal property that any A linear map ¢: L — N such that ¢ oip = 0, factors
through it.

PROPOSITION 4.18 Every A-module homomorphism ¢: M — N has a kernel, an image and a
cokernel.
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Direct products of
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PrROOF: As mentioned above, the quotient N/ im ¢ serves as the cokernel. The kernel is
the usual tangible subset of M consisting of the elements sent to zero. a

Examples

(4.9) In Mod 4 the fabulous axiom cited above boils down to the obvious: The kernel
of the cokernel and the cokernel of the kernel both equal the image. (If you find this
rather more cryptical than obvious, think twice.)

(4.10) The submodules aM where a is an ideal in A form a particular important class of
submodules of M. A quotient M/aM inherits a natural structure of module over the
quotient ring A/a; indeed, the product x - m between elements x € A and m € M/aM
only depends on the residue class [x] of x modulo a since (x + a)m = xm + am = xm
for any a € a. So for instance, the module M itself is in a canonical way a module over
A/ Ann M; or for that matter, over A/a for any ideal a that kills M.

(4.11) Given a ring map ¢: A — B between two rings A and B, allows one to consider
any B-module M as an A-module just by letting members a of A act on elements m € M
as ¢(a) - m. In this ways one obtains a natural functor from Modg to Mod 4. Sometimes
one sees the notation My or M4 for this module, but to avoid overdecorated symbols
letting the A-module structure be tacitly understood and simply writing M is to prefer
in most instances.

*

4.2 Direct sums and direct products

There are two important and closely related constructions one can make in the category
Mod, of A-modules, namely the direct product and the direct sum. There is no
restriction on the cardinality of the involved families, but during practical work in
algebraic geometry or number theory one mostly meets finite families, and in that case
the two constructs agree.

Direct products

(4.19) In this section we work with a collection {M;};c; of modules over the ring A. The
underlying abelian group of the the direct product | [,c; M; will be the direct product
of the abelian groups underlying the M;’s, which should be well known from earlier
courses. The elements are strings or tuples (m;);c; indexed by the set I, and the addition
is performed componentwise; i. e. (m;) + (m}) = (m; + m}). In case I is finite, say
I ={1,...,r}, an alternative notation for a tuple is (my,...,m,). The actions of A on
the different M;’s induce an action on the direct product, likewise defined component
for component: a ring element a acts like a - (m;) = (a-m;). The module axioms in
paragraph (4.1) are easily verified component by component, and we have an A-module
structure on [ [;c; M;.
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The projections 77;: [ [,c; M; — M; are A-linear simply because the module opera-
tions in the product are performed componentwise.

Direct sums

(4.20) The direct sum of the module collection {M;};c; is denoted by @,.; M; and is
defined as the submodule of the direct product consisting of strings m = (m;);c; with
all but a finite number of the m;’s vanishing.

When the index set [ is finite, requiring strings to merely have finitely many non-zero
components imposes no constraint, so in that case the direct sum and the direct product
coincide. However, when the index set I is infinite, they are certainly not isomorphic;
they are not even of the same cardinality. For instance, the direct sum of countably
many copies of Z /27 is countable (being the set of finite sequences of zeros and ones)
whereas the direct product of countably many copies of Z/2Z has the cardinality of the
continuum (the elements my be considered to be 2-adic expansions of real numbers).

Universal properties

(4.21) Both the product and the direct sum are characterised by a universal properties. It
is noticeable that these properties are dual to each other; reversing all arrows in one,
yields the other. For this reason the direct sum is frequently called the co-product in the
parlance of category theory.

We first describe the universal property the direct product has. The set-up is an
A-module N and a collection of A-linear maps ¢;: N — M;, and the outcome is that
there exists a unique A-linear map ¢: N — [ [,c; M; such that 77; 0 ¢ = ¢;. Indeed, this
amounts to the map ¢(n) = (¢;(n));c; being A-linear.

In the case of the direct sum the universal property does not involve the projections,
but rather the natural inclusions ¢;: M; — ;c; M; that send an m € M; to the string
having all entries equal to zero but the one in slot j which equals m. The given maps are
maps ¢;: M; — N, and the conclusion is that there exists a unique map ¢: P,c; M; > N
so that ¢ o1; = ¢;. The map ¢ is compelled to be defined as

¢((m)) = Y pi(mi),
i€l
and this is a legitimate definition since merely finitely many of the m;’s are non-zero.
Exercisk 4.8 Work out all the details in the above reasoning. *
(4.22) With the stage rigged as in the previous paragraphs we round off the discussion
of the universal properties of direct products and direct sums by offering equivalent
formulations in terms of the hom-modules:

PROPOSITION 4.23 There are canonical isomorphisms
i) Homa(Bje; Mi, N) ~ [ iy Homa (M;, N);
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ii) HomA(N, Hiel M,’) ~ Hiel HomA(N,Mi).

Notice that in the first isomorphism, which involves the contravariant slot, the direct
sum is transformed into a direct product. It further warrants a special comment that
when the index set is finite, the direct product coincides with the direct sum, and the
proposition may be summarized by saying that the hom-functor commutes with finite
direct sums. In the vernacular of category theory one says that it is additive in both
variables.

ExErcise 4.9 Figure out the precise definitions of the isomorphisms in Proposition 4.23
above. HInT: The key word is universal properties. e
(4.24) We shall identify each module M; with the image ¢;(M;) in D;c; M; under the
natural inclusion Lj; that is, with the submodule of elements having all entries zero
except in slot j.

Fix one of the indices, say v. Forgetting the v-th entry in string (m;)e; gives a string
(m;)ien vy indexed by the subset I\{v} of indices different from v. The operations in
direct sums being performed component-wise, this is clearly an A-linear assignment;
hence it gives an A-linear map

Dier Mi — @iel\{v} M; .

The kernel is obviously equal to M, (identified with the submodule of the direct sum
where merely the v-th entry is non-zero), and the Isomorphism Theorem (Theorem 4.12
on page 90) yields an isomorphism

(OM)/My~ D M

iel iel\{v}

The slogan is: Killing one addend of a direct sum yields the sum of the others.
Exercisk 4.10 Generalize the slogan above to any sub-collection: Let | < I be a subset.
Prove that there is a canonical isomorphism

DM/ DM~ D M,

iel jeJ iel\J

and that there is a corresponding isomorphism for direct products:

[Tm/ TTM, ~ T M.

iel je] iel\J
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Split submodules, direct sums and idempotent maps

It is well known from linear algebra that every sub-vector space is a direct summand in
the surrounding space; bases of the subspace can be extended to the entire containing
space. This stands in contrast to submodules of modules over general rings, most
of which are not direct summands. It is therefore of interest to have criteria for a
submodule to be a direct summand of the surrounding module.

(4.25) A synonym for a submodule N € M to be a direct summand, is that N lies split in
M—this of course means that there is another submodule N’ so that M ~ N @ N'— and
just as in linear algebra, the submodule N’ is called a complement to N. Equivalently,
every element m from M can be unambiguously expressed as a sum m = n + n’ with
n e N and n’ € N; or phrased differently, the two conditions Nn N’ =0and N + N’ =
M are fulfilled. With a slightly sloppy notation, one usually writes M = N@® N'.

(4.26) When we treated direct products of other rings, the notion of idempotent elements
turned out to be quite useful. This notion can be generalizations in several directions
and in various contexts, the virtue of idempotents always being that they express some
kind of “direct decomposition”. In our present context of modules over a ring A an
A-linear map €: M — M is said to be idempotent if €2 = id .

PROPOSITION 4.27 (IDEMPOTENTS AND DIRECT SUMS) Let M be an A-module.
i) If € is an idempotent endomorphism of M, then M decomposes as the direct sum
M =kere®ime;
ii) When € is an idempotent endomorphism of M, one has ime = eM and kere =
(idm —€)M;
iii) A submodule N of M lies split if and only if there is an idempotent endomorphism
€: M — M withime = N.

Note that idy; —€ is idempotent precisely when € is, so the two appear in a completely
symmetric way in the proposition.

ProoOF: Suppose to begin with that € is an idempotent endomorphism of M. We contend
that M = ime @ kere. Indeed, it holds true that x = (x — e(x)) + €(x). Obviously €(x)
lies in im € and x — €(x) lies in the kernel ker € because € is idempotent:

e(x —e(x)) = e(x) —€*(x) = e(x) —e(x) = 0.

On the other hand, ime nkere = 0 since if x = €(y) lies in kere, it holds that
0 = e(x) = €2(y) = e(y) = x. This takes care of i). As to ii), we only need to add that
if e(x) =0, clearly x — e(x) = x so that kere € (idj; —€) M, the other inclusion already
being taken care of.

Finally we attack iii) and suppose that M = N®N’. Let 1: M —> Nand 1: N > M
be respectively the projection and the inclusion map. Then ro: = idy. Puttinge =107
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N

M sN—L5M

we find

2= (tom)o(tom) =to(mot)om=1om=E¢,
and it follows readily that kere = N and ime = M. J
Examples

(4.12) A principal ideal (1) i Z, with n neither being zero nor plus-minus one, is not a
direct summand of Z since every other ideal contains multiples of #.

(4.13) Cheap but omnipresent examples of non-split submodules are ideals a in domains
A. By Paragraph 4.24 above, any complement of a would be isomorphic to A/a. If a
is a non-zero proper ideal, the quotient A/a contains non-zero elements killed by a,
which is absurd since A was assumed to be a domain.

(4.14) A ring that is not a domain, may possess non-zero proper ideals lying split. The
simples example is the direct product A = k x k of two fields. The subspaces k x (0)
and (0) x k are both ideals.

*

Exercises
(4.11) Let My and M, be two submodules of the A-module M whose intersection
vanishes; that is, M; n M = (0). Prove that M; + M, is naturally isomorphic with
the direct sum M; @ M. HiNT: Establish that any m € M; + M, can be expressed as
m = my + my with my and my unambiguously defined elements in respectively M; and
Mz.
(4.12) Let {M;}ic; be a family of submodules of the A-module N. Assume that they
comply to the following rule: For any index v € I and any finite subset ] < I not
containing v, the intersection of M, and Zje ] M; vanishes; that is, M, N Y, ] M; = (0).
Prove that ) ,.; M; is isomorphic with the direct sum @;.; M;.
(4.13) Assume that for each i € I there is given a submodule N; € M;. Prove that @,; N;
is a submodule of P,c; M; in a natural way and that there is a natural isomorphism
Dier Mi/ Ni = (Bic; Mi) / (Dier Ni)-
(4.14) Generalize Proposition 4.27 in the following way. Assume that €y,...,€, are
mutually orthogonal idempotent endomorphisms of the A-module M. Suppose they
satisfy > e; = idy. Show that putting M; = €;(M) one obtains a decomposition
M = @; M;. Prove the converse: If such a decomposition exists, exhibit a collection of
idempotents inducing it.

#*

Modules over direct products
We aim at describing all modules over a direct product A = A; x ... x A, of a finite
collection {A;}1<j<r Of rings in terms of modules over the factors A;. The description
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is based on a very natural construction: Suppose given an A;-module M; for each 1.
The additive group P, M; has a natural A-module structure; a string a = (a;);e; of
ring elements acts on a string m = (m;);e; of module elements according to the rule
a-m = (a; - m;), and once more the axioms come for free, the action being defined
component-wise. We contend that all A-modules are shaped like this.

PROPOSITION 4.28 Let A1,..., A, be rings and put A = Ay x ... x Ay. Assume that M is
an A-module. Then there are canonically defined A-submodules M; of M that are A;-modules,
and are such that M ~ @®; M;.

Proor: The point is that a decomposition of 1 as a sum of orthogonal idempotents
in A induces a decomposition of M. To be precise, let ey, ..., e, be the idempotents
e;=1(0,...,0,1,0,...,0) with the 1 located in slot i. Let a; be the kernel of the projection
A — Aj; that is, a; is the ideal generated by the idempotents ¢; other than ¢;. The
set M; = e;M is an A-submodule of M killed by a;; hence it is an A;-module. From
Y.iei = 1 we infer that M = > ; M;: It holds that x = ), xe;, and the sum is direct since
if x = ), mje;, it follows readily from the e;’s being orthogonal that m;e; = xe;; thence
the terms m;e; depend unambiguously on x. a
(4.29) Let us take closer look at the case when A is a direct product of finitely many
fields; say A =k x ... x k,. Then Proposition 4.28 above tells us that all modules over
A are shaped like direct sums V1 @...@® V, with each V; a vector space over k;.

ExErcise 4.15 Extend Proposition 4.28 to an arbitrary direct product A = [[;c; Ai:
Prove that any A module M is isomorphic to a product [ [,c; M; where each M,; is an
Aj-module unambiguously associated with M. e

4.3 Finitely generated modules

(4.30) The finitely generated modules form a particularly important class of modules.
For short, they are also called finite modules. As the name indicates, these modules
have finite sets of generators; that is, sets of elements m;, ..., m, such that each m e M
can be expressed as a linear combination m = }; a;m; of the m;’s with coefficients a;’s
from A. The generators are by no means unique, and in general there might very well
be non-trivial linear relations among them. The subcategory of the category Mod,4 of
A-modules whose objects are the finitely generated A-modules and morphisms are the
A-linear maps* will be denoted by mod 4.

ExXAMPLE 4.15 Several important and natural occurring modules are not finitely gen-

erated. One example can be the Z-module B = Z[p~!] where p is a natural num-

ber. For each non-negative integer i consider the submodule B; = Z - p~i. Because
p_i =p- p_i_l, it holds true that B; < B;;1, and the B;’s form an ascending chain

of submodules. Now, every element in B is of the form a - p~" for some 7, in other
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Proposition 4.34.

words one has B = | J; B;. Any finite set of elements from B is contained in By for
some N sufficiently large (just take N larger than all exponents of p appearing in the
denominators), so if finitely many elements generated B, it would hold true that By = B
for some N. This is obviously absurd, as p can appear to any power in the denominator.

¥

Cyclic modules

(4.31) Modules requiring only a single generator are said to be cyclic or monogenic.
Among the ideals the principal ideals are precisely the cyclic ones, and more generally,
if M is any module and m € M an element*, the submodule A-m ={a-m|ae A}is
cyclic.

Now, assume that M is a cyclic A-module and let m € M be a generator. Multiplica-
tion induces an A-linear map ¢: A — M that sends a to am, and this map is surjective
since m was chosen to be a generator. The kernel of ¢ consists by definition of those a’s
that kill m, or which amounts to the same, that kill M. Hence ker ¢ = Ann M, and by
Corollary 4.12 on page 90, we arrive at an isomorphism M ~ A/ Ann M.

LEMMA 4.32 A cyclic A-module M is isomorphic to A/ Ann M.

So the cyclic modules are up to isomorphism precisely the quotients A/a of A by ideals
a. Notice that A itself is cyclic corresponding to a = 0. The ideal a is of course uniquely
determined by the isomorphism class of M as an A-module (it equals the annihilator
Ann M of M), but different ideals may give rise to quotient that are isomorphic as rings
(but of course not as modules). For instance, the quotients C[x]/(x —a) with a € C are
all isomorphic to C.

The name cyclic is inherited from the theory of groups; the cyclic groups being those
generated by a single element; in other words, those shaped like Z/nZ or Z.

Simple modules

(4.33) The simplest modules one can envisage are the ones without other submodules
than the two all modules have—the zero submodule and the module itself—and they
are simply called simple: A non-zero* A-module M is said to be simple if it has no
non-zero proper submodules. Simple modules are cyclic, and any non-zero element
generates; indeed, if m # 0, the cyclic submodule A - m is non-zero (as m lies in it)
and hence equals M since M has no proper non-zero submodules. Lemma 4.32 above
gives that M is of the form A/ Ann M. Moreover, the annihilator ideal Ann M must be
maximal since if Ann M < a, the quotient a/ Ann M is a submodule of M which either
equals 0 or M. In the former case Ann M = g, and in the latter it holds that a = A.
Thus simple A-modules are characterized as follows:
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PROPOSITION 4.34 An A-module M is simple if and only if it is cyclic and its annihilator
Ann M is a maximal ideal; i. e. M is simple if and only if M is isomorphic to A/m for some
maximal ideal m.

Exercises
(4.16) Let N be a submodule of M. Show that if N and M/ N both are finitely generated,
then M is finitely generated as well. Give an example of modules M and N so that M
and M/ N are finitely generated but N is not.
(4.17) Let N and L be submodules of the A-module M. If N n L and N + L are finitely
generated, show that both N and L are finitely generated.
(4.18) Show that k[x, x~1] is not a finitely generated module over k[x].
(4.19) Assume that k is a field. Consider the polynomial ring k[x]| as a module over
the subring k[x?, x3]. Prove it is finitely generated by exhibiting a set of generators.
Determine the annihilator of the quotient k[x]/k[x%,x3]. What can you say about
k[x]/k[x?, xP] where p is an odd prime?
(4.20) Assume that k is a field. Consider the polynomial ring k[x] as a module over
the subring k[x,x7]. Prove it is finitely generated by exhibiting a set of generators.
Determine the annihilator of the quotient k[x]/k[x%, x°].
(4.21) Schur’s lemma. Assume that M and N are two simple A-module that are not
isomorphic. Prove that Homy (M, N) = 0. Prove that Hom4 (M, M) = A/ Ann M.

e

4.4 Bases and free modules

Just like for vector spaces one says that a set of generators {;};c; (not necessarily finite)
is a basis for M if every element from M can be written as a (finite) linear combination
of the m;’s in only one way; that is, the coefficients 4; in an expression m = ), a;m; are
unambiguously determined by m. Be aware, however, that unlike what is the case for
vector spaces, most modules do not have a basis.

ExaMPLE 4.16 The two elements x and y generate the ideal (x,y) in the polynomial ring
k[x,y], but do not form a basis since the element xy can be expressed as two different
linear combinations, namely* one has xy = x -y = y - x. And of course, x and y form a
minimal set of generators, one can not do without either, so even minimal generator
sets are not necessarily bases. The natural question then arises: Can the ideal (x,y) be
generated by one element? The answer is no! A generator would divide both x and y
which is absurd.

The gist of this example is that x and y commute, which indicates that the phe-
nomenon is inherent in commutative rings. Any set of generators for an ideal consisting
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of at least two elements can never be a basis simply because the generators commute. *
EXERCISE 4.22  Show that the property, familiar from the theory of vector spaces, that
>;aim; = 0 implies that a; = 0 is sufficient for a generating set m, . .., m, to be a basis.

Hint: Consider the difference of two equal linear combinations of the m;’s. #*

Free modules

(4.35) The lack of bases for most modules leads to a special status of those that have
one. One says that an A-module F is free if it has a basis. The reason behind the
suggestive name “free” is that one may freely prescribe values to linear map on the
basis elements—a principle that goes under the name of the Universal Mapping Principle:

PROPOSITION 4.36 (THE UNIVERSAL MAPPING PRINCIPLE) Suppose that a given A-module
F is free and has a basis {f;}ic1, and let M be another A-module. For any subset {m;};c; of M
indexed by 1, there is a unique A-linear map ¢: F — M such that ¢(f;) = m;.

Proor: Every element x € F is expressible as x = ) ;.; a;f; with coefficients a; from A,
merely finitely many of which are non-zero, and most importantly, the a;’s are uniquely
determined by x. Hence sending x to ) ,.; a;m; gives a well defined map ¢: F — M.
That this yields an A-linear map amounts to the coefficients of a linear combination
being the corresponding linear combination of the coefficients, which ensues from
coefficients being unique. a
(4.37) We return to Example 4.16 on the preceding page about the question when ideals
are free, to give a precise statement:

PROPOSITION 4.38 An ideal a in the ring A is a free A-module if and only if it is principal and
generated by a non-zero divisor.

Proor: We saw in Example 4.16 on the previous page that when a requires at least two
generators, it has no basis and therefore is not free. Nor can principal ideals generated
by a zero divisor be free since if a- f = 0 with a # 0, the relationsa- f =0 f = 0 give
two representations of 0. The other way around, if the non-zero divisor f is a generator
for g, it is a basis; indeed f being a non-zero divisor it can be cancelled from an equality
like af = bf. O
ExAaMPLE 4.17 Another kind of non-free modules ubiquitously present in algebra are the
the torsion modules; among them we find the cyclic modules of the form A/a where a is
a non-zero ideal. Since a-1 = 0-1 for any a € 4, such a module can not be free: Any
map ¢: A/a — M must have image in the submodule (0 : a); consisting of elements
killed by a which violates the Universal Mapping Principle (Proposition 4.36 above).
If the ring A is a PID, all non-zero ideals will be free modules, but of course there
will still be torsion modules. However, these are, at least among the finitely generated
modules, the ones that prohibits modules from being free, since any finitely generated
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A-module is isomorphic to a finite direct sum @; M; with the M;’s either being A or
A/ (a;) for some a; € A. This nice behaviour does not persist for modules that are not
finitely generated, as Exercise 4.27 on page 103 below shows. *
(4.39) Archetypes of free modules are the direct sums nA = A® ... ® A of n copies of
the ring A which we already met in Example 4.2 on page 4.2. They come equipped with
the so-called standard basis familiar from courses in linear algebra. The basis elements e;
are given as ¢; = (0,...,0,1,0,...0) with the one sitting in slot number i.

There is no reason to confine these considerations to direct sums of finitely many
copies of A. For any set I, the direct sum @);c; A has a standard basis {e;};c; and is a free

module; the basis element ¢; is the string with a one in slot i and zeros everywhere else.

PROPOSITION 4.40 Assume that F is a free A-module with basis {f;}ic;. Then there is an
isomorphism between F and the direct sum @P;.; A that sends each basis vector f; to the
standard basis vector e;.

Proor: By Proposition 4.36 above, we may define a map ¢: F — @,.; A by sending f;
to the standard basis vector e;; conversely, since @,c; A is free, sending e; to f; sets up a
map §: @P,c; A — F. These two maps are obviously mutual inverses. Q

COROLLARY 4.41 Any two bases of a free module have the same cardinality. Two free modules
are isomorphic if and only if they possess bases of the same cardinality.

The common cardinality of the bases for a free module is called the rank of the module.

The rank is the sole invariant of free modules; up to isomorphism it determines the
module. When the module is a vector space over a field and the rank is finite, the rank
is just the dimension of the vector space.

Proor: After Proposition 4.40 above we need merely to verify that when two direct
sums @,c; A and @je j A are isomorphic as A-module, the index sets I and ] are of the
same cardinality. This is well known from the theory of vector spaces, and we reduce
the proof to the case that A is a field, so take any maximal ideal in A and consider the
isomorphic vector spaces (D;c; A/m and @;c; A/m over A/m (isomorphic in view of
Exercise 4.13 on page 96). One has a basis of the same cardinality as I, the other one of
cardinality that of J; hence I and | are equipotent. EI

ExaMPLE 4.18 Free modules with given basis: From time to time itis convenient to operate
with free A-modules with a given set S as basis. There is no constraint on the set S, it
can be whatever one finds useful. The formal way to construct such a module, denoted
AS, is as the set of maps a: S — A with finite support; that is, the maps such that
a(s) # 0 for at most finitely many members s of S; in symbols

AS = {a: S — A | a of finite support }.
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The module structure of AS is given point-wise: (a 4 a’)(s) = a(s) + a/(s) and (a -
a)(s) = aa(s).

In AS there is a collection of function termed generalized Kronecker-&’s that constitute
a natural basis and which are in a one-to-one correspondence with the set S. For each
member s € S there is one such function és defined as

0 when s #t¢
55(1‘) =
1 whent=s.

It is a trivial matter to verify they form a basis. They generate A® because any & can be
expressed as & = Y ¢ a(s)ds, and if >} as6; = 0 is a dependence relation, one just plugs
in any f from S to find that a; = 0.

A suggestive way of denoting elements from A® is as linear combinations Y, as - s of
elements from S, which merely amounts to writing s for the function Js.

The module AS depends functorially on S. Indeed, given any map ¢: S — S'.
Because the J;’s form a basis for AS, we obtain according to the Universal Mapping
Principle for free modules, a map ¢.: AS — A5 by sending each basis element d;
to the element 547(5) of AS". In the alternative notation, the map ¢ takes the form
P (D as-5) = Ygas- ¢(s). It is pretty obvious that (o ¢d)s = s o ps when ¥ is
another map composable with ¢, so that A’ is a covariant functor from the category
Sets to the category Mod 4. *
EXERCISE 4.23 Let M be an A-module and let Fy; = AM be the free module with
elements from M as a basis. Then M is a quotient of Fy; in a canonical way: Define
a map Op: Fyy — M by sending J,, to m (in the alternative notation it takes the
hypertautological form m +— m). Show that ), is surjective and that ¢ 0 0y = Oy o P
whenever ¢: M — N is an A-linear map. e
EXERCISE 4.24 Show that a finitely generated A-module is the quotient of a finite free
module. e

Matrices and maps of free modules

Just like linear maps between two vector spaces of finite dimension, A-linear maps
between two free A-modules can be described by matrices, and the mechanism works
exactly in the same way. Be aware however, that describing maps between modules that
are not free, is substantially more complicated, if a good description at all is possible.
(4.42) The representation of a map by a matrix depends on the choice of bases for each
module. So let E and F two finitely generated and free A-module and let {e;} and {f;}
be bases for E and F respectively. When each ¢(¢;) is expressed in terms of the basis
{fi}, the coefficients in the expressions make up the matrix. If E is of rank n and F of
rank m the matrix is the m x n-matrix given* as M(¢) = (a;;) where ¢(¢;) = > ; a;;f;.
(4.43) The familiar property that compositions of maps correspond to products of
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matrices still holds true, and the verification is mutatis mutandis the same as for linear
maps between vector spaces (we leave it to students needing to fresh up their knowledge
of linear algebra); that is, if ¢ is A-linear map from F to a third free module G (equipped
with a basis), one has

M(po¢) = M(y) - M(¢).

Likewise, associating a matrix to a map persists being a linear operation in that

M(agp + B¢') = aM(p) + BM(¢"),

whenever ¢ and ¢’ are A-linear maps from E to F and « and p are two elements from
the ring A.

Exercises

The next series of exercises, which culiminates with problem 4.27, is aimed at giving an
example that countable products of free modules are not necessarily free.

(4.25) Show that in a free Z-module every element is divisible* by at most finitely
many integers.

(4.26) Show that the direct sum of countably many copies of Z is countable, whereas the
direct product of countably many copies is not (it has the cardinality of the continuum).
(4.27)  Infinite products are not free. ~ The task is to show that the direct product
P = ] [;en Z of a countable number of copies of Z is not a free Z-module. The crucial
point is to show that if P were free, the direct sum @, 5 Z would be contained in a
proper direct summand Q of P. The quotiont P/Q would then be free which is absurd
since it has infinitely divisible elements.

Aiming for a contradiction, we suppose that the product has a basis {f;}ic;. The
direct sum @, Z lies in P and has the standard basis elements e; (with a one in slot i
as sole non-zero component). Each ¢; can be developed as a finite sum ¢; = Zj ajj f] in
terms of the basis elements f; with coefficients a;; € Z.

a) Prove that I cannot be countable (cfr. Exercise 4.26).

b) Prove that there is a countable subset | < I so that the module Q generated by
the f;’s with j € | contains the direct sum @;cp Z. Conclude that Q is a proper
direct summand in P. HINT: Let j be in ] when the coefficient a;; # 0 for at least
one i. Observe that for each i it holds that 4;; # 0 only for finitely many j.

c) For any element x = (n9,1y,...) in P and any i € IN prove that the element
Y= (0,0,...,0,n;,1;,1,...) has the same image in P/Q as x.

d) Show that there are strictly increasing sequences {7} of natural numbers with
ng|ng 1 and so that a = (nq,ny,...) does not lie in Q. HINT: Q is countable.

e) Show that the image of a in P/Q is divisible by infinitely many numbers and
hence P/Q cannot be free.

*
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graded modules
(homomorfier av
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4.5 Graded modules

(4.44) Let A = @,z A; be a graded ring. A graded module over A is a module whose
underlying additive group decomposes as M = @, M; in way compatible with the
action of A on M; that is, the following condition is satisfied

AiM]‘ = Mi+j

for all i and j. Note that each homogenous component M; will be a module over Ap.
It turns out to be important to allow elements of negative degree, and as long as the
degrees are bounded away from —oo, this does not pose serious problem; we say that
M isbounded from below if M; = 0 for i << 0.
(4.45) As always, a new concept is followed by the concept of the corresponding
“morphisms” preserving the new structure. In the present case a "morphism” between
two graded A-modules M and M’ is an A-homomorphism ¢: M — M’ that respects
the grading; it sends homogeneous elements to homogenous elements of the same
degree. It is common usage to say that such a homomorphism ¢ is a homogeneous of
degree zero, or a homomorphism of graded modules, or just a map of graded modules. It may
be decomposed as a sum ¢ = >; ¢; where each ¢;: M; — M is an Ag-linear map. And
as usual, two graded modules are isomorphic if there is a homomorphism of graded
modules ¢: M — M’ that has an inverse.
(4.46) The composition of two maps of degree zero is obviously of degree zero, as is any
linear combination of two. The three identities ker ¢ = @), ker ¢;, coker ¢ = P, coker ¢;
and im ¢ = @;im ¢; are close to trivial to verify, and hence the kernels, cokernels and
imegas of maps of graded modules are graded in a canonical manner. One leisurely
verifies that these are kernels, cokernel and images also in the category of graded A-
modules; moreover the requirement that "the kernel of the cokernel equals the cokernel
of the kernel" is fulfilled (maps have images) so that GrModp is an abelian category. A
sequence in GrModp is exact if and only if it is exact in Mod A.
EXERCISE 4.28 Show that if {M;}e; is a collection of graded modules, the sum @;c; M;
and the product | [,c; M; are graded in a natural way. Show that with this grading they
are the sum and the product also in the graded category GrModa. H*

Shift operators

(4.47) There is a collection of shift operators acting on the category of graded S-modules.
For each graded module M and each integer m € Z there is graded module M(m)
associated to a graded module M. The shift do not alter the module structure of M, not
even the sets of homogeneous elements is affected, but they are given new degrees. The
new degrees are defined by setting

M(m)d = My 44-
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In other words, one declares the degree of the elements in M,, to be equal to d — m.
Any map ¢: M — N between two graded modules which is homogeneous of degree
zero, persists being so when the degrees are shifted uniformly in M and N, hence it
induces a map ¢[m|: M(m) — N(m). This means that the shifts (m) are functors from
GrModap to itself. Obviously they are exact and of course (m) o (m') = (m +m').

ExaMPLE 4.19 For instance, when m > 0, the shifted polynomial ring A(—m) has no
elements of degree d when d < m, indeed, A(m); = A;_,;, and the ground field k
sits as the graded piece of degree m. Whereas the twisted algebra A(m) has non-zero
homogeneous elements of degrees down to —m with the ground field sitting as the
piece of degree —m. *

Ry Ry Ry R3 Ry Rs Rg Ry Rg

m

4.6  Nakayama’s lemma

Nakayama’s lemma is a workhorse in commutative algebra, and is applied over and
over again. As often is the case with popular courses, it comes in quit a lot of different
flavours, and we shall present the ones most frequently met.

One way of viewing this famous result—which is the most basic and in our view
the best, and which we shall adopt as our point of departure—is as an extension of
the fundamental existence result for maximal ideals (Theorem 2.49 on page 49) to
finitely generated modules: Every non-zero finitely generated module has a maximal
proper submodule, or what amounts to the same, every non-zero finitely generated
module has a simple quotient. Indeed, if N is a submodule of M, the quotient M /N is
simple if and only if N is a maximal proper submodule (simply because submodules of
M/ N correspond to submodules of M containing N). Notice, that formulated in this
way, Nakayama’s lemma comes for free for the large an important class of Noetherian
modules (which not yet have been defined, but will be in Chapter 9).

One version of Nakayama’s lemma is best proved using a localization technique,
and is therefore postponed until after localization has been treated.

Nakayama’s lemma and simple quotients

(4.48) Here comes our first version of Nakayama’s lemma:

PROPOSITION 4.49 (NAKAYAMA’S LEMMA 1) Every finitely generated A-module M which is
non-zero, has a non-zero simple quotient. In other words, there exists a maximal ideal m and an
A-linear surjection M — A /wm. Equivalently, mM is a proper submodule of M.
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Not all modules have simple quotients; to find an example we need look no further than
to the rationals Q considered a Z-module. For any ideal a in Z It holds true that aQ = Q,
and hence there are no non-zero maps Q — Z/a. A constituting property of Noetherian
modules (which we soon come to) is that every non-empty set of submodules has a
maximal member, so in a Noetherian module maximal proper submodules exist almost
by definition.

Proo¥r: Assume first that M is cyclic. It is then of the form A/a for some proper ideal
and thus has A/m as a quotient for any maximal ideal m containing a. If M is not
cyclic, chose generators xy, ..., x; for M with n minimal and # > 2. The submodule N
generated by x,...,x, is a proper submodule of M. Consequently M/ N is non-zero
and cyclic and has a simple quotient by the first part of the proof. a

(4.50) We can not resist giving another argument for M having a maximal proper
submodule tailored to the same pattern as the proof of the Basic Existence Theorem for
ideals (Theorem 2.49 on page 49). If {M;} is an ascending chain of proper submodules
and M is finitely generated, the union | J; M; is a proper submodule; indeed, the finite
number of generators of M would all be contained in an M; for i large enough and
thence M; = M, which is not the case. Zorn’s lemma then ensures there is a maximal
proper submodule.

Nakayama classic

(4.51) To assure anyone (hopefully there are none) that finds our approach a blasphe-
mous assault on their most cherished tradition, we surely shall include Nakayama
classic; and here it comes. Recall that the Jacobson radical of A equals the intersection
of all the maximal ideals in A.

PROPOSITION 4.52 (NAKAYAMA CLASSIC) Let a be an ideal in A contained in the Jacobson rad-
ical of A. Let M be a finitely generated A-module and assume that aM = M. Then M = 0.

Proor: Assume M # 0. By Nakayama I (Proposition 4.49 above) there is a maximal
ideal m such that mM is a proper submodule, which is impossible since a € m and
aM = M by assumption. a

The by far most common situation when Nakayama'’s lemma is applied is when A is
a local ring. The Jacobson radical then equals the maximal ideal m, and, when M is
finitely generated, an equality mM = M implies that M =0 .

One may rephrase Nakayama’s lemma as follows.

PROPOSITION 4.53 (NAKAYAMA’S LEMMA II) Assume that M is a finitely generated A-module
and that a is an ideal contained in the Jacobson-radical of A. If M/aM = 0, then M = 0.
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Other formulations
(4.54) There are several other reformulations of Nakayama’s lemma, and here we offer
a few of the most frequently applied ones.

PROPOSITION 4.55 (NAKAYAMA’s LEMMA 1II) Let M is be a finitely generated A-module. As-
sume that a is an ideal contained in the Jacobson radical of A and that N a submodule of M
such that N + aM = M. Then N = M.

Proor: The quotient M/N is finitely generated since M is, and it holds true that
a-M/N = M/N because any m from M lies in aM modulo elements in N. Q

PROPOSITION 4.56 Assume that ¢: N — M is A-linear between two A-modules and that M
is finitely generated. Moreover, let a be an ideal contained in the Jacobson radical of A. If the
induced map ¢: N/aN — M/aM is surjective, then ¢ is surjective.

Proor: That ¢ is surjective means that x € M there is a y € N such that x = ¢(y) +z
with z € aM. Hence M = ¢(N) + aM, and we conclude that M = ¢(N) by the previous
proposition. 0

PROPOSITION 4.57 Assume that a € A is an ideal contained in the Jacobson-radical of A. Let
M be a finitely generated A-module and assume that {m;};c; are elements in M whose residue
classes generate M /aM. Then the m;’s generate M.

Proor: Let N be the submodule of M generated by the m;’s. The hypothesis that the
residue classes generate M/aM translates into the statement that M = N + aM, and
the proposition follows from Proposition 4.55. (W

Exercises
(4.29) Let @ be an n x n-matrix with coefficients in a local ring A and denote by ®
the matrix whose entries are the classes of the entries of ® in the residue class field
k of A. Show that if the determinant det® does not vanish, then ® is invertible.
HINT: @ - ®T = det® - I and det ® does not belong to the maximal ideal.
(4.30) Demystifying Nakayama’s lemma. Let A be a local ring with residue class field k.
Assume that ¢: E — F is an A-linear map between free modules of finite rank, and let
@ be the matrix of ¢ in some bases.
a) Show that if one of the maximal minors of ® does not vanish, one of the maximal
minors of @ is invertible in A. Conclude that ® is surjective when  is.
b) Show the classical Nakayama’s lemma for finitely presented modules over a
local ring by using the previous subproblem.
c) (Mystifying the demystification) Show Nakayama’s lemma for finitely generated
modules over a local ring by using subproblem a4). HiNT: The key word is
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"right sections” of linear maps, if you don’t prefer juggling maximal minors of

n x co-matrices!
(4.31) Let A be a local ring with residue class field k. Let ¢: E — F be a map between
finitely generated free A-modules, and suppose that the induced map ¢: E/mE —
F/mF is injective. Prove that ¢ is a split injection. HINT: Prove that at least one maximal
minor of the matrix of ¢ in some bases is invertible in A. Then the projection 7: F — E
corresponding to that minor furnishes a section.
(4.32) Let M an A-module such that mM = M for every maximal ideal m. Show that
M has the property that if one discards any finite part from a generating set one still
has a generating set.
(4.33) Let M be a finitely generated A-module and let ¢: M — M be a surjective
A-linear map. Show that ¢ is injective. Show by exhibiting examples that this is no
longer true if M is not finitely generated. HINT: Regard M as a module over the
polynomial ring A[t] with t acting on x € M as - x = ¢(x). Use the extended version
of Nakayama’s lemma with a = (t)A[t].
(4.34) Nilpotent Nakayama. This exercise is about a result related to Nakayama'’s lemma,
but of a much more trivial nature. Let A be a ring M an A-module. Assume that a is a
nilpotent ideal in A. Show that if aM = M, then M = 0.
(4.35) Graded Nakayama. Let M = @; M; be a graded module over the graded ring
R = @; R;. Assume that M_; = 0 for i sufficiently big; that is, the degrees of the non-
zero homogeneous elements from M are bounded below. Let a be a homogenous ideal
whose generators are of positive degree. Assume that aM = M and show that M = 0.
Hint: Consider the largest n so that M_,, # 0.
(4.36) Let A be ring and P a finitely generated projective module. Show that there is a
set of elements {f;} in A such that the distinguished open subsets D(f;) cover Spec A,
and such that each localized module Py, is a free module over Ay.
(4.37) Let A a ring and let ¢ be a non-trivial idempotent element. Show that the
principal ideal I = (e)A is projective, and that a direct sum @); I of a any number, finite
or not, of copies of I never can be free. HINT: Such sums are killed by 1 —e.

H*

4.7 Appendix: The determinant and the characteristic polynomial

Several notions from classical linear algebra, (and from other branches of mathematics,
for that matter) are of a universal nature. They have a meaning whatever the ground
ring is. Their basic properties are universal too; they persist being true over all rings.
The all important determinant is an examples of such a universal creature.

The classical construction of determinants generalizes word for word to A-linear
maps between free modules over any ring A, and all the fundamental properties
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continue to hold; like multiplicativity, alternation in rows and columns and the rules
for expansion along rows or columns. Moreover, the classical proofs still hold water
over general (commutative *)rings.

The classical approach to determinants is a pedestrian’s—there is also a Formula 1
way based on the so-called exterior powers. It has the disadvantage of requiring a
rather advanced machinery and being rather opaque for beginners, but has the great
advantage of being completely functorial. It also opens up for defining determinants of
endomorphisms of a wider class of modules than the free ones.

(4.58) Let C = (cij) be an n x n-matrix with entries from a ring A. Recall that the
determinant det C is defined as the sum

detC = Z sgn(0)C14(1) -+ Cro(n) (4-2)
0€ES,
where S, denotes the symmetric groups on n letters and sgn(c) is the sign of the
permutation ¢. This is formally the same as definition over a field, and all the usual
elementary properties of the determinant persist being valid; e.g. linearity in rows and
columns, sign change on rows or columns being swapped, and the expression for the
determinant developing along a row or a column.

The adjunction formula and the determinant trick
(4.59) As mentioned at the top of the section, the basic properties of the determinant
hold true over a general ring, and their classical proofs go through mutatis mutandis (the
students are encouraged to brush up their knowledge of linear algebra by rereading or,
better, reconstruction the proofs). In particular, we would like to point out the adjunction
formula

C-Cl=detC-1, (4.3)

valid for a square n x n-matrix C, where C' is the so-called cofactor-matrix of C and I
denotes the 1 x n identity matrix. The ij-th entry of CT is the sub-determinant of C with
the j-th row and i-th column struck out adjusted with the sign (—1)*/. The formula
(4.3) follows from (and is in fact equivalent to) the rules for expanding a determinant
along a row.

Contrary to the case of vector spaces it does not suffice that the determinant det C
be non-zero for C to be invertible, the determinant must be invertible in A. In that case
it ensues from (4.3) that the inverse is given as

C! = (detC).C.

(4.60) The adjunction formula immediately gives that a complex square matrix with
a non-trivial kernel has a vanishing determinant. There is a reformulation adapted to
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detC-idy4 nM
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modules of this arch-classical fact called the determinant trick (so named by Miles Reid
in his book [?]).

Let M be an A-module and C = (c;;) an n x n-matrix with entries from A. In
the same way as C induces an endomorphism of the free module nA, it induces an
endomorphism of the iterated direct sum nM; if m = (m;) € nM, we just let C - m be
the n-tuple (Z] Cijm]')l‘.

LEMMA 4.61 (THE DETERMINANT TRICK) Let C be an n x n-matrix with entries in the ring
A, and let M be an A-module. Assume that the module M has generators my, ..., my such that
C-(my,...,my) = 0. Then the determinant det C kills M.

Proor: Consider the A-linear map 1: A — nM that sends x to (x - my,...,x-my). The
hypothesis of the lemma translates into the relation C o+ = 0 (where we confuse the
matrix C with the map it induces), and citing the adjunction formula (4.3) we find

detC-1=CloCor=0.

This means that (detC-my,...,detC-m,) = detC-i(1) = 0, and hence the determinant
det C kills M as the m;’s generate M. 3

The characteristic polynomial

(4.62) An endomorphism 7 of a finitely generated free A-module E has a canonically
defined determinant. Indeed, let C and C’ be the matrices of 7 in two bases for E. If D
denotes the base-change matrix, it holds true that C' =DCD™ !, and consequently

detC’ = detD -detC-detD~! = detC,

which makes dety = detC a legitimate definition; the determinant of a matrix repre-
senting <y is independent of which basis is used.

This opens the way for the definition of the characteristic polynomial of an endomor-
phism v, namely as P, (t) = det(f-idg —7). It is an element of the polynomial ring
Alt].

For any matrix C = (c;;) with entries in a ring A and any ring homomorphism
¢: A — B welet ¢(C) = (¢(c;j)) accepting a slight ambiguity in the notation. The
canonical extension of ¢ to a map A[t] — B[t] between the polynomial rings will as
well be denoted by ¢; that is, ¢(3 a;t') = 3 ¢(a;)t'. The following lemma is an almost
trivial observation:

LEMMA 4.63 It holds true that ¢ (Pc(t)) = Py(c)(t) where ¢: A — B is any ring homomor-
phism and C is any square matrix with entries from A.
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ProoF: The determinant is a polynomial in the entries of the matrix, hence it holds true
that det¢(D) = ¢(det D) for all ring homomorphisms ¢ and all square matrices D with
entries in the source of ¢. We infer that

9(Pe(t)) = g(det(t-1—C) = det(t- 1 - ¢(C)) = Pyc(0).

The Cayley—Hamilton theorem and the generic matrix

The Cayley-Hamilton theorem is one of the subtler results from elementary linear
algebra. It seems that Frobenius was the first to give a proof in some generality, but
much earlier Cayley and Hamilton did the 2 x 2- and 3 x 3-cases, which turned out to
be sufficient for the theorem to be named after them.

(4.64) The statement involves the characteristic polynomial of a matrix square matrix
C = (cjj) is any with entries ¢;; from any (commutative) ring A. Recall that it is given
as Pc(t) = det(t- I — C) where ¢ is a variable and I the identity matrix of the same size
as C. The general Cayley—-Hamilton theorem reads as follows.

THEOREM 4.65 (GENERAL CAYLEY-HAMILTON) Let A be any (commutative) ring and C a
square matrix with entries from A. Then C satisfies its characteristic polynomial; in precise
terms, if Pc(t) = det(t - I — C) denotes the characteristic polynomial of C, then Pc(C) = 0.

The characteristic polynomial has the virtue of being canonically associated with the
matrix C, and thus it depends functorially on C, in contrast to any arbitrary polynomial
equation satisfied by C.

EXAMPLE 4.20 It might be instructive to consider the special case when A = k is a field.

If v € k" is an eigenvector of C corresponding to the eigenvalue A in k, then obviously
Pc(C)v = 0 since t — A is a factor of P (t). Therefore the Cayley—Hamilton theorem
follows whenever k" has a basis of eigenvectors of C. In particular it holds true if C has
n distinct eigenvalues; e.g. if Pc(t) has n distinct roots.

It will even suffice that for some field extension K of k, the space K" has a basis of
eigenvector for C (for instance, this will be the case if Pc(t) has distinct roots in a field
extension k). Matrices for which this holds, are said to be semi-simple. *
(4.66) There are of course mountains of proofs for such a central result in elementary
linear algebra as is the Cayley—Hamilton theorem. The proof we shall offer is very
simple. With some knowledge of rudimentary field theory and of polynomials over
UFD’s, one will find that it almost reduces to bare common sense*. Moreover, it is a low
hanging illustration of techniques—specialisation and generalisation— frequently used
in modern mathematics.
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The universal matrix
(den universelle
matrisen)

The universal n x n-matrix

(4.67) The salient point of the proof we present is that there is a universal n x n-matrix
Cyn = (xjj) with entries in a ring Ry, and it is universal in the sense that every other
n x n-matrix C = (c;;) with entries in any ring A is obtained as C = (¢(x;;)) for an
unambiguously defined ring homomorphism ¢: R, — A. There is no hocus-pocus
about this; the ring R, will simply be the polynomial ring R, = Z[x;j[1 < i,j < n]
where the x;;’s are variables double indexed as entries in a matrix, and of course, the
universal matrix will be C, = (x;;). Clearly any n x n-matrix C = (c;;) with entries
in any ring A is of the announced form (¢(x;;)); just let ¢: R, — A be defined by
the assignments x;; — ¢;j. The characteristic polynomial depends functorially on the
matrix (Lemma 4.63 on page 110) and we infer that Pc(t) = Py(c,)(t) = ¢(Pc,(t)), and
consequently it suffices to verify the Cayley-Hamilton theorem for the single matrix C;:

LEMMA 4.68 If Pc, (Cy) = 0, then Pc(C) = 0 for all n x n-matrices C.

(4.69) One may consider the following theorem as the ultimate formulation the Cayley
Hamilton theorem; anyhow, in view of the above, it implies Cayley-Hamilton as
formulated in Theorem 4.65:

THEOREM 4.70 The universal matrix Cy, is semi-simple. Hence Pc, (C,) = 0.

Proor: Let K = Q(x;j|1 < 1i,j < n) be the fraction field of R,. Aiming at an absurdity,
we assume that the characteristic polynomial P(f) = Pc,(t) has a multiple root in
some extension L of K. The ring R, is a uDF, and Exercise 3.9 on page 78 yields that
P(t) and its derivative P’(t) have a common factor Q(t) in R,[t], which is a monic
polynomial since P(t) is (the units in R, are just +1). Hence for any ¢: R, — A, the
two polynomials ¢(P(t)) and ¢(P'(t)) have the nontrivial common factor ¢(Q(t)),
but ¢(P(t)) being the characteristic polynomial of ¢(C) and ¢ (P(t)’) its derivative, it
follows that ¢(P(t)) has a multiple root. Consequently, no matrix at all can have distinct
eigenvalues, which is utterly absurd (matrices with distinct eigenvalues exist!). Hence
Cy is semi-simple. a

An epilogue

A technique that permeates modern algebraic geometry is to try to represent functors;
i. e. to find a universal object of the kind one is interested in, which dictates the behavior
of all the crowd. As illustrated above, knowing properties of a universal object can have
strong implications. That universal objects exist, is however by no means always true,
and lot of activity has gone into trying to give criteria fo existence and into coping with
situations where substitutes, almost universal object, may be found. What we did in
this sections, is very simple case indeed, but can serve as a leisurely introduction to the
formalism.
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(4.71) Consider the functor M,,: Rings — NCRings * that send a (commutative) ring A to
the ring of n x n-matrices with entries in A, and whose action on a ring homomorphism
¢ is the map that sends M = (a;;) to ¢(M) = (¢(a;;)). Since matrix products and sums
are preserved, M, takes values in NCRings. This functor is as one says, representable
and it is represented by the universal matrix, which means there is an isomorphism of
functors

HomRings(Rn/ _) = M”(_)‘

Well, it assigns ¢(M,,) to the homomorphism ¢: R, — A; and we checked it is bijective
for each A. It being functorial boils down to the obvious formula ¥(¢(M)) = (o
¢)(M); or more precisely, to the following diagram being commutative for every ring
homomorphism : A — B:

HOmRings(Rnr A) — M" (A)

w*l fp(—)

HomRings(Rnr B) — My (B)

The horizontal arrows are the ones above, and the two vertical ones acts respectively as
¢p—pogpand M — Pp(M).

(4.72) NATURAL TRANSFORMATIONS In a more general setting, if F,G: C — D are two
functors, a functorial map or a map of functors, also called a natural transformation, from F
to G is just a collection of maps 04 (i. e. arrows in D)—one for each object A in C—such
that the diagram

9
F(A) — G(A)
F(¢) lG(qﬁ)
F(B) — G(B)
B
commutes for each arrow ¢: A — B in C. And of course, a natural transformation is

called an isomorphism, or a natural equivalence as one prefers to say, if there is another
from G to F such that the two compositions equal the identity.

4.8 Appendix: Direct and inverse limits

There is no reason that the union of a collection of submodules in general should be a

submodule; no more than the union of two lines through the origin in space is a plane.

This is an additive issue (unions of submodules are obvious closed under multiplication
by ring elements) and concerns most abelian groups. In Paragraph 2.31 on page 41 we
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argued that the union of two subgroups of an abelian group, neither contained in the
other, is not a subgroup.

(4.73) There is however a natural condition that ensures the union to be a submodule.
One says that the collection is directed if for any two members there is a third containing
both; that is, for any pair M; and M; from the collection {M;}c; there should be an
index k so that M; = My and M; < M. The union | J;c; M; will then be closed under
addition (and as multiplication poses no problem will be a submodule); indeed, let x
and y be two members of the union. This means that there are indices i and j so that
x € M; and y € M;, and since the collection is directed, one may find an index k so that
M; u M; € M. Both elements x and y then lies in My, and their sum does as well. So
the sum belongs to the union. We have proven:

PROPOSITION 4.74 Let {M;}ic be a directed collection of submodules of the A-module M. Then
the union | J,c; M; is a submodule.

Direct limits
(4.75) There is a general construct called the direct limit inspired by the above reasoning
It permits us to form “the limit” of certain “directed systems” of modules. The direct
limit is a vast generalization, but under certain circumstances it resembles the "union".

As an illustration, imagine a chain of sets S; indexed by the natural numbers IN such
that each S; is a subset of the succeeding set S;; 1. They form an ascending chain which
may be displayed as

51€...C5<Si11< ...

In the traditional set theory there is no way of defining the union of the S;’s unless they
all are subsets of given set. The introduction of the direct limit of the S;’s remedies this,
and the direct limit fills the role as their union. But remember, this is just a motivating
example; the direct limit is a much more general construct and can be quite subtle. The
index set can be any ordered set (with some conditions, though) and the inclusions may
be replaced by any maps (with some compatibility conditions).

One may state the definition of the direct limit in any category, and of course, it

is expressed by way of a universal property. To fix the ideas we shall only work with
modules over a ring A. However, what we shall do is easily translated into several other
categories including Sets, Rings and Algy,.
(4.76) The key notion is that of a directed systems of modules. Such a system has two
ingredients. The first is a collection {M;};c; of modules over A. The index set I is
supposed to be a preordered set* whose ordering is directed: for any two indices i and
j there is a third larger than both; i. e. there is a k € I such that k > i and k > j. The
second ingredient is a collection of A-linear maps ¢;;: M; — M;, one for each pair (i, j)
of elements from I so that i > j, which are subjected to the following two conditions:
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3 ¢ijo ¢jx = Pix Whenever k < j < i
Q ¢ = idM,~

The system will be denoted (M;, ¢;j);. If you prefer working in a general category
C, just replace the words “A-module” with “object” and A-linear by “arrow”.  The
definition is by way of a universal property: The direct limit of the system (M;, ¢;;) is an
A-module lim M; together with a collection of A-linear maps

¢i: M; — lim M;

that satisfy ¢; o ¢;; = ¢;, and which are universal with respect to this. In other words,
for any given collection {N;};c; of A-modules and any given system of A-linear maps

P M; - N

such that ¥; - ¢;; = 9, there is a unique map 7: lim M; — N such that ¢; = ¢; o 7.
(4.77) Even though the definition of the direct limit may be formulated in any category,
whether it exists or not is quit another question. Every direct system possessing a limit,
is an exclusive quality most categories do not enjoy. However, the category of modules
is among the privileged ones.

The main ideas of the construction are quit transparent, but as most proofs of this
type it includes a tiresome list of more or less trivial verifications, whose details we
gladly skip. However, to get the mechanism of the limit under the skin, the students
are urged to do that work.

PROPOSITION 4.78 Let A be any ring. Every directed system (M;, ¢;j)1 of modules over A has
a direct limit, which is unique up to a unique isomorphism.

Proor: We begin with introducing an equivalence relation on the disjoint union [ J; M;.
Loosely phrased, two elements are to be equivalent if they become equal somewhere
out in the hierarchy of the M;’s. In precise terms, x € M; and y € M; are defined to be
equivalent when there is an index k dominating both i and j such that x and y map to
the same element in My; that is, ¢y;(x) = ¢;(y). We shall write x ~ y to indicate that x
and y are equivalent.

Obviously this relation is symmetric, since ¢;; = idy, it is reflexive, and it being
transitive ensues from the system being directed: Assume that x ~ y and y ~ z, with
x, y and z sitting in respectively M;, M; and M. This means that there are indices !
dominating i and j, and m dominating j and k so that the two equalities ¢;;(x) = ¢y;(y)
and ¢,i(y) = ¢ur(z) hold true. Because the system is directed, there is an index n
larger than both / and m, and by the first requirement above, we find

Gni(x) = P (@1i(x)) = Pu1 (D1 (¥)) = Pum (Pj(y)) = Prm Pk (2)) = Pur(2)
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and so x ~ z. The underlying set of the A-module lim M; is the quotient | J; M;/ ~ and
the maps ¢; are the ones induced by the inclusions of the M;’s in the disjoint union.

The rest of the proof consists of putting an A-module structure on lim M; and
checking the universal property. To this end, the salient observation is that any two
elements [x]| and [y] in the limit may be represented by elements x and y from the same
My; indeed, if x € M; and y in M, chose a k that dominates both i and j and replace x
and y by their images in M. Forming linear combinations is possible by the formula
a[x] + bly] = [ax + by] where the last combination is formed in any M; where both
x and y live; this is independent of the particular k used (the system is directed, and
the ¢;;’s are A-linear). The module axioms follow suit since any equality involving a
finite number of elements from the limit may be checked in an My where all involved
elements have representatives.

Finally, checking the universal property is straightforward: the obvious map from
the disjoint union [ J; M; into N induced by the ¢;’s is compatible with the equiva-
lence relation and hence passes to the quotient; that is, it gives the searched for map
n: 11_1‘)1‘1 M,‘ — N. d
(4.79) Apart from the universal property — which should be the favoured tool for
anybody working with direct limits — there are two principles one should have in
mind. Firstly, every element in lim M; is induced from an element x € M; for some
index j; that is, it is of the form ¢;(x) — in fact every finite collection of elements may
be represented by elements from a common M; — and secondly an element x € M;
maps to zero in the limit if and only if it maps to zero in an M; for some i > j.

PROPOSITION 4.80 (WORKING PRINCIPLES) With the notations above, the following two state-
ments hold true:

i) Every element in lim M; is of the form ¢;(x) for some j and some x € M;

ii) An element x € M; maps to zero in lim M; if and only if ¢;;(x) = 0 for som j > i.

Proor: Clearly every element y in | J;c; M;/ ~ is the class [x] of some x in some M;, so
that y = ¢;(x) and i) is checked. That x ~ 0, means by definition that ¢;;(x) = ¢;;(0) for
some j > i, and of course ¢;;(0) = 0 so ii) holds true. O

ExAMPLE 4.21 Let p be any non-zero integer. Consider the directed system indexed by
the natural numbers Ny for which M; = Z and ¢;;(x) = p/~ix when j > i; to give it a
name, let us denote it by (Z, p/~'). It may depicted as

p p p

z -tz Py z 7t

7 p

where the drawn maps are those shaped like ¢; 1 ; which each is multiplication by p.
The maps ¢;; are just the compositions of j — i consecutive maps from the sequence.
¢o(1) = 1; indeed, ¢;(x)po(1) = We contend that p - ¢ = 1 in lim M;.
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We contend that there is a natural isomorphism lim(Z, p/~*) ~ Z[1/p]. Indeed,
define ¢;: Z — Z[1/p) by ¢;(x) = p~'x. Then clearly ¢;; o ; = ; and so by the
universal property of direct limits there is induced a map ¢: lim(Z,p/~") — Z[1/p]
that satisfies o ¢; = ; for all i. This map is surjective: each element in Z[1/p] is
shaped like ap~ with a € Z and hence ¥([a]) = ¢¥(¢i(a)) = ¥;(a) = ap~'. And it is
injective: assume that i([a]) = 0 and chose an i so that [a] = ¢;(a). It follows that
0=1(¢i(a)) = p;(a), but then a = 0 as y; is injective. ¥

Inverse limits

Most concept in category theory has a dual counterpart, and the dual notion of a direct
limit is the inverse limit (also called the projective limit or just the limit). We suppose
given a directed set I and for each i € I an A-module M;. Moreover, for every pair i, j
from I with i < j we are given maps ¢;;: M; — M; which comply with the conditions:

3 ¢ijo Pjk = Pi
a (Pii = ldM,

The definition is by way of a universal property: the inverse limit lim M; is a module
together with maps ¢;: lim M; — M; that satisfy ¢; = ¢;j o ¢; when i < j, and which
are universal in this regard; that is to say, for any other module N together with
maps ¢;: N — M; with ¢; = ¢;; o ¢; there is a unique map 7: N — lim M; such that
Yi=¢ion.

PROPOSITION 4.81 Let A be a ring. Every directed inverse system of A-modules has an inverse
limit.

Proor: Consider the product [ [; M; and define a submodule by
L = {(x;) | x; = ¢ij(xj) for all pairs i,j withi <j },

The projections induce maps to ¢;: L — M;, and we claim that N together with those
maps constitute the inverse limit of the system. A family of maps ¢;: N — M; defines a
map 77: N — [[; M; by x — (9;(x)). When the ¢;’s satisfy the compatibility constraints
Pi = ¢ij o P; this maps takes values in L. It is clearly unique, and that gives the desired
universal property. Qa

EXAMPLE 4.22 Power series: Let A be a ring and x a variable. For each i € IN let
M; = Alx]/(x"), and if i < jlet ¢;;: M; — M; be the canonical reduction map
Alx]/(x)) — Alx]/(x'). We contend that the projective limit lim M; equals the for-
mal powers series ring A[[x]]: indeed, for each i it holds that A[[x]]/(x") = A[x]/(x")
so by the universal property of lim M;, there is map 7: A[[x]] — lim M; satisfying
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¢i(n (2 ajn)) = 2i<i ajx/, where ¢;: lim M; — M; is the canonical map. It is straight-
forward to verify that this is an isomorphism. *
EXAMPLE 4.23 p-adic integers: Let p be a prime number. The modules of the system are
M; = Z/p'Z and the maps ¢ij are just the canonical reduction maps Z/ pZ - 7Z/p'Z

that send a class [x] ; mod p/ to the class [x] pi mod p'. Tt may be illustrated by the

v/
sequence of maps

—— Z/pTZ —— Z/pZ —— ... —— Z/P*Z —— Z/pZ

where each map is the canonical reduction; i. e. ¢;1; and the other maps ¢;; from the
system are just compositions of j — i consecutive such.

The inverse limit of the system is denoted by Z, and is called the ring of p-adic
integers. ¥

Exercises
(4.38) Let A be a ring. Convince yourself that direct limits exist unconditionally in the
category Alg 4 of A-algebras.
(4.39) Show that any finite directed set has a largest element. What will a direct limit
indexed by such an ordered set be?
(4.40) Let S< A be a multiplicative system. Define a preorder on S by declaring that
t < s if there is a u € S such that s = ut. For each such pair there is a morphism
Pst: Ap — A given by s (at™") = aus".
a) Show that S is directed set under the given preorder;
b) Show that (As, P1s) is a directed system;
c) Show that there is a natural isomorphism lim As ~ ST1A.
(4.41) Let M = (M;,¢;;) and N = (N, ¢;;) be two directed systems indexed by the
same preordered set I. A morphism « from M to N is a sequence of maps «;: M; — N;
commuting with the system maps; that is, a; o ¢;; = ¥;j o a; for all pairs i and j with
i>].
a) Show that this makes the set of directed systems of A-modules indexed by I into
a category DirMod 4 ;.
b) Show that « induces a map «: lim M — lim N; so that a o ¢; = ¢; o ;, and this
this construction is functorial.
c) Show that (kera;, ¢jjlxera;) is directed system and that the y;; induce maps
$ij: cokera; — coker a; that makes (cokera;, §;;) a directed system.
d) Show that the category of directed system DirMod 4 j is an abelian category.
e) Show that the direct limit of an exact sequence in DirMod 4 | is exact.
(4.42) Let I be a directed set. A subst K< I is called cofinal if for each i € I there
is an k € K with i < k. Let (M;, ¢;;); be a directed system. Show that the restricted
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system (M, ¢y )k also is a directed system and that the two direct limits are naturally
isomorphic; i. e. one has lim_ M; ~ lim, M.
(4.43) Let p be a prime. For i,j € N let M; = Fp[x] and let ¢;; be the map given by
¢ij(a) = ali=i)P. Show that this is a directed system, and that the limit is isomorphic to
IFp[x!/P].
(4.44) Consider the set IN of natural numbers equipped with the divisibility order;
that is, i > j if and only if j|i. Prove that this order makes IN a directed set. Consider
the system (M;, ¢;j) indexed by N where M; = Z for all i, and ¢;j(a) = ij~'a when j]i.
Check that this is a directed system and show that its limit is isomorphic to the field Q
of rational numbers.
(4.45) Let A is pID with fraction field K and let p € A be an irreducible element.
Consider the directed system (A, p/~) indexed by N. Show that lim(A, p/~") = A[1/p].
Consider the system (A/p'A, ¥ij) where ;; is the natural inclusion ¢;;: A/ piA —
A/p™t1A that sends x to px. Show that lim(A/p;A, §;;) is isomorphic to A[1/p]/ A.

*
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Lecture 5

A touch of homological algebra

One of the founders of homological algebra, Saunders Mac Lane, once referred to the
subject as "General abstract nonsense", a term that many may find offensive. However, it
has no pejorative connotation, but is rather a light-hearted way to warn the readers that
arguments are of a very abstract nature far from the specific context—often formulated
in the vernacular of homological algebra or category theory. Notions or arguments
deserving this honorary title are ubiquitous; they are found all over mathematics—hence
their general nature and importance.

We shall in the present chapter lightly touch upon the important notion of a complex,
but most of the chapter will be about the special case of short exact sequences. Playing
with short exact sequences is a formal pathfinders game, and before seeing it applied
and experiencing the force of the method, one may find the nickname "General abstract
nonsense" appropriate.

5.1 Exact sequences

Let ¢ and ¢ be two composable A-linear maps and display them as a sequence

M—2N—tp

This sequence is said two be exact if keryp = im 1, which in particular implies that
Y o¢ = 0. It frequently happens that such a sequence is part of a longer sequence of
maps, extending to the left or to the right, and the extended sequence is then said to
be exact at N as well. If the composition of any two consecutive maps in the extended
sequence equals zero, the sequence is called a complex; we shall come back to those later
in the chapter. A sequence exact at all places, is simply said to be exact.

(5.1) Two special cases warrant mentioning; the first being when M = 0:

0— N1

Exact sequences
(eksakte folger)

Complex (kompleks)
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Short exact sequences
(korteksakte folger)

The image of the zero map being the zero submodule (0), exactness boils down to ¢
being injective. Similarly, when L = 0, the sequence is shaped like

M2 N0

and it is exact if and only if ¢ is surjective.

ExaMPLE 5.1 Every A-linear map a: M — N lives in the exact sequence

0 kera M N cokerx —— 0.

Short exact sequences
By far the most often met exact sequences, are the so-called short exact sequences; they
are the easiest to handle and a long exact sequences can be split into a sequence of short
ones.

They are a valuable tool for several purposes; for instance, when one tries to study a
module by breaking it down into smaller (and presumptive simpler) pieces.
(5.2) A three-term sequence (or a five-term sequence if you count the zeros)

0 MMy 0 (5.1)

is called a short exact sequence when it is exact. This means that « is injective, that
surjective and that im « = ker . Of course, the term “short” in the name implies there
are long exact sequence as well, and indeed there are, as we shall see later on.

It ensues from the First Isomorphism Theorem (Corollary 4.12 on page 9o) that there
is a unique isomorphism 6: M” ~ M/a(M’) shaped in a way that  corresponds to the
quotient map. In other words, 6 enters into the following commutative diagram

0 M —* s M d M 0

"‘|M'J( J{G (5.2)

0—— aM) — M —— M/a(M') —— 0

where the maps in the bottom row are respectively the quotient map and the inclusion
of a(M’) into M. In short, up to isomorphisms all short exact sequence appear as

0 N M M/N — 0,

where N € M is a submodule, and the two maps are respectively the inclusion and the
quotient map.
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Examples

(5.2) Direct sums: The direct sum M @® N of two A-modules fits naturally into the short
exact sequence

00— N— NeM — M —— 0 (5.3)

where the left-hand map is the natural inclusion sending x to (x,0) and the one to the
right is the projection onto M, which maps (x,y) to y. In particular, if N and N’ are two
submodules of a module M, then there is a short exact sequence

00— NAaN L3 NeN 25 N+ N — 0

where ¢ is the “diagonal inclusion map” ((x) = (x,x) and o(x,y) = x —y.
(5.3) A Chinese squence: The Chinese Remainder Theorem (Theorem 2.72 on page 57) for
two ideals may be generalized by saying that the sequence

00— anb — A —— A/a®A/b —— A/a+b —— 0 (5.4)

is exact where the two maps in the middle are given by the assignments x — ([x]q, [X]s)
and ([x]q, [V]6) — [*]a+b — [V]a+s. Having four non-zero terms it is to long to be called
short exact, but it may be obtained by splicing together the two short exact sequences

0——anb —— A —— A/anb —— 0

and
00— A/anb —— A/a®A/b —— A/a+b —— 0.

Exercises
(5.1) Let Abea UFD and x and y two elements. Let a be the ideal a = (x,y). Show
that the sequence

00— A—t 5 AdA "5 a——0

where ((a) = (ya, —xa) and 7t(a,b) = ax + by, is exact if and only if x and y are without
common factors.

(5.2) Let p be prime. Show that for every pair of natural numbers n and m there is a
short exact sequence of abelian groups

0——Z/p"Z2 ——Z/p"™"Z —— Z/p"Z ——0.

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193

123



124 A TOUCH OF HOMOLOGICAL ALGEBRA

Split exact sequences
(Splitteksakte folger)

Right amd left sections
(hoyre- 0og
venstreseksjoner)

7]

M%N

S

N%M

(5.3) Verify that the two maps defined in the Example 5.3 above are well defined and
that the sequence is exact. Deduce the Chinese Remainder Theorem from it.
(5.4) Write down a “Chinese sequence” involving three ideals that generalizes the
sequence (5.4) above. Prove it is exact and deduce the Chinese Remainder Theorem for
three ideals. HINT: The sequence will have six non-zero terms.

*

Split exact sequences
Some short exact sequence stand out from all the crowd, to wit, the so-called split exact
sequences. A short exact sequence

0 MMM 0. (5.5)

is split exact when being isomorphic to the standard sequence (5.3) above. This not only
requires that M be isomorphic to the direct sum M’ ® M”, but the somehow stronger
requirement that there be an isomorphism inducing the identity on M’ and pairing
with the projection, must be met: that is, the isomorphism must fit into the following
commutative diagram

0 M —L M M 0 (5.6)

| ]

0O—M —MoeM' —M'——0,

where the maps in the bottom sequence are the projection and the inclusion.

(5.3) Of course, all sequences are not split exact, and even if two short exact sequences
have the same two extreme modules, the middle modules need not be isomorphic. The
easiest example is found among finite abelian groups: Both Z/p*Z and Z/pZ ® Z./ pZ
appear in the midst of short exact sequences with both extreme modules being Z/pZ.
In general, it is an unsurmountable challenge to classify all possible middle modules
given the two extreme ones.

(5.4) There is a nice criterion for a short exact sequence to be split involving only one of
the maps « or B; to formulate it we need two new concepts. Let yv: M — N be A-linear.
An A-linear map o: N — M is said to be a right section for v if y oo = idy, and it is
called a left section if 0 oy = idp;. A map having a right section will be surjective and
one with a left section will be injective.

PROPOSITION 5.5 (SPLITTING CRITERION) Let the short exact sequence

0 MM P 0
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of A-modules be given. Then the following three statements are equivalent:
i) The sequence is split;
ii) The map & has a left section;
iii) The map B has a right section.

PROOF: i) = ii) and i) = iii): If M = M’ @ M”, the canonical inclusion of M” into M
is a right section for the projection onto M”, and dually, the projection onto M’ is a left
section for the inclusion of M’ into M.

iii) = i): Let ¢ be a right section of § so that f oo = idy. It is good practise (as
explained in Proposition 4.27 on page 95) to search for idempotents when trying to
decomposing modules into direct sums, and in the present case € = ¢ o § is one:

(cop)o(cop)=0co(por)op=0op

since Bo o =idy. One has (M) = o(M”) and (idy; —€)M = a(M’), which yields the
decomposition

M =e(M)®idpy —eM = a(M') @ c(M").
Mapping x — (a1 (x —e(x)), B(e(x))) gives an isomorphism v: M ~ M’ @ M” render-
ing the following diagram commutative

0 M M M’ 0
H

s H

0— M —» MeM — M — 0,

where the upper short exact sequence is the standard “direct sum sequence”.
ii) = i): Let T be a left section of « so that Toa = idy. The idempotent endomorphism
of M giving rise to the decompostion is in this case € = a« o T; indeed, € is idempotent:
one finds

€= (voT)o(aoT) =ao(Toa)oT =aoidyy oT =e.
It follows that M decomposes as M = eM @ (idpy; —€) M, and one verifies that a(M') =

€M (obvious) and that  maps (idy —€)M isomorphically onto M”. Tis ensues from
the equality B o (idy; —a o T) = B. Indeed, it holds that

ker B~ (idy —€)M = a(M’) n (idy —€)M = €(M) n (idps —€)M = 0

and obviously p maps (idy —€)M surjectively onto M”.

If y: M — M’ @®M”" is defined by the assignment x — (a"!(e(x)),x —e(x)), it
enters into the digram (5.6), and that ends the affair. a
EXERCISE 5.5 Ambiguity of summands. The two submodules M’ and M” of M occurring
in a decomposition M = M’ ® M” are seldom unique, e.g. just remember that a vector

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193

125



*To be entirely correct,
one should write
o+ oy where

z,iulloh’.sll%né ]

ker g in M

*To make things
simple, we contend
ourselves to module
categories. There is
however a notion of
additive categories
(where hom-sets are
abelian groups and
compositions bilinear),
and between such
categories the term
additive functor is
meaningful.

Additive functors
(additive funktorer)

umﬁz;{WfFH OF HOMOLOGICAL ALGEBRA

spaces has many different bases. And in fact, not even their isomorphism classes are
determined; but examples of that will be for later (see Examples 5.8 on page 133 and
8.19 on page 227). Neither are sections unique, and this exercise examines this issue.
Let 5: M — N be A-linear and let ¢ be a right section.

a) Show that for any A-linear y: N — ker  the map o + v is another section®;

b) Show that ¢ is unique if and only if Hom4 (N, ker ) = 0;

¢) Assume that M’ and M” are two complementary split submodules of M. Show
that if they are non-isomorphic simple modules, they are unique as submodules.

*

Additive functors and direct sums

An additive functor F: Mod4 — Modpg between the categories of modules* over two rings
A and B is one that takes sums of maps to sums of maps; thatis, F(¢ + 1) = F(¢) + F(¢)
for every pair of A-linear maps between to A-modules. Additive functors can be either
co- or contra-variant. The functors Hom4(—, N) and Homy (N, —) are prototypical
examples of such animals.

(5.6) A basic property of an additive functor is that it preserves direct sums, a property
of diverse functors that will be fundamental at several later occasions. In stead of
repeating multiple ad hoc proofs, we prefer giving one general version. Additionally,
the functors will often depend on parameters, as the ones in our applications will do,
and the notation may easily appear rather decorated; we believe it easier to grasp the
salient points when both notation and context are stripped down to bear essentials.

PROPOSITION 5.7 (ADDITIVE FUNCTORS PRESERVE DIRECT sUMS) Given rings A and B. Let
F: Mods — Modg be an additive functor. Assume that M’ and M" are submodules of an
A-module of an A-module M and that «: M — N is an A-linaere map.
i) If M decomposes as a direct sum M = M’ ® M”, then F(M) decomposes as F(M) =
F(M') ® F(M");
ii) The decomposition of F(M) is functorial in that F(a) = F(a)|pvry + F(a)[p(pmr)-

Proor: The natural way to approach direct sum decompositions is through idempotent
endomorphism. If M is an A-module and € an idempotent endomorphism of M—as
holds for any functor—F(€) is an idempotent endomorphism of F(M); indeed, € being
idempotent means that € o € = € and applying F to that equality yields F(e) o F(e) =
F(eoe) = F(e).

Now, the equality idy; = € + (idjs —€) incarnates the decomposition M = eM @
(idps —€)M, and when F is as applied to it, it becomes transformed into

idF(M) = F(idM) = P(€+ (ldM —6)) = F(G) + (ldF(M) —F(G)).
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because F is additive. Consequently F(M) decomposes into the direct sum F(M) =
F(e)F(M) @ (idp(am) —F(€)) F(M).

We proceed to verify that F(eM) = F(e)F(M), which is an essential part of the
statement that F respects direct sums. To that end consider the factorisation

€

where 7 is just the map € but considered to take values in its image e M, and ¢ denotes
the inclusion, and as € is idempotent, 7t ot = id.ps. Applying F to (5.7) yields

E(e)

/_\
F(M) o F(eM) —5 F(M) (E(5.7))
From this ensues that F(:) maps F(eM) onto F(e)F(M), but since mwo 1 = idepy, it
holds true that F(7r) o F(1) = idp(ep so that F(:) is an injection, and hence F(eM) =
F(e)F(M). We have proven the first assertion using an idempotent € such that M’ = eM
and M” = (idy —e) M.
What is left to verify is the assertion about functoriality. Now, & decomposes as
& = a|pp + a|pw and since F is additive we will be through, once we have proven that
F(a)|pwmy) = F(a|pr) (by symmetry, the same will then hold for a[y), but checking
that is effortless: Applying the functor F to the following commutative diagram where
€ and [ are as above,

al

M/:€M41>M7>N

we obtain the commutative diagram

"‘|F(M’)

/_\

F(M') = eF(M) —— F(M) TN F(N),

and that’s it. D
(5.8) We round off this little excursion into category theory with a result on natural trans-
formations between additive functors, which basically asserts that such transformations
preserves direct sums. Assume that F, G: Mod4 — Modp are two additive functors and
that #: F — G is a natural transformation, which is just a collection of B-linear maps
nm: F(M) — G(M), one for each A-module M, such that ny o F(¢) = G(¢) oy for
each A-linear ¢: M — N.
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PROPOSITION 5.9 Assume that we are given two additive functors F,G: Mod 4 — Modp and
a natural transformation 1: F — G. If an A-module M decomposes as M = M’ ® M”, then

M = 1m + pe-

Proo¥: For any direct summand L’ in an A-module L and any additive functor H we
shall denote by 1;/ the inclusion of L’ in L; then H(i;/) =« H(L’), which is the essential
content of Proposition 5.7 above.

Bearing this in mind, we may decompose each x € F(M) = F(M') ® F(M") as

X = lP(M’)y + lP(M”)Z = F(lM/)]/ + F(lM//)Z,

and applying # to that relation, we obtain since # by definition is a module homomor-
phism

nm(x) = na (F(en)y) + 1 (F(enr)z) = Gle ) (y) + Glearn ) ipn (2),

which is precisely the identity we want. a
Note that the assertions remains true if one e.g. replaces one or both of the categories
by the categories mod 4 and modp of finitely generated modules (or for that matter by
any additive categories; our proofs are entirely arrow based).

Exercises

(5.6) Let F be a covariant functor Mod4 — Modpg. Let ¢: M — N be linear and assume
it has a left (respectively right) section. Show that F(¢) has a left (respectively right
section). What if F is contravariant? Give an example of a functor F and a module with
a decomposition M = N @ N’ such that F(M) is not isomorphic to F(N) & F(N').
(5.7) Additive functors do not necessarily commute with infinite direct sums. Prove
that Homz(PjenZ,Z) = | |;eny Homz(Z,Z) = [[;en Z. Prove that [ ;o Z is not
isomorphic to @;cp Z. HINT: For the first question go back up to Proposition 4.23 on
page 93; for the second verify that the two abelian groups are of different cardinalities,
or resort to Exercise 4.27 on page 103.

(5.8) Short exact sequences which are not split, may cease bing exact when exposed
to an additive functor. Describe the resulting sequence when one applies the functor
Homy (Z/pZ, —) to the standard short exact sequence

0——Z/pZ ——Z/p*Z —— 7] pZ —— 0.

What happens when Homyz (Z/p?*Z, —) is applied?
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5.2 Left exactness of hom-functors

That hom-functors are left exact, is not a very deep result—one checks it by just doing
what is needed—but is a fundamental property of hom’s.

(5.10) Suppose given a short exact sequence like (5.1) above and let N be any A-module.
Applying the covariant hom-functor Hom4 (N, —) to the sequence we obtain an induced
sequence shaped like

0 —— Hom (N, M) = Hom 4 (N, M) —5 Hom 4 (N, M") . (5.8)

The maps are simply given by composition; i. . ax$ = a o ¢ and B+¢ = fo ¢, and
since By oy = (Boa)y and Boa = 0, it holds true that B, o a,, = 0. More is true, the
sequence (5.8) will in fact be exact. There are two spots where exactness needs to be
checked. The first point is that a is injective. But a4 (¢) = ¢ o &, and since « is assumed
to be injective, oy is injective as well; indeed, a 0 ¢ = 0 means that the image im ¢ lies
in the kernel of a. Secondly, to verify that the sequence (5.8) is exact at the middle spot,
assume that o ¢ = 0 for a map ¢: N — M. Then ¢ factors through the image a(M’),
and « being injective, ¢ can be represented as a o ¢’ for a map ¢': N — M/, which is
precisely what we desire.

(5.11) In a similar vein, the contravariant version Hom,4 (—, N) applied to (5.1) yields
the sequence

0 —— Homyu (M”,N) £, Hom (M, N) — Hom, (M’,N) , (5.9)
where the arrows are reversed, and repeating mutatis mutandis the argument above one
shows that this also is an exact sequence.
(5.12) It is common usage to refer to the phenomena described above as saying that
Homy (N, —) and Homy (—, N) are left exact functors. The two functors Hom (N, —)
and Homy (—, N) are however, seldom exact functors in the sense that they take short
exact sequences to short exact sequences. There are crowds of examples that S, and a*
are not surjective.

A large part of homological algebra was developed just to describe the "missing
cokernels" coker B, and cokera*. In general, the answer to this challenge is that the two
sequences can be extended ad infinitum to the right to yield long exact sequences which
involve so-called Ext-modules. These modules depend only on the modules involved,
not on the maps in the original short exact sequence, and of course, they depend on N
as well. However, the maps in the long exact sequence depend on the entire short exact
sequence. In some good cases the Ext-modules can be computed and the long exact
sequences be controlled.
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Right exact functors
(hoyreeksakte
funktorer)

(5.13) There is of course the symmetric notion of right exact functors, with the lack of
exactness appearing at the left end of a sequence. The tensor product, which shortly
will be introduced, will be of this kind.

One meets these semi exact functors in a variety of contexts and defined in different
abelian categories. The modules—or one should rather say objects— involved in long
exact sequences associated with short exact ones, depend functorially on the objects
and are the famous derived functors. Most cohomology theories in the universe can be
constructed like this.

(5.14) In paragraph 5.10 above we proved the "only-if-part" of the following proposition
(although we worked with short exact sequences like in (5.1), we never used that  was
surjective).

PROPOSITION 5.15 (LEFT EXACTNESS 1) Let the sequence

0 MM (5.10)

be given and assume that o a = 0. The sequence is exact if and only if for all A-modules N
the sequence

0 —— Homyu (N, M') —— Homy (N, M) —— Homy (N, M”) (5.11)
is exact.

Proor: To attack the remaining "if-part” assume that (5.11) is exact for all A-modules N.
If & is not injective, take N = ker a, which is non-zero, and let ¢ be the inclusion of ker «
in M’. Then a o1 = 0, but ¢ is non-zero so a, is not injective.

In a similar vein, if the image im« is strictly smaller than the kernel ker 3, take
N = ker B and consider the inclusion map ¢ of N in M. By choice it holds that o1 =0,
but : cannot factor though « since im « is strictly contained in im 1. a
(5.16) There is also an assertion dual to the one of Proposition 5.15 above. The proofs
of the two being quit similar, we leave all the checking to the zealous students; it is a
good training for these diagram-arguments. The assertion reads as follows:

PROPOSITION 5.17 (LEFT EXACTNESS 1I) Let the sequence

B

M 5 M M" 0 (5.12)

be given and assume that B oa = 0. The sequence is exact if and only if for all A-modules N
the sequence

0 —— Homy(M/,N) —— Homy(M,N) —— Homy(M”, N) (5.13)

is exact.
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ExAMPLE 5.4 As alluded to in Paragraph 5.12 above, even if the map f is surjective, the
induced map B4 will in most cases not be surjective. The simples examples are the
short exact sequences of abelian groups

p

0 AR 4 Z/nZ — 0, (5.14)

where the left map is multiplication* by an integer 7, and B the canonical projection. It
obviously holds true that Homz(Z/nZ,Z) = 0 and Homz(Z/nZ,Z/nZ) = Z/nZ,
so the induced sequence becomes

0 0 0 Z/nZ,

and, of course, a map 0 — Z/nZ cannot be surjective! We may as well apply the functor
Homy (—,Z/nZ) to (5.14) and obtain the sequence

0 —— Z/nZ —— Z/nZ L~ Z/nZ.

Of course, multiplication by n (upper star of multiplication by #n is multiplication by 1)
is the zero map on Z/nZ and is not surjective. *

Exercises
(5.9) Convince yourself that 54 being surjective means that any A-linear map ¢: N —
M" can be lifted to an A-linear map into M, as the diagram in the margin illustrates.

(5.10) Give the argument referred to in the previous paragraph in detail.
(5.11) In most cases the map a* will not be surjective even if « is. Convince yourself
that a* being surjective means that any map ¢: M’ — N can be extended to a map
M — N, as in the marginal diagram

e

Projective and injective modules

(5.18) In view of the two left exactness theorems two classes of modules stand out,
namely the ones such that the functor Homy (N, —) is exact and those such that
Homy(—, N) exact. The former are called projective modules (they are ubiquitous in
commutative algebra, and we shall come back to them) and the latter are the so-called
injective modules.

(5.19) The universal mapping property that free modules enjoy, entails that they are
projective, but they are by no means the only ones. When the base ring has non-trivial
idempotents, there are cheap examples, but finding examples over say integral domains
requires some effort. Some classes of rings, as the local rings or the polynomial rings,
enjoy the property that all projective modules are free. Over local rings this is an easy
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M0

consequence of Nakayma’s lemma when the modules are finitely generated and a
result of Kaplansky’s in general, but over polynomial rings it is a deep theorem, first
conjectured by Jean Pierre Serre in 1955 and proved by Daniel Quillen and Andrei
Suslin about twenty years later.

PROPOSITION 5.20 If F is a free A-module, the functor Hom 4 (F, —) is exact; in other words,
free modules are projective.

Proor: It suffices to prove that B is surjective when f: M — M” is surjective. Suppose
that ¢: F — M” is given, and let {f;};c; be a basis for F. Since f is surjective, there are
elements {m;};c; such that (m;) = ¢(f;). By the Universal Mapping Property of free
modules (on page 100), there is a map ¢: F — M with ¢(f;) = m;. Then o = ¢ since
B(y(fi)) = B(m;) = ¢(fi), and two maps agreeing on a basis are equal. a
(5.21) Although projective modules are not necessarily free, they are closely related to
free modules; they will always be a direct summand in a free module:

PROPOSITION 5.22 An A-module is projective if and only if it is a direct summand in a free
module.

Proor: Let P be the module, and assume to begin with that P is projective. Let {p;}ic]
be a generating set for P (finite or not, we do not care about the size) and consider the

exact sequence

0*>K*>(—B,EIAL>P*>O,

where a string (a;);e; is sent to > ; a;p; (which is meaningful since merely finitely many
of the g;’s are non-zero). Because the p;’s generate P, this map is surjective. The point
is that because P is projective, the identity map idp: P — P can be lifted to a map
0: P — @;c; A. This means that ¢ o 0 = idp, and the lifting o is a right section of ¢.
Hence P lies split in @@,.; A by the Splitting Criterion on page 124.

To prove the converse implication let : M — M” be a surjection and let ¢: P — M”
be given. Assume further that P’ is a complement to P in a free module; that is, P& P’
is free. Consider the map P@® P’ — M” sending a pair (x,y) to ¢(x). This map can be
lifted as P @ P’ is free, and restricting the lifted map to P yields a lifting of ¢. a

Examples

(5.5) A projective module which is not free: Let A = Z/27Z x Z/2Z and consider M =
Z/27Z x (0) which has a natural structure as an A-module. Then M is projective, since
if N = (0)®Z/2Z, we have M@® N ~ A (as A-modules!). However, M is clearly not
free, since any free A-module M ~ Al must have at least four elements!

(5.6) Another projective module which is not free: A similar example can be constructed
over the ring A = [[2;Z. We may regard M = Z as an A-module embedding it
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as the 0-th component Z < [[;2;Z. Then Z is projective, since Z@® (]2 Z) ~ A.
However, note that the ring A is uncountable. In particular, this means that Z certainly
is not isomorphic to any module of the form A!. The same argument shows that the
A-module M = P2, Z is projective, but not free.

(5.7) More non-free projective modules: The modules emerging in the previous examples
are of a similar character; they are instances of modules arising when the ring A is a
non-trivial direct product A = A1 x Aj,. The factor A1 x {0} (or {0} x Aj) lies split in A
as an A-module, and consequently it is projective. However, is not free as the product
is non-trivial. One way to see this is to consider the annihilator ideal (0 : A; x {0}).
For free modules the annihilator ideal is the zero ideal (indeed, if e is a basis element,
xe = 0 implies x = 0.), where as for A; x {0} it equals {0} x A, which is non-zero since
the product is non-trivial.

(5.8) More sophisticated examples: There is a large and all important class of rings called
Dedekind rings in which all ideals are projective. A rich source of Dedekinds rings
are the coordinate rings of the so-called affine regular curves in algebraic geometry,
and the core activity of algebraic number theory is the study of Dedekind rings which
are finitely generated Z-modules. The quadratic extensions Z[/n| and Z[(1 + /n)/2]
according to n being congruent to one modulo 4 or not, are examples of such*. And
in most of these rings you will find ideals that are not principal; that is, ideals that are
not free modules. We might as well have given examples from geometry, and for the
geometers we offer a treatment of the ideals in the coordinate ring of an affine elliptic
curve at a later occasion (Exercise 8.19 on page 227). The two cases are strikingly similar,
and of course, there is a common theory behind—but that will also be for later.

For the moment we content ourself with giving just one illustrating example, the
ideal @ = (2,1 +i1/5) in the ring A = Z[i\/5]. We shall give an explicit construction
of a as a direct summand in the free module A @® A. Hence it will be projective, but
not being principal it is not free. In fact, we shall prove that a®a ~ A® A, which
also serves as an example of two isomorphic direct sums whose summands are not
isomorphic. To ease the notation, we let z =1+ i,/5; then Z =1 —i,/5 and zZ = 6.

The free module A @ A has the usual basis ¢; = (1,0) and e; = (0,1). The gist of
the construction is the map

a: ADA—-aCA

defined by the assignments e; — 2 and e, — z. We shall identify a submodule M inside
A @ A that « maps isomorphically onto a and thereby proving that a lies split in A @ A.
The submodule M in question is generated by the two elements a; = —2e¢; + Ze; and
ap, = —zeq + 3ep.
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We begin with checking that the restriction |y is surjective. This ensues from the
very definition of « as the following little calculations show:

a(m)=-2-24z2z2=—-44+6=2  a(ap)=-2z-243-z=z

To prove that « is injective on M, pick an element a = xa; + ya in M that maps to
zero, which means that 2x 4+ zy = 0 in A. Now, one has

xay +yay = —(2x +zy)er + (Zx + 3y)er = (2x + 3y)e,

and since 0 = Z(2x + zy) = 2Zx + zzy = 2(2x + 3y), it follows that a = 0.

This shows that A® A ~ a® ker «, but to see that A D A ~ a® a some further effort
is required. Since a = (2,z) = (2,Z), the twins z and Z enter symmetrically into the
picture, so swapping z and Z and e; and e;, we may as well apply what we just did to
the submodule N € A @ A generated by —zej + 2e; and —3eq + Zep, and conclude that
N lies split and is isomorphic to a. But one directly verifies that N < ker a, and since
both lie split, they must coincide.

*

Exercises
(5.12) Let n be a natural number. Decide for which natural numbers m the resulting
sequence is exact when the functor Homy(—,Z/mZ) is applied to the short exact
sequence

0 AR, Z/nZ —0.

(5.13) Multiplicativity of the characteristic polynomial. ~Assume given a commutative
diagram of A-modules

0 E F G 0
ol b
0 E F G 0

where the rows are exact and the involved modules are free of finite rank. Show
the equality Py(t) = Py(t) - Ps(t). Conclude that det¢ = det -dety and that tr¢ =
tr + tr . Hint: Exhibit a basis for F in which the matrix of ¢ has an appropriate block
decomposition (as in the margin).

(5.14) Consider the exact sequence of finite abelian groups

0 A B C 0.

Show that #B = #A - #C.
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5.3 Snakes and alike

(5.23) An all important feature in homological algebra are the so-called connecting maps
which relate homology modules of complexes in various ways. A simple but very useful
instance of this feature is described in the Snake Lemma. The name is of “bourbakistic
origin”, and mnemotechnical efficient. See the next section below for the reason behind
the name.

LEMMA 5.24 (THE SNAKE LEMMA) Given a diagram

M, ¢ M, $2 Ms 0
ltxl laz 063l (515)
0 N LT Na P2 N3

where the rows are exact and the squares are commutative. Then there exists a map 6: ker ag —
coker wq rendering the following sequence exact

5
ker ap ker ag coker w; —— coker ay, (5.16)

where the two unmarked maps respectively are the ones induced by and ¢, and ;.

Proor: The proof of the Snake Lemma is an example of a sport called diagram chasing,
which when homological algebra arose, was extensively practised among homological
algebraists. We have two missions to complete; firstly, the map é must be constructed,
and secondly, we must verify that the sequence (5.16) is exact.

We begin with the first and most interesting task. A short and dirty mnemotechnical
definition of ¢ is 1, Loryo ¢y ! which of course is meaningless as it stands since neither
¢ nor P is invertible, but it gives a hint of how to construct 4. For each x € ker aj it
holds true, with a liberal interpretation of the inverses, that 6(x) = [¢; Haa (1 (x)))],
where [y] designates the class in coker a; of an element y € Nj.

After this heuristics, the fun is starting: Pick an element x € M3 so that a3(x) =0
and lift it to an element y in M; that is, pick an element y € M, with ¢,(y) = x. The
rightmost square of (5.15) being commutative, we infer that ¢, (a2 (y)) = 0; the bottom
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line of (5.15) being exact, there is thence a z in Ny with 91 (z) = a2(y). And that is it;
the image of z in coker a; is the wanted guy 6(x).

We made a choice on the way—the choice of a lift of x to My—and for the definition
of ¢ to be legitimate, the image of the trapped z in coker #; must be independent of that
choice. So assume that ' is another element of M, that maps to x; then we may write
Yy =y + w with ¢ (w) = 0. Since the top line of (5.15) is exact, it holds that w = ¢ (u)
for some 1, and we find

w(y') = az2(y) + a2 (p1(w)) = az(y) + g1 (ar(u))

Luckily, ¢ is injective (the bottom line of (5.15) is exact), so if z/ € Nj is such that
$1(z') =y one has
7 =z+ai(u),

and finally, this means the images of z and z’ in coker a; agree, and ¢ is well defined!
The big game has been snared, and it remains only to check exactness of (5.16):
We shall do half of the job and check exactness at ker a3, letting the zealous students
have the fun of checking the other half. So assume that §(x) = 0. This means that
z = a1(v) for some v € My; hence ax(y) = P1(z) = ¢1(21(v)) = a2(¢1(v)). It follows
that y = ¢ (v) + t with t € ker ap and consequently x = ¢ (y) = ¢2(t), which is what
we need. a

Why snake?

(5.25) The reason for the name “Snake Lemma” is apparent when one considers the
diagram below. There the map é connecting ker a3 to coker @; we constructed in the
Snake Lemma, zig-zags like a green snake through the diagram.

keroy —— keray —— kerocg,)

My M, M3 0
a1 a a3
0 N, N, N3

coker ®y — coker apy — cokerag

The Snake Lemma is frequently applied in situations where the map ¢;: M; — M,
is injective, and the map ¢,: Np — Nj is surjective so that the diagram we depart from
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is shaped like

0 M, =2 M, 2 M, 0
lﬂl lﬂéz txsl (5.17)
0 N No = N 0

Such a diagram induces two three term exact sequences, one formed by the kernels of
the &;’s and one by their cokernels, and the point is that the snake map J connects these
two sequences. In other words, we have a six term exact sequence

0 — kera; —— kerap — kerag
(5.18)

coker a; — coker wy — cokeraz — 0.

LEMMA 5.26 (SNAKE LEMMA II) Assume given a commutative diagram with exact row as in
(5.17). Then the six term sequence (5.18) above is exact.

Proor: The sequence is trivially exact at the two extreme slots kera; and cokeras,
and that the snake-part is exact, is just the Snake Lemma. What remains to be done
is checking exactness at ker ay and coker ay, and this follows by two simple hunts in
the diagram. We shall check exactness at ker &y, but leave exactness at coker a; for the
students to practise diagram chasing. So assume that x € ker a; is such that ¢, (x) = 0.
Then x = ¢1(y) for some y € My, and 1 (a1(y)) = a2($1(y)) = az(x) = 0. Since ¢ is
assumed to be injective, it follows that y € ker a1, and we are through. Q

Exercises
(5.15) The five lemma 1. Use the Snake Lemma to prove the following abbreviated and
preliminary version of the five lemma. Assume given a commutative diagram

0 M, M, M; 0
Ll
0 Ny Ny N3 0

with exact rows. If two of the «;’s are isomorphisms, then the third one is as well.
(5.16) The five lemma II. Given a commutative diagram

M, M, M, M; M,
I N G
My N N, N3 Ny
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of A-modules with exact rows. Show that a; is an isomorphism whenever the four
other a;’s are.

There is a slightly stronger assertion namely that if a; and a3 are isomorphisms, «g
surjective and a4 injective, then a; is an isomorphism. Prove this. W

There is a plethora of small results like this involving diagrams of different geometric
shapes and with suggestive names like the Star Lemma and the Diamond Lemma. Once
you have grasped the essence of diagram chasing and remember the Snake Lemma,
you should be safe in that corner of the territory of homological algebra. The most
important use of connecting homomorphisms is when constructing long exact sequences
of homology associated with a complexes; but that will be for a later occasion.

In the next two exercises one may take the following statement for granted:

PROPOSITION 5.27 Assume that A is a PID and that ¢: E — E is an endomorphism of a
finitely generated free A-module E. Then ¢ lives in a commutative diagram

0 F E A 0
N
0 F E A 0

where the rows are exact and where F is free.

(5.17) Infer from the Proposition that if A = Z and ¢ has non-vanishing determinant,
it holds true that the cokernel coker ¢ is finite and that |det¢| = #coker ¢. Hint: Use
the Snake Lemma.

(5.18) In the same vein as in Exercise 5.17 above, assume that A = k[t] is the polynomial
ring over the field k and that ¢ has non-vanishing determinant. Prove that coker ¢ is
of finite dimension over k and that deg det ¢ = dim coker ¢ HiNT: Again, the snake is
the solution.

(5.19) Modules of finite presentation. One says that an A-module M is of finite presentation
if it sits in an exact sequence

A" A™ M 0

where A" and A™ are finitely generated free modules. In general this is a more
restrictive condition on a module than being finitely generated. Over Noetherian rings
however, the two are equivalent. Let N = M be a submodule. Prove that if both N and
M/ N are of finite presentation, then the same holds for M. HiNT: Establish a diagram

0 N M M/N——0
0—— AT —— A™ts AS 0
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with exact rows and all three vertical map being surjective. Then apply the Snake
Lemma and Exercise 4.16 on page 99.
e

5.4 Complexes

The consept of a complex originated in topology around the end of the 19" century,
when the topologists begun the study of so-called triangulated spaces. In is simplest
form such a space is represented as union (with some conditions) of oriented simplexes,
which are continuous images of certain standard simplices. A standard 1-simplex is
just a oriented closed interval, a 2-simplex a triangle, a 3-simplex a tetrahedron etc.

Long before complexes appeared in analysis, but without playing such a centre
stage role as they did in topology. In courses of calculus of several variable we learned
relations like curlgrad f = 0 and divcurlt = 0 for a function f and vector field T,
both defined and twice continuously differentiable in an open subset of R?, and the
operators grad, curl and div combine to make up a complex, one of those called deRham
complexes.

The definition

In traditionally topology it is customary to distinguish between chain complexes and
cochain complexes, but they are just two ways of representing the same thing, although
the roles they play in topology are different. In many modern presentations of ho-
mological algebra, this practice has for the most ceased, and one just speaks about
complexes.

(5.28) A complex (C;,d;) of A-module is a sequence of A-modules {C;};cz indexed by
Z together with a sequence {d;};cz of A-linear maps d;: C; — C;;1 subjected to the
condition that the composition of two consecutive ones be zero; that is, d;;1 od; = 0 for
all i. A complex may be displayed as

C; (@
i 4 i+1

di1 Civ2
The maps d; are called differentials, but they also obey the names boundary or coboundary*
maps. The notation C, (pronounced C-dot) for a complex is standard, the differential
being tacitly understood. The symbolic function of the dot is to indicate a placeholder
for the index.

There is another and more compact way of denoting a complex; one simply sums up
the modules and introduces the module C, = @; C;. It is a graded module A-module*
together with an A-linear endomorphism which is homogeneous of degree one and is
of square zero. The elements of each summand C; are the elements homogenous of
degree i. Summing up the d;’s gives an A-linear map d: C, — C, whose square is zero;
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Complexes
(komplekser)

*The names stem from
topology where one has
chains and chain
complexes that give
homology, cochains
and cochain complexes
that give cohomology,
and this dichotomy
persists for the
differentials; hence,
both boundary maps
and coboundary maps.

*We consider A a
graded ring by
declaring all elements
to of degree zero.
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Morphisms of
complexes (morfier
mellom komplekser)

i.e. d*> = 0. It is a homogeneous map of degree one; that is, it sends homogeneous
elements to homogeneous elements, but raises their degree by one. So to give a complex
of A-modules is equivalent to giving such a graded A-module

(5.29) A morphism, or simply a map, ¢ from one complex C. = (C;, d;) to another
D. = (D;,d!) is a sequence {i;}icz of A-linear map ;: C; — D; that complies with
the constituting condition that the ;s commute with the differentials. In other words,
$ip10d; = dj ; oy; for all i. Displayed, the map presents itself as a diagram

d; diy1
G Cit1 —— Cito
ll’zi lPi+1J{ 4’i+2l
D; 7 Dit1—— Diya

i+1

where all squares are commutative. Two composable maps of complexes, i. e. maps so
that the source of one equals the target of the other, are composed level by level, and
with this composition the complexes of A-modules form a category Cplxa (which in
fact, turns out to be abelian).

As common usage is, one says that a map ) between two complexes is an isomorphism

of complexes if it has an inverse. This amounts to each ; being an isomorphism since
then the inverses automatically commute with differentials.
(5.30) In the compact notation, a complex is a graded module equipped with a differen-
tial of degree one, and a map ¢: C. — D, between two complexes is just an A-linear
map respecting the grading and commuting with the differentials. The kernel ker ¢,
the image im ¢ and the cokernel coker ¢ of ¢ are all graded modules in a natural way
as described in Paragraph 4.46 on page 104. The kernel and the image are invariant
under the differential; indeed, if ¢(x) = 0 one has ¢(dc(x)) = dp(¢(x)) = 0 and if
y = ¢(x), it holds dp(y) = dp(y(y)) = ¢(dc(x)) =. Thus they are both complexes.
It follows that the differential dp passes to cokernel coker ¢ and consequently also
coker P is a complex. One verifies easily that ker ¢ (respectively im ¢ and coker ¢) is the
kernel (respectively the image and the cokernel) of ¢ in the category Cplx 4 of complexes.
Hence one has the notion of exact sequences of complexes; and in particular short exact
sequences, these are tailored like

0 C.“D.ﬁE. 0.

In the compact notation they are just usual short exact sequences of graded modules,
but with the maps « and B homogenous of degree zero and commuting with the
differentials—as one says, they are chain-wise exact; in each degree i, it holds that.
ker ; = imua;.
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(5.31) The direct sum C, @ D, of the two complexes has the obvious underlying
graded module C, ® D, = @;(C; @ D;) and is equipped with the differential defined
by d(x,y) = (dc(x),dp(x)). Both the two projections and the two canonical inclusions
are maps of complexes.

(5.32) There is a shift operator acting on complexes which lowers the degrees by one
and changes the sign of the differential; that is, the shifted complex C,(1) satisfies
(Ce(1))i = Ciy for all i, and the differential is given as d¢(;) = —dc. The shift also
operates on homomorphisms by the the natural rule ¢(1); = ¢; 11, and thus (1) is an
endofunctor (1): Cplxy — Cplx,4. The d-fold iterate of (1) is naturally denoted by (d).
(5.33) There is a variant of the definition of a complex with the differential decreasing
the degree by one; it displays as

Ci di ci-1 di-! Cci—2 di—2

There is of course only a notational difference between the two definitions, and one my
pass from one to the other by the conventions (C*); = (C,)_; and d' = (—1)'d_;; that is
rising (or lowering) the indices accompanied with a change of sign.

Exercises

(5.20) Lety: Co — D, be a map of complexes. Assume that each ¢; is a bijection and

call the inverse ¢;. Show that ¢;’s commute with the differentials.

(5.21) Let C, = (C;,d;) be a complex of A-modules. Let furthermore {;};cz be a

sequence of units in A Show that C, = (C;, a;d;) is a complex isomorphic to C,. In

particular if {€;};cz is a sequence of signs; that is, each €; € {1,—1}, the complexes

(Ci,d;) and (C;, €;d;) are isomorphic.

(5.22) If {C) }jej is a family of complexes of A-modules define their direct sum

(—Bje 7 C} and a direct product Hje I C} and verify that they have the approriate universal

properties in the category Cplx 4 of complexes.

(5.23) Show that the functor sending an A-module M to the complex M, whose only

non-zero term is the module M in degree zero defines an exact functor Moda — Cplx,.
e

The homology of a complex
(5.34) Since d;;1 0d; =0, it holds true that imd; < kerd;,; and one may form the i-th
homology module H;(C,) = kerd;/imd,_; of the complex. This can of course be done at
each level i, and a fundamental invariant of a complex is the so-called total homology
H.(C.), the direct sum of all the homology modules H.(C.) = P, H;(C.).

In the compact notation with C, being a graded module equipped with an en-
domorphism dc of square zero, the total homology is just given as the quotient
H.(Co) = kerdc/imdc.
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The shift operator
(skiftoperatoren)

Homology of a complex
(homologien til et
kompleks)
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Exact complexes
(ekasakte komplekser)

Ascyclic complexes
(asykliske komplekser)

The connecting
homomorphism
(sambandsmorfien)

A complex is said to be exact or acyclic if all the homology modules vanish; that is, it
is exact at every stage.

The homology is a functorial construction. A map of complexes ¢: Co — D, is
required to commute with the differentials and therefore it maps kerd¢ into ker dp;
indeed, dp(¢(x)) = ¢(dc(x)) = 0 whenever x € kerdc. Similarly ¢ sends imdp into
imdp because ¢(dc(x)) = dp(¢(x)). Thus ¢ induces an A-linear map Ho¢: H,Co —
H.D,. It as a matter of easy checking that He(¢ 0 ¢) = He¢p o Hotp, so that the total
homology and each H' are a covariant functors Cplx, — Mod 4.

Long exact sequences and exact triangles

Where there are short exact sequences there must also be long exact sequences, and
we have now come to the point when we shall, hopefully comforting any doubters,
establish this fundamental dogma on which the whole homological algebra rests: with
any short exact sequence of complexes is associated a long exact sequence in a functorial
way. The main players in this performance are the so-called connecting homomorphisms.
(5.35) A short exact sequence of complexes is just a short exact sequence of the
underlying graded modules; that is, an exact sequence shaped like

« p

0 B. C. D. 0 (5.19)

where of course « and B are morphisms belonging to the category Cplx,; that is, they are
A-linear maps homogeneous of degree zero (i. e. respect the grading) and commuting
with the differentials. Saying (5.19) being exact is to say it is exact in each degree; in
other words, each of he sequences

0 B; Ci D; 0

is exact. The long exact sequence associated with (5.19) is, well, a long sequence that is
exact at each term, and it is shaped as follows

Hon H.pB
H;B. H;,C, — H;D,

HivBe — 0 HyyCo —P s Dy ——— .

(5.20)
where the newcomer é—the maps H;x and H; are old-timers define above—is the
famous connecting homomorphism which we are about to construct. Trying to keep the
notation as simple and practical as possible we have stripped ¢ for all sub’s and super’s,
and the dependence on the sequence (5.19) is tacitly understood, as is the degree i.
The long sequence extends infinitely in both directions, but of course, if the involved
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complexes are concentrated in a certain region; for instance, in positive or negative
degrees, the long exact sequence will be confined to the same region.
Long sequences like (5.20) are cumbersome to work with, and a more compact
notation has been devised based on so-called exact triangles*, which compress the long  Exact triangles (eksakte

sequence into the compact form triangler)
H. Ho H.L\
H.B. % s H.co —f L H.D, — % L H.B.(1). HeBe ——"— H.C,
As usual, exactness means that at each module the kernel of the outbound map equals ’\ /H,g
the image of the inbound one, for instance will imé = ker H,(«). Rolling out the HJD.,
triangle, degree by degree, one gets back the long sequence (5.20).
PROPOSITION 5.36 With every short exact sequence of complexes,
N B * One may draw the
0 B. Ce D. 0 (5.21) sequence as a triangle
. . . . .. . . like the one above
is associated a connecting homomorphism 6: HeDes — HeBa (1) giving rise to an exact triangle which justifies the
(and thereby to a long exact sequence) name triangle, but
observe that it does not
Hon show that the degree of
H.B, H.C, & equals one.
‘/\ A
H.D,

The connecting homomorphism and the triangle depend functorially on the exact sequence.

Proor: One may well attack the proof with a direct assault chasing in the diagram,
but the chase was already done when proving the snake lemma. The relevant snake
diagram is the following one:

kerdc —— kerdp

B
B, —cC. D. 0
dp / ldD
0 kerdp kerdc D,
(I_I.B. —_— Hoco
Hox
0 0
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where the green snake J; is a precursor for the connecting map J. Recall the expression
51(x) = [a~1(dc(B~1(x)))] for the snake, where B~ does not stand for a genuine
map, but B~!(x) denotes any preimage for x, and [y] denotes the homology class of
an element y from B.. Homogeneous elements of D, may be lifted to homogeneous
elements of C, and as the differential d¢ is homogeneous of degree one, the snake J;
will be homogeneous of degree one too.

To see that the precursor é; passes to the quotient H, D, = kerdp/imdp and yields
the desired map J, we must verify it §; vanishes on im dp; but if x = dp(y), it holds that
dc(z) lifts x if z lifts y, and consequently &1 (x) = [a 1 (dc(B~1(x)))] = [« 'dcdc(2)] =
0. Hence the snake lemma yields the exact sequence

He o
H.co 2P ..~ 1B, % HL e

This settles the subtler portion of the exactness statement, and the missing piece, that
the part
H. Ho
H.B. % H.c. 5 B.D,

is exact, is not hard and is left to the zealous students.

Finally, we have come to the assertion that the connecting homomorphism ¢ be
functorial. A homomorphism between two exact sequences in Cplx is best digested by
drawing the diagram

0 B, —~—C, D. 0
JfPB Jch LPD
0 B .o P . p 0

where all maps are maps of complexes, and the two squares are commutative; the
connecting homomorphism being a functorial construct means that the three squares in

H,
H.B. % H.co % H.D, — %5 HLB. (1)

H-(PBJ Ho‘pCJ JH-(PD J{HOQbB(l)
/ H./S’

H.B, % Hg.c! H.D, — H,B.(1)

commute. The only challenges establishing this is to verify that the right square
commute, the two others commute by the functoriallity of Heae and H.B. By the
quasi-formula 6(x) = [~ (dc(B7'(x)))], where x represents a class in H, B., we find

¢pd(x) = [ppa" (dc (B (x)))] = [0 pc(dc (B (x)))] =
= [ Hdc(pc (B (x)))] = [« dc (B (¢p(x)))] = &' (¢p(x)),
and we are through. a
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ExAaMPLE 5.9 Koszul complexes: The so-called Koszul complexes* form a large collection
of complexes. A Koszul complex depends on finite sequences f1, ..., f; of ring elements.
The simplest ones involve merely one element f from the ring and is denoted K(f).
It is a two term complex with K; = Ky = A, (and K;(f) = 0 for all other i’s), and the

differential is just multiplication by f:

f

A A

The homology modules of K(f) that are not automatically equal to zero, are the one
in degree zero HyK(f) = A/(f)A and the one in degree one H1K(f) = (0 : f), and
they enter into the exact sequence

f

0—— (0:f) A A

A/(f)A —— 0.

When f is a regular element; i. e. a non-zero divisor, the Koszul complex K(f) provides
a free resolution of A/ (f)A.

The Koszul complex K(fi, f) on two elements f; and f, has three non-zero terms;
so, displayed it appears as

dy dl

A

2A A

0,

where the repeating zeros are not shown. The first differential is given by the formula
di(a1,a2) = fiay + frap and the second by dy(a) = (f2a, —f1a). The homology module
Hy(K(f1, f2)) equals the annihilator of the ideal (f1, f2), while Hy(K(f1, f2)) is the quo-
tient A/(f,g). The homology module Hy(K(fi, f2)) equals the submodule consisting
of pairs (ay,ay) such that fia; = fra, module those of the form (f,a, —f1a). In the case
when A is a factorial domain, Hy(K(f1, f2)) = 0 unless f1 = f, =0, and H;(K(f1, f2))
vanishes if and only if f; and f, are without common factors, and in that case, the
Koszul complex provides a free resolution of A/ (f1, f2).

The Koszul complex on three elements is slightly more involved and has four
non-zero terms
dp

d do

0 A 3A > A 0

where d; with respect to the standard basis is given by the matrix

0 f —f
-f3 0 fi
2 - O
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*The Koszul complexes
are named after
Jean-Louis Koszul who
introduced them in the
study of Lie algebras;
and it seems, however,
that Adolf Hurwitz
about 50 years before
applied several
particular cases in
algebraic geometry, and
some cases appeared
already in Hilbert’s
famous paper xxxx.

Jean-Louis Koszul
(1921 2018)

French mathematician

Adolf Hurwitz
(1859——1919)

German mathematician
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where as the two other maps, d, and dj, have matrices

fi
(f1, f2, f3) and | fo
f3

respectively. For general n the Koszul complexes become much more involved and are
best described by the use of exterior powers of maps and modules. *
EXERCISE 5.24 Assume that A is a factorial domain and that f and g are two non-zero
elements. Show that homology H;K(f, g) of the Kozul complex is monic submodule of
2A generated by the element (gc~!, —fc~!) where c = gcd(f, g). *

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



Lecture 6

Tensor products

The term “tensor” appeared for the first time with a meaning resembling the current
one in 1898. The German physicists Woldemar Voigt used the word in a paper about
crystals. Tensors are these days extensively used in physics, and may be the most
prominent example is the so-called “stress-energy-tensor” of Einstein. It governs the
general theory of relativity and thereby our lives in the (very) large!

A slightly less influential occurrence took place in 1938 when the American math-
ematician Hassler Whitney when working on the universal coefficient theorem in
algebraic topology introduced the tensor product of two abelian groups. Certain iso-
lated cases had been known prior to Whitney’s work, but Whitneys construct was
general, and it is the one we shall give (although subsequently polished by several
mathematicians, in particular Nicolas Bourbaki, and generalized to modules). How far
apart stress in crystals and the universal coefficient theorem may appear, the concept of
tensors is basically the same—the key word being bilinearity.

6.1 Introducing the tensor product

First of all, let us recall what a bilinear map M x N — L is, where M, N and L are three
modules over a ring A.

It is simply what the name says, a map  which is linear in each of the two variables;
that is, when one of the variables is kept fixed, it dependents linearly on the other. For
instance, when the second variable is kept constant, it holds true that

B(ax + by, z) = aB(x,z) + bB(y,z),

where a and b belong to the ring A and x and y are elements in M (and ditto when the
first variable is fixed). Frequently, when several rings are around, one says A-bilinear to
be reminded which ring is considered the base ring.

A typical example from the world of vector spaces over a field k, would be a scalar
product on a vector space V, and within the realm of commutative algebra, the products

Woldemar Voigt
(1850-1919)
German physicist
Bilinear maps
(bilineaere
avbildninger)

Hassler Whitney
(1907-1989)

American

mathematician
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of an A-algebra B is a good example; the multiplication map (a,b) — ab is an A-bilinear

map B x B — B.
Multilinear maps (6.1) There is naturally also the notion of multilinear maps, which involves more than
(multilinezere two modules. In that case, the source of the map is a product [ [ M; of finitely many

bildninger) . . c .
wommser A-modules M; and its target is another A-module L. The constituting property is

mutatis mutandis the same as for bilinear ones: when all but one of the variables are
kept constant, the resulting map is A-linear.

The universal property
(6.2) The tensor product captures in some sense all possible bilinear maps defined on
the product of two A-modules M and N, or at least makes them linear. This rather
vague formulation becomes precise when phrased as a universal property.
The tensor product (6.3) The tensor product is a pair consisting of an A-module M®4N together with an
(tensorproduktet)  A-bilinear map T: M x N — M®4N that abide by the following rule:

0 For each A-bilinear map B: M x N — L, there exists a unique A-linear map
v: NOQM — Lsuct that f = yorT.

M x N —5 M@uN In other words, every A-bilinear f factors linearly via 7, as expressed by the commutative
: diagram in the margin. And as usual with objects satisfying a universal property, the
B y pair T and M®4N is unique up to a unique isomorphism.
"L

Exsistence

The construction of the tensor product is rather abstract and serves the sole purpose
of establishing the existence. It will seldom be referred to in the sequel, if at all. To
ease getting a grasp on the tensor product remember the mantra, so true in modern
mathematics: “Judge things by what they do, not by what they are”.

(6.4) The construction starts out with the free A module F = AM*N on the set M x N.
The elements of F are finite, formal linear combinations ;a; - (x;,y;) with x; € M,
yi € M and g; € A. In particular, every pair (x,y) is an element of F, and by definition
these pairs form a basis for F. We proceed by letting G be the submodule of F generated
by all expressions either of the form

(ax +a'x,y) —a(x,y) —a' (¥, y), (6.1)
or of the form
(xay+a'y') —a(x,y) —d'(xy), (6.2)

where a and 4’ are elements from A while x and x’ lie in M and y and v’ in N.
The tensor product N®4 M is defined as the quotient F/G, and the residue class
of a pair (x,y) will be denoted by x®y. Having forced the two expressions (6.1) and
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(6.2) above to be zero by factoring out the submodule G, we have made x®y a bilinear
function of x and y; that is, the following two relations hold true in M®4N:

(ax +a'x')®y = a(x®y) + a'(x'®y),

, , , (6.3)
x®@(ay +ay') = a(x®y) +a' (x®y').

In other words, the map 7: M x N — M®uN sending (x,y) to x®y is A-bilinear.

PROPOSITION 6.5 The pair T and M®4N as constructed above satisfy the universal property
in paragraph 6.3; in other words, they are the tensor product of M and N.

Proor: We already saw that 7 is bilinear, so we merely have to check the factorization
property. To that end, let B: M x N — L be bilinear. Since F = AM*N is a free
module on M x N, we may , according to the Universal Mapping Principle for free
modules (Proposition 4.36 on page 100), define an A-linear map : F — L by sending
the basis-elements (x,y) to the values B(x,y). Since B is bilinear, this map vanishes on
the submodule G. Consequently it factors through the quotient F/G = M®4N and
thus gives the wanted map v: M®sN — L.

Elements shaped like x®y generate the tensor product, and because the value at
x®y of any factorization of B is compelled to be B(x,y), the uniqueness of -y comes for
free. 0
(6.6) Before leaving the details of the tensor product construction, there is one observa-
tion to be made. It will useful to reduce certain questions to questions about finitely
generated modules.

Assume given two A-modules N and M a sequence of elements x4, ..., x, from N
and a sequence of elements y,...,y, from M. Assume further that >}, ;, x,®Qy; = 0
in N®4M. We contend that one may then find finitely generated modules No < N
containing the x;’s and My < M containing the y;’s, so that the relation ), x;Qy; = 0
already holds in No®4My. Indeed, saying that the relation }; x;®y; = 0 holds in
N®4M is to say that the element Y. (x;,y;) in AN*M belongs to the submodule G, and
as such it can be expanded as a finite combination of the generators of G; that is, of
elements described in (6.1) and (6.2). Letting Ny (resp. M) be the submodule of N
(resp. M) generated by the x;’s (resp. the y;’s) and the finite number of x’s (resp. y’s)
that appear in such an expansion, it follows that }}; x;®y; = 0 in No® 4 Mp.

6.2 Basic working formulas

In this section we present a few principles and properties of the tensor products which
together with some basic formulas hopefully should help students grasp "the spirit of
the tensor product” and make it easier to work with it. We also discuss some particular
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Decomposable tensors
(dekomponerbare
tensorer)

classes of modules, like cyclic modules and free modules, which behave particularly
well when exposed to a tensor product.

Decomposable tensors.

(6.7) For several reasons, tensors of the form x®y deserve a special name; they are
dubbed decomposable tensors. Only in a very few highly special cases all elements in a
tensor product will be decomposable; the usual situation is that most are not (A simple
example is discussed in Problem 6.13 on page 160 below. See also Example 6.5 on
page 167). A general element in M®4 N may however, be expressed as a finite linear
combination ) ; 4; - x;®y; of decomposable tensors since this is already true in the free
module F = AMXN,

Consequently, if {x;} is a set of generators of M and {y;} one for N, the decomposable
tensors {x;®y;} form a set of generators for M®4N; in particular, if both factors are
finitely generated, the same holds for the tensor product M®4N.

(6.8) To define a map ¢ from M®,4N into any module, it suffices to give the values of
¢ on decomposable tensors x®y, provided these values depend bilinearily on x and
y. This is an informal and convenient reformulation of the universal property from
Paragraph 6.3, certainly more suggestive than working with pairs (x,y).

(6.9) Another useful property of decomposable tensors is subsumed in the slogan
“scalars can be moved past the tensor product”; or in precise terms, for every element
a € A it holds true that

(ax)®y = x®(ay).

This is a simple consquence of the fundamental bilinear relations (6.3) on page 149; with
the notation of (6.3), just set ¥’ =y’ = 0.

Functoriality
Linear maps between A-modules are fundamental tools in algebra, and it comes as no
surprise that exploring how maps behave when exposed to tensor products occupies
a large part of the theory. As a modest start we shall observe that the tensor product
construct is functorial, in the precise meaning that when considered a function of either
variable, it gives a functor Mod4 — Mod4; so we have to tell how to tensorize maps.
(6.10) Any A-linear map ¢: M — M’ gives rise to an A-linear map M@, N — M'@4N
that on decomposable tensors acts as xQy — ¢(x)®y. Since the expression ¢(x)Qy
depends bilinearily on x and y, this is a viable definition, and the resulting map is
naturally babtized ¢®idy.

It holds true that p®idy o pRidy = (P 0 ¢)®idy when i and ¢ are two composable
maps (the two sides obviously agree on decomposable tensors and thus the identity
holds true), and clearly idy®idy = idyg,N- Therefore the pair of assignments

M~ M®sN and ¢ — ¢Qidy
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define a functor —®4N: Mody — Mod 4.

ProrosITION 6.11 The functor —®@4N is an A-linear functor. It transforms direct sums into
direct sums.

A formal consequence of a functor being additive is that it preserves finite direct sums
(as we established in Proposition 5.7 on page 126), but in general additive functors do
not commute with infinite direct sums, so a proof is needed for that case. One is given
in Exercise 6.1.

Proor: Recall that in Section 5.4 on page 126 we introduced the notion of additive
functors: saying the functor is additive is saying it transforms sums of maps to sums of
maps, and it is A-linear if it additionally respects products with scalars; expressed in
symbols this reads

(ap + byp)®idN = a- pRidy + b - PQidy. (6.4)

This follows easily from how —®4N acts on maps together with the basic bilinear
relations in (6.3) on page 149. Indeed, one finds

(ag + by)@idn (x®y) =((ap(x) + by (x))®y =
= ap(x)®y + bp(x)®y =(a - pRidy + b - PRidN) xQy,

and the two sides of (6.4) agree on decomposable tensors. Hence they are equal since
the decomposable tensors generate M®4N. a
(6.12) The situation is completely symmetric in the two variables, so if : N — N’ is
a map, there is a map idy®y from M®N to M®N’ that sends x®y to x®y(y), and
naturally, one sets pR¢ = (¢®idy) o (idpy ®YP).

Some formulas

(6.13) When working with tensor products a series of formulas are invaluable. Here
we given the most basic ones revealing the multiplicative nature of the tensor product;
together with the direct sum it behaves in a way resembling the product in a ring.

PROPOSITION 6.14 Suppose that M, N and L are modules over the ring A. Then we have the
following four canonical isomorphisms.
i) Neutrality: M®aA ~ M;
ii) Symmetry: MRaN ~ N®4M;
iii) Associativity: (M@aN)®4L ~ M®4(N®4L);
iv) Distributivity: (M@ N)®aL ~ (M®2L) ® (N®4L).

There are some comments to be made. Firstly, these isomorphisms are so natural that
for all practical purposes they may be consider as identities. Secondly, the general
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mechanism that extends associativity from products with three factors to products with
arbitrary many factors applies to tensor products, so that any number of parentheses
placed in any way in a tensor product with any number of factors can be resolved. And
finally, an easy induction establishes the fourth property for any number of summands;
with a somehow subtler argument, one may even show it holds for infinitely many.
Proor: In each case we indicate how a pair of mutual inverses A-linear maps acts on
decomposable tensors; this will basically suffice in the two first cases, but in particular
the case of associativity, requires some more work.

Neutrality: The product xa is bilinear in x and a and therefore the map x®a — xa
extends to an A-linear map M®4A — M. The map M — M®4 A sending x to x®1 is
obviously an inverse.

Symmetry: In this case the short hand assignments are x®y — y®x and y®x — xQy.
They are bilinear in view of the fundamental relations (6.3), and hence yield maps
between M®4N and N®4 M which obviously are mutually inverse.

Associativity: This case is more subtle than one should believe at first sight; the (very
short) shorthand definition of a map

(MR®AN)®4L — M®4(N®AL)

would be (x®y)®z — ¥®(y®z), but this is not viable since x®y is not a general member
of M®4N. To salvage the situation one introduces some auxiliary maps, one for each
ze L.

So, for each element z from L, which we keep fixed, we define an A-linear map

Hz: M®AN — M®a(N®aL)

by the assignment x®y — x® (y®z); this is legitimate since the expression x® (y®z) is
bilinear in x and y (the third variable z is kept fixed).

Obviously the map 7;(t) is linear in z and a priori being linear in ¢, it depends
bilinearily on t and z. We infer that sending t®z to 7;(z) induces a map (M®4N)R®4L —
M®A(N®aL). On decomposable tensors this map behaves as wanted; that is, it sends
(x®y)®z to ¥® (Y®z).

A symmetric construction yields a map the other way which sends a decomposable
tensor x®(y®z) to (x®y)®z. Finally, these two maps are mutually inverses since they
act as inverse maps on the decomposables, and the decomposables generate the tensor
products.

Distributivity: Another way of phrasing this is to say at the tensor product respects
finite directs sums, and this we already established in Proposition 6.11 above. A vague
indication of an ad hoc proof (in the flavour of the preceding cases) is the short hand
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definition (x,y)®z — (x®z, y®z). The salient point is to extend this to an isomorphism.
The detailed proof, formulated for general direct sums, is given in Exercise 6.1 below.
Be aware, that contrary to the tensor product —®4 N, the hom-functors Homy (—, N),
even though being additive, do not commute with infinite direct sums; see Exercise 5.7
on page 128. 0

Exercises

(6.1)  Tensor products preserve arbitrary direct sums. Let A be a ring and @,c; M; a
direct sum of A-modules where the index set [ is of any cardinality. Let N be another
A-module.

a) Define the map 7: (@je; M) x N - @jc;(Mi®4N) by sending ((x;)ier, y) to
> xi®y. Show that 7 is a well-defined bilinear map. HINT: Merely finitely many
of the x;’s are non-zero.

b) Show that T induces an isomorphism (P; M;)®aN ~ @;c;(Mi®@4N).

(6.2) Consider the four isomorphisms in Proposition 6.14 on page 151. Be explicit
about what it means that they are functorial (in every variable involved) and prove your
assertions.

e
(6.15) It is worth while to dwell a little on the associativity. Since the parentheses
are irrelevant, we may as well skip them and write M® A N®aL for M®(N®4L) (or
for that matter for (M®4N)®4L). According to the universal property of the tensor
product bilinearity is the clue for defining maps having source M®4N, and there is
a similar trilinearity principle for defining maps sourced in a triple tensor product
M®sN®L. It suffices to specify ¢ on decomposable tensors x®y®z as long as the
specifying expression is trilinear in x, y and z; the precise statement is a as follows:

LEMMA 6.16 (TRILINEARITY PRINCIPLE) Let A be a ring and M, N, K and L four A-modules.
Assume given a map ¢: M x N x K — L such that ¢(x,y,z) depends in a trilinear manner on
the variables. Then there is unique A-linear map ¢: M®AN®K — L such that ¢(xQyRz) =

¢(x,y,2).

Proor: The argument is mutatis mutandis the same as we gave in the proof of Proposi-
tion 6.14 concerning the associative law: Fix an element z € K and consider ¢(x,y,z);
it depends in a bilinear manner on x and y and hence gives rise to a linear map
z: M®aN — L. The dependence of #, on z obviously being linear, assigning #,(f) to
t®z for t € M®4N and z € K is a bilinear in z and t and therefore yields the desired
map (M®2N)®sK — L.

And again, the map is unambiguously determined since its values are prearranged
on the decomposable tensors which generate (M®4N)®4K. (W
As a final comment, there is nothing special about the number three in this context. A
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similar statement—that is, a principle of multi-linearity—holds true for tensor products
with any number of factors, but we leave that to the imagination of the reader.

The case of cyclic modules

We now turn to discuss two situation which are frequently met when working with
tensor products. Hopefully they will illuminate the working mechanism of the tensor
product, but anyhow, they illustrate some of the different phenomena that can occur.
(6.17) Our first example is about the tensor product of two cyclic module and reads as
follows:

PROPOSITION 6.18 Let A be a ring. For any two ideals a and b in A it holds true that
A/a®pA/b ~ A/(a+b). In particular, one has A/a®aA/b = 0 if and only if the two
ideals a and b are comaximal.

Proor: Sending a pair ([x]q, [y]p) from A/a x A/b to the element [xy]q4p in A/a+b
is well defined and bilinear; indeed, changing x (resp. y) by a member of a (resp. b)
changes xy by a member of a (resp. b) as well, so the map is well defined, and as a
product clearly depends bilinearily on the factors. This induces a map A/a®4A/b —
A/a+b.

One the other hand, the tensor product A/a®4A/b is a cyclic A-module generated
by 1®1 because [a],®[b]p = ab-1®1, and clearly elements from both the ideals a and b
kill it; indeed

¥ 1®1l=(x-1)®1 = 1®(x-1).

So A/a®4A/b is a quotient of A/a + b and is thus squeezed between two copies of
A/a+ b, by two maps one sending 1 to 1®1 and one 1®1 to 1. Hence all three must
coincide. O
The proposition shows that the tensor product of two non-zero modules very well may
vanish, and for cyclic modules this happens precisely when the respective annihila-
tors are comaximal. We also observe that an inclusion b < a yields an isomorphism
A/a®4A/b ~ A/a, in particular it holds true that A/a®4A/a ~ A/a.

Finite abelian groups

(6.19) A modest instance of the tensor product being zero, is found among finite abelian
groups. Powers of two relatively prime integers p and g are comaximal, for natural
numbers y and v it holds that (p#,g") = Z—and we infer that

Z/p"ZRz72Z/q"Z = 0.
We also infer that if the two natural numbers satify p < v it holds that true that

Z/p"ZR72Z/p'Z ~Z/p'Z

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



FUNCTORIAL PROPERTIES

for any prime number p since (p*, p¥) = (p™"(“#)). Together with the formulas from
Proposition 6.14 and the Fundamental Theorem for Finitely Abelian Groups, these two
formulas make it clear how to compute the tensor product of any pair of finite abelian
groups.

The case of free modules
(6.20) In the second example we show that the tensor product of two free modules is
free.

PROPOSITION 6.21 (TENSOR PRODUCT OF FREE MODULES) Assume that E and F are free A-
modules. Then the tensor product EQ AF is free. More precisely, if {e;}icr and {f;} ey are bases
for respectively E and F, the tensors e;Q®f; with (i,]) € I x ] form a basis for EQF.

This proposition holds true regardless of the cardinalities of I and |, but the case when
E and F are of finite rank, warrants to be mentioned specially. One may deduce the
finite tank case from Proposition 6.14 by a straightforward induction, however we offer
another simple generally valid proof.

COROLLARY 6.22 If E and F are free A-modules of finite ranks n and m respectively, the tensor
product EQ A F is free of rank nm. In particular, for vector spaces V and W of finite dimension
over a field k it holds true that dimy V@ W = dimy V - dimy W.

PROOF OF PROPOSITION 6.21: We contend that the set {e;®f;}(; jcrx; is a basis for the
tensor product EQ 4F. As already observed, the elements ¢;®f; form a generating set so
we merely have to verify they are linearly independent.

Denote by a;(x) the i-th coordinate of an element x € E relative to the basis {e;}; that
is, one has x = 3, a;(x)e;. Similarly, let b;(y) be the j-th coordinate of an element y € F.
All the a;(x)’s and all the b;(y)’s depend linearly on their arguments.

For each pair of indices y € I and v € | the expression a,(x)b,(y) depends bilinearly
on x and y and therefore x®y — a,(x)b,(y) gives a map Jy,: EQF — A. This map
vanishes on ¢;® f] unless i = p and j = v, and takes the value one on eu® fu.

With the 4,,’s up our sleeve, the rest is a piece of cake: Just apply 6, to a potential
dependence relation

WIRCVEL

to obtain ¢y, = 0 for every pair  and v of indices. (N

6.3 Functorial properties

(6.23) The tensor product functor —®4 N and the functor Hom,4 (N, —) live in a close
partnership; they form what is called a pair of adjoint functors in the vernacular of
homological algebra; that is, there is an identity as in the following proposition:
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PROPOSITION 6.24 (ADJOINTNESS) There is a functorial isomorphism
Hom s (M®aN, L) ~ Homy(M,Hom4 (N, L)).

The word “functorial” refers to all three variable. The dependence is covariant in L and
contravariant in M and N (a sanity check is that the variances are the same on both
sides). The full name of the isomorphism in the theorem would be

Omn,L: Homa(M®aN,L) — Homy (M, Homy (N, L)),

but to save the presentation from notational obesity, we shall systematically abbreviate
it to 6 (think of the parameters always being present but as darkened lights one can
turn on, if more clarity is needed).

Proor: The salient point is that Hom 4 (M, Hom 4 (N, L)) is canonically isomorphic to
the space of bilinear maps M x N — L; and once that is realized, the proposition
becomes just another reformulation of the universal property of the tensor product.

One may consider members of Hom 4 (M, Hom 4 (N, L)) as being maps ®(x,y) de-
fined on M x N: Assume ®(x,y) is bilinear; when x is a specified member of M, the
corresponding map ®(x, —) from N to L is given as y — P(x,y). The other way around,
when ¢: M — Hom4 (N, 1) is given, we put ®(x,y) = ¢(x)(y). The required linearities
and bilineraties of the involved maps are immediate to check.

And that’s it: according to the universal property the tensor product enjoys, any
such bilinear map @ can be written unambiguously as ®(x,y) = ¢(x®y) with a linear
map ¢: MRsN — L.

Then to the functoriality: the hart of the matter is quit prosaic once one sees through
the formal underwood. Given <y: L — L’. Functoriality in this case means that

Bovs =700

This equality boils down to the trivial and tautological observation that when evaluated
at a pair (x,y), both sides equal y(®(x,y)); indeed, the sole difference is that on the left
hand side we first apply 7 to ® and then consider the result first a function in x and
then in y; whereas on the right hand side order is opposite: we begin with considering
@ first as a function in x and then in y for then to apply 7; of course, they are the same.
Next, suppose that a: M — M’ is given; we are then to establish the equality:

6o (a®idn)* = a™o0. (6.5)

Indeed, both sides equal ®(a(x),y), and again this is just an expression for trivial fact
that the order of applying @ and considering x and y as a first and a second variable,
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does not make a difference. Functoriality in N is quite symmetric to functoriality in M;
and one has
6o (idy®B)* = B* ob. (6.6)

when B: N — N’ an A-linear map. a

Right exactness

In analogy with the notion of left exactness, which we discussed in connection with
the hom-functors, a covariant and additive functor F between two module-categories*
Mod 4 and Modp is said to be right exact if it transforms exact sequences shaped like

My My My 0

into exact sequences shaped like
F(My) —— F(M;) —— F(Mp) —— 0.

A fundamental and most useful property of the tensor product is that it is right exact.
This section is devoted to giving a proof this, with some easy consequences included at
he end.

(6.25) Here it comes:

PROPOSITION 6.26 (RIGHT EXACTNESS) Given a ring A and an A-module N. The functor
—®aN is a right exact functor.

Our approach relies on Proposition 6.24 above and illustrates the general fact that
adjoint functors tend to share exactness properties; if one is exact in some sense, the
other tends to be exact in a related sense. It is possible to give a proof of right exactness
based on the construction of the tensor product. This is however tedious, cumbersome
and not very enlightening, and according to our mantra should be avoided. Let us also
mention that it is common usage to call N a flat A-module if the functor (—)®4N is
exact; i. e. when it transforms injective maps into injective maps.

ProOF: Let the exact sequence

M.: M§ — M{ — My — 0
be given; the task is then to show that the sequence

i id
M@AN : Mo@aN =2 Mo N 22N M@ AN —— 0

is exact. Our tactics will be to apply the principle of left exactness of the hom-functor as
expressed in the proposition LEFT ExacTNEss II (Proposition 5.17 on page 130), and in
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fact, we shall do this twice. With that principle in mind, we start out by observing that
the sequence Hom 4 (M.®4N, L) being exact for every A-module L will be sufficent,
and this sequence appears as the upper line in the following grand diagram.

idn)* idn)*
0 — Homa (My®@4N, L) 229 bom My @4N, L) 2%, Hom 4 (Mo® 4N, L)

I ! i

0 — Hom 4 (M, Hom4 (N, L)) F Hom 4 (M1,Homy (N, L)) — Hom 4 (Mo, Homy4 (N, L))

The next step is to evoke Proposition 6.24 above and replace Hom (M.®4N, L) with
the complex Hom 4 (M., Hom, (N, L)); the latter is displayed as the bottom line of the
grand diagram. The crux of the proof is that this latter sequence is exact, again by LEFT
ExacTNESss II, so once we know that the two rows in the grand diagram are isomorphic
(as sequences) we are through. But indeed they are, since with the vertical maps being
the canonical isomorphisms from Proposition 6.24 (ADJOINTNESS), the two squares
commute according to the functoriality properties stated in Proposition 6.24. a
(6.27) Proposition 6.18 on page 154 describes the tensor product of two cyclic module.
An analogous result holds true with just one of the modules being cyclic:

PROPOSITION 6.28 Let a S A be a an ideal and M and A-module. Then one has a canonical
isomorphism M®aA/a ~ M/aM, which sends m®]a] to [am].

Proor: The starting point is the exact sequence

0 a A Ala 0,

which when tensorized by M, yields the exact sequence
a®@AM —— M —— M@, A/a ——0,

because the tensor product is right exact. The map a sends a®x to ax, hence its image
is equal to aM, and we are done. |

ExaMPLE 6.1 Be aware that the tensor product can be a bloodthirsty killer. Injective maps
may cease being injective when tensorized, and they can even become zero. The simplest
example is multiplication by an integer 7, that is; the map Z — Z that sends x to nx.
It vanishes when tensorized by Z/nZ. This also illustrates the fact that the functor
—®aN is not always exact, even though always being right exact. In this example the
exact sequence

0 AR Z/nZ —0,
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is transformed into the exact sequence (right exactness of ®)

0 B

Z/nZ Z/nZ Z./nZQ@g2Z/nZ —— 0,
where 8 must be an isomorphism—its kernel is zero since the sequence is exact. So
part of the conclusion is that Z/nZ®z7Z /nZ = Z/nZ which as well ensues from

Proposition 6.18 on page 154. *

(6.29) Even whole modules may succumb under the action of the tensor product; for
instance, we saw that Z/pZ®z7Z/qZ = 0 when p and q are relatively prime integers,
which illustrates a general fact. Recall that an A-module M is divisible by an element
a € A if the multiplication map M — M is surjective; in other words every x € M may
be written as ax’ for some x’ € M.

PROPOSITION 6.30 Let a € A and assume that M and N are A-modules such that M is divisible
by aand a € Ann N, then M®sN = 0.

Proor: The short argument goes like this. Every x € M is of the form ax’ for some
¥’ € M, so that x®y = ax’®y = x’®ay = 0, and as the decomposable tensors generate
M®4N, we are through. Qa

Exercises

(6.3) Decompose Z/16Z®zZ./36Z and (Z/6Z ®Z/15Z)Qz(Z/21Z D Z/14Z) as
direct sums of cyclic groups.

(6.4) Let A be aring and M an A-module. Show that M®4(A/ Ann M) = M. Show
that if N is a second A-module and the annihilators Ann M and Ann N are comaximal
ideals, then M® 4N = 0.

(6.5) Show that Q/Z®zQ = 0. Show further that it holds true that Q®zQ ~ Q, but
that one has Q/Z®zQ/Z = 0. HinT: Proposition 6.30.

(6.6) Let a be a proper ideal in the ring A. Assume that M is an A-module for which
there is surjection ¢: M — A/a. Show that aM # M. HINT: Tensorize ¢ by A/a.

(6.7) Let M be finitely generated non-zero module over the ring A.

a) Show that there is a prime ideal p in A and a surjective map M — A. HiNT:
Consider a generating set {x1, ..., x;} with r minimal and use that the quotient
module M/ (x1,...,x,) is cyclic.

b) Show that it holds true that M®" # 0 for any natural number n. HiNT: Exhibit
a surjective map M — A/p. Proceed by induction on n and right exactness of
the tensor product.
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(6.8) Assume that G is a finite abelian group. Show that G®zQ = 0.

(6.9) Let A be a domain contained in a field K and let M be an A-module. Assume
that Ann M # (0). Prove that K4 M = 0.

(6.10) Let A — B be a surjective ring homomorphism. Show that for any two B-modules
M and N (which automatically are A-modules) it holds true that M®s N = M®gN.
(6.11) Show that Z[i]®zZ[i] is a free abelian group of rank 4 while Z[i|®z;]Z]i] = Z[i]
and is of rank two as an abelian group.

(6.12) Let E and F be vector spaces over the field k, and let T € EQiF be a tensor.
Show tha one may express T as a finite sum T = ) ; ¢;®f; where the ¢;’s are linearly
independent vectors from E.

(6.13) Decomposable tensors and a saddle surface. Only in a very few highly special cases
will all elements in a tensor product be decomposable; the usual situation is that most
are not. A simple example is W = V@,V where V is a two-dimensional vector space
over k. Let {e1, ey} be a basis for V. This example also illustrate that beautiful geometry
can be unveiled by tensor product considerations.

The tensor product W is of dimension four with a basis {¢;®e;} where 1 <1i,j < 2.
Let x;; be coordinates relative to this basis; that is, any vector v is expressed as v =
X11 - €1®e1 + X12 - e1®e2 + X1 - e2®e1 + X2 - e2®e,

a) Establish that he decomposable tensors are shaped like

(uey + ver)®(se +ten) = us - e1®eq + ut - e1®en + vs - e2eq + vt - ea®ey,

with u, v, s and t being scalars.
b) Show that the decomposable tensors are precisely those lying on the subset

X1X4 — X2X3 = 0.

¢) In the real case, that is when k = IR, convince yourself that this locus is the cone
in R* with apex the origin over a saddle-surface in R3; i. e. one given as z = xy
(or in our coordinates x3 = x1xp).

(6.14) The rank stratification. Let V be a vector space over a field k of finite dimension.
The dual space V* = Homy(V, k) consists of linear functionals on V and is a vector
space of the same dimension as V. Chose a basis {¢;} for V and let {¢;} be the dual basis
for V*. That is, the functionals ¢; are defined as ¢;(e;) = 0 when i # j and ¢;(e;) = 1.
a) Let W be a second vector space of finite dimension over k with basis {f;}. Prove
that the assignment ¢®w to v — ¢(v)w induces an isomorphism T': V*@W >
Homy (V, W).
b) Given a linear map 0: V — W whose matrix relative to the bases {¢;} and {f;}
is (a;;). Show that the element in V*®W corresponding to 6 equals }; ¢;®0(e;)

and that }}; p;®0(e;) = Zij ;i@ f;.
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c) Show that the non-zero decomposable tensors in V*®W under the map T
correspond to the linear maps of rank one. HiNT: Chose an appropriate basis
for V.
d) Show that a linear map in Homy (V, W) is of at most rank r if and only if the
corresponding tensor in V*®@W is the sum of at most r decomposable tensors.
Hint: Chose an appropriate basis for V
(6.15) The Kronecker product. Let ¢: E — F and : G — H be two A-linear maps
between free A-modules of finite rank. Let {e;}ics, {fi}je), {Sk}rex and {h;};c; be bases
of E, F, G and H respectively, and let the matrices of ¢ and ¢ in the appropriate bases be
® and Y. Show that the matrix of p® in the bases {¢;@fj} i j)e1x; and {gxk®Mhi} (k 1yex <L
is given as the matrix (®;;'¥);) with rows indexed by pairs (i, j) € I x ] and colums by
(k,1) € K x L. This matrix is called the Kronecker product of ¥ and .
*

6.4 Change of rings

Working in algebra one frequently finds it necessary, or at least highly desirable, to
change the ground ring. For instance, one extends the ground field to have sufficiently
many roots of polynomial at hand, or one reduces the ground ring modulo an ideal to
make arguments simpler. The tensor product is the perfect tool to carry the modules
one studies on to the new ground ring.
(6.31) Assume we are given a new ground ring B which is an algebra over the old one
A. In particular, B is an A-module. and we may form the tensor product M®4B of
B with any A-module M. This tensor product will be a B-module in a canonical way:
multiplication in "in the second variable" of M®4B produces a B-module structure
on M®uB. Indeed, if b € B, the multiplication-by-b-map x — bx is an A-linear map
[b]: B — B, and therefore induces a map idy®[b]. On decomposable tensors it acts as
b x®c = x®bc. For a general tensor t we shall, of course, denote the action by b - t or
simply by bt.

The module axioms come for free, it ensues directly from functoriality of —®4B,
and in view of the tensor product being additive (Proposition 6.11 on page 151) and
right exact (Proposition 6.26 on page 157), we arrive at

PROPOSITION 6.32 Given an A-algebra B. The the change-of-rings-functor, which sends M to
M®y B, is a right exact additive functor —®4B: Mod4 — Modp.

(6.33) Notice, that elements in B coming from A may be moved past the ®-sign; i. e. if
a € A, one has x®ab = ax®b. Be aware however, there is a hidden pitfall. For any b € B
the notation a - b is a sloppy version of the correct notation u(a) - b, where u: A — B is
the structure map and the product is the product in the ring B. Hence ax®b = x®u(a)b
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would be the correct way of writing. For instance, when A is of positive characteristic p,
the map u could be the Frobenius map a — a”. Then a - x®b = x®aPb

Transitivity and adjointness
(6.34) Sometimes one wants to perform consecutive base changes, and in that respect
the tensor product behaves well. It is transitive in the following sense.

PROPOSITION 6.35 (TRANSITIVITY) Assume that B is an A-algebra and C is a B-algebra. Then
there is a canonical isomorphism (M®4B)®pC ~ M®4C as C-modules.

Proor: The short descriptions of the pair of inverse maps are m@x®y — m®xy and
m®z — m®1Qz. By the principles of bi- and tri-linearity both extend to maps between
the tensor products, and acting as mutually inverses on decomposable tensors, they are
mutually inverse. a
(6.36) Changing the base ring preserves tensor products, but not hom-modules in
general. One has the following:

PROPOSITION 6.37 Let B be an A algebra and M and N two A-modules. Then there is a
canonical isomorphism of B-modules

(MR®AN)®4B ~ (M®4B)®p(N®4B).

In other words, the functor (—)®B takes tensor products into tensor products.

Proor: Two mutually inverse B-module homomorphisms are defined by the assign-
ments
1QYRb — xQ1RQYRb
XQYRbY' — x@bRYR’

of decomposable tensors. The obey respectively a tri-linear and a quadri-linear require-
ment and thereby define genuine maps between the modules. a
(6.38) In addition to the base change functor given by the tensor product

(—)@ABZ Mod 4 — Modg,

there is a functor going the other way, (—)4: Modg — Mod 4, whose action is kind of
trivial. If N is a B-module, N4 is equal to N but regarded as an A-module—one just
forgets the B-module structure. The same happens for maps; they are kept intact, but
regarded as being merely A-linear. Such functors that throws away part of a structure,
are called forgetful functors in the parlance of category theory.

The point is that the tensor product (—)®4B and the forgetful functor (—)4 are
so-called adjoint functors:
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PROPOSITION 6.39 (ADJOINTNESS) Given an A-algebra B. Then there is a canonical isomor-
phism
HomB(M®AB, N) ~ HOITIA(M, NA)

functorial in both M and N.

7

Proor: The map from the left hand side to the right hand side is simply a “restriction’
map. It sends a given B-linear map ¢: M®4B — N to ¢(x®1), which cearly is A-linear
in x. To define a map the other way, let ¢: M — Ny be A-linear. The expression
P(x®b) = bg(x) is A-bilinear in b and x and by the universal property enjoyed by the
tensor product, it extends to an A-linear map ¢: M®4B — N, which turns out to be
B-linear (remember, multiplication by elements from B is performed in the right factor):

(b - x®b) = Pp(x@bb’) = bb'Pp(x) = b" - p(xRb).

Finally, and as usual, the two maps are mutially inverses, agreeing on decomposable
tensors. Q

Maps between free modules and base change

The tensor product being an additive functor, it is clear that the change-of-ring-functors
transform free modules to free modules; indeed, if E ~ nA with a basis {¢;} correspond-
ing to the standard basis {¢;} of n4, it holds true that EQ 4 B ~ nB with a basis {¢;®1}
corresponding to the standard basis {€;} (as a basis for nB this time).

(6.40) It is of interest to know how changing the base ring affects maps between free
modules and how their associated matrices change. So let F be a second free A-module
of rank m with a basis {f;} and suppose that ¢: E — F is an A-linear map. Recall
that the entires of the matrix ® = (a;;) associated with ¢ are the coefficients in the
developments

Ple;) = Zajifj
j

of ¢(e;) in terms of the basis elements f;. Applying ¢®idp to the basis element ¢,®1,
yields
PRidp(e;®1) = ¢(e))®1 = (D a;if})®1 = > u(aj) - fi®1
j
where u: A — B denotes the structure maps as in paragraph 6.33 above. Hence the
matrix of ¢®idp is the matrix (u(a;;)) obtained by applying the structure map u to the
entries of (aj;).

Examples

(6.2) As an example consider the polynomial ring A = C[x] and let a € C be a complex
number. Furthermore, let B = C[x]/(x —a) ~ C, so that the structure map u is the
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evaluation at a; i. e. u(P(x)) = P(a). If ¢ is a map between two free C[x]-modules with
matrix P = (P;j(x)) relative to some bases, the matrix of ¢®id[C] is just the matrix P
evaluated at 4; that is, the matrix (P;j(a)).

(6.3) For a second example, take A = Z and B = Z/pZ = ), for some prime number
p. If ¢ is a map between two free abelian groups whose matrix relative to some bases is
(ni;), the matrix of ¢®id[FF,] relative to the corresponding bases will be ([n;;]) (where
[n] as usual denotes the congruence class of an integer n modulo p).

On the other hand, changing the ring from Z to Q; that is, passing to the map
¢®id[Q], does not change the matrix. We merely consider the integers n;; as being
rational numbers!

(6.4) Our third example will be of a rather different flavour than the two previous ones.
This time we let A be a ring of characteristic p. The Frobenius map a — a” is then a
ring homomorphism A — A and gives A an alternative A-algebra structure in which
a-x = aPx (the product to the left is the new product, whereas the one to the right is
the original product in A). In view of the considerations above, a ring-change via the
Frobenius map, changes matrices of A-linear maps between free A- modules by rising
their entries to the p-th power.

¥

6.5 Tensor products of algebras

Setting the stage of this section we let C and introduce two C-algebras A and B. The
star of the show will be the tensor product AQ¢B and the objective of the play is to give
it a ring structure compatible with the underlying C-module structure, thus making it a
C-algebra.

(6.41) On decomposable tensors the product ought to abide by the rule

a®b - x®y = axQby, (6.7)

and indeed, this extends to a product on A®¢B:

PROPOSITION 6.42 Given a ring C and two C-algebras A and B. Then there is a unique
C-algebra structure on AQcB whose product on decomposable tensors satisfies a®b - a’ @b’ =
aa' Qbl'.

Notice that, a priori, the C-module structure on A®cB is in place, so only the ring
structure is lacking.

Proor: To give an argument that the assignment in (6.7) can be extended to give a
product of arbitrary tensors, we appeal once more to the principle of bilinearity (at the
end of paragraph 6.2 on page 150). In fact, we shall apply it twice, once for each factor,
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the basic observation being that the right hand side of (6.7) is C-bilinear both in (a,b)
and (x,y)

The first application of the principle shows that multiplication by a®b for a fixed
pair (a,b) extends to a C-linear map A®cB — A®cB. This yields a map

o: Ax B — Hom(A®cB, AQ¢B)

that sends (a,b) to the multiplication-by-a®@b-map; in other words, it holds true that
no(a,b)(2; xi®y;) = >; ax;@by;. In its turn, this map depends bilinearily on the pair
(a,b), and by a second application of the principle we arrive at a C-linear map

1: A®cB — Homc (A®cB, AQcB),

which on decomposable tensors behave as desired; i. e. 7(a®b)(x®y) = ax®by. Subse-
quently the product of two arbitrary tensors s and t is defined as s - t = #(t)(s). This
establishes the product in C® 4 B, but there are of course, verifications to be done.

That the ring axioms hold, is a matter of straightforward verifications —they follow
by the uniqueness parts of the principles of bilinearity and trilinearity. For example,
both expressions #(t)(s) and 7(s)(t) are bilinear in s and t and since they agree on de-
composable tensors, they are equal, and hence the product is commutative. One checks
associativity in a similar manner, but by using the Trilinearity Principle (Lemma 6.16
on page 153). The two expressions #(tu)(s) and #(t)(us) are both linear in each of
the variables s, t and u, and agreeing on decomposable tensors, they coincide; that is,
(t-u)-s=t-(u-s). a
Exercrse 6.16 Check that the distributive law holds in AQ¢B. H*

The universal property
The tensor product AQcB enjoys a universal property that plays a paramount role in
algebraic geometry. In algebraic terms it reflects the geometric construction of so called
fibre products; a simple variant of which are the products X x Y of two schemes. This is
a foundational construct on which the whole theory of algebraic geometry rests.
(6.43) With the setting as in the previous section, there are two canonical C-algebra
homomorphisms having target A®cB; one with A as source and the other sourced at B.
The first, call it 14, is given as a — a®1 and the second, call it t3, as b — 1®D.
Elements from C may be moved past the tensor product sign so that c®1 = 1®c for
¢ € C; or expressed in terms of a diagrams: The diagram in the margin commutes.
(Where the maps C — A and C — B are the structure maps defining the C-algebra
structures.) Moreover, the tensor product is universal among C-algebras living in such
diagrams:
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Recall the notation
from

Paragraph 1.16 on
page 21 where the
monomial

Xt xy was
denoted by x“,
with o being the
multi-index

([Yl,...,[k',-).

PROPOSITION 6.44 (THE UNIVERSAL PROPERTY) With the notation as just introduced, assume
given a C algebra D and two C-algebra homomorphisms 4: A — D and yg: B — D. Then
there is a unique map of C-algebras AQcB — D such that yoi1p =14 and 17 o1p = 1p.

Proo¥: Indeed, the expression 14 (a)np(b) is C-bilinear, and according to the universal
property of the tensor product it gives rise to a C-linear map A®QcB — D satisfying
17(a®b) = na(a)yp(b). This is our desired map, but some checking remains to be done.
Let us begin with verifying that # respects products. Since we know that # is linear, it
will suffice to do this for decomposable tensors:

1(aa'@bb") = 14 (aa")yp(bb") = na(a)ya(a’)yp(b)ys(b') = n(a®b)y(a'®"’),

where the two extreme equalities hold true by the very definition of 77 and the middle
one because both 74 and 5p are ring maps.

Next, one has 7014 =14 and 17 o 1p = yp since 74(1) = yp(1) =1, and finally, that
1 is unique follows, since it is determined by the values on decomposable tensors, and
these satisfy

1(a®@b) = 1((a®1)(1Qb)) = 1(a®@1)y(1®b) = 14(a)yp(b).

Base change of polynomial rings and algebras of finite type
We continue with the stage set as above, with B being an A-algebra through the structure
map u: A — B.
(6.45) A natural question is how polynomial rings behave under base change, and the
answer is they do in the obvious and simplest way.

There is a map of A-algebras A[xy,...,x;] — B[x1,...,x;] sending x; to x; and hence
a polynomial ), a,x"* is mapped to >, u(a.)x". Together with the inclusion of B as
the constants in B[xy, ..., x,], it induces, in view of the universal property of the tensor
product, a map of A-algebras A[xy,..., %/ ]®4B — Blx1,...,%].

LEMMA 6.46 Let A be a ring and B be an A-algebra. Then the following equality holds true
Alx1,..., % ]®4aB = B[x1,...,x/]

Proor: Considered as A-module, the polynomial ring A[xy,...,x,| is free, and the
monomials x*, with a running through all multi-indices, form a basis. The same holds
for B[xq,...,x;]; the monomials x* form a B-basis. The lemma then follows since these
monomials correspond. a

LEMMA 6.47 Let a < Alxy,...,x,] be an ideal. Then the following equality holds true

Alx1,..., %]/ a®4B = B[x1,..., %] /aB[x1,..., %]
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PROOF: Suppose that a is generated by a collection {f;} of polynomials. Then the
ideal aB[xy,...,x,] will be generated by the images of f;’s under the natural map
Alxy,...,x/] = B[xy,...,x,] that is the polynomials obtained by applying the structure
map u to the coefficients. Since the tensor product is right exact, the lemma follows.
In several contexts, when e.g. u is a canonical inclusion, as Z < Q or Q  C, the effect on

the generators is nil, one just considers the generators as being members of B[x1, ..., x;].

However, in other situations the effect on the f;’s can be quite dramatic, in the worst
case they can even vanish. For examples this occurs if the structure map is the reduction

mod p-map u: Z — Z/pZ = F,, and the coefficients of f; € Z[x] are all divisible by p.

Examples

(6.5) A particular application of the previous lemma is that the tensor product of two
polynomial rings (over the base ring) again is a polynomial ring, that is, one has

Alxy, . % |®AAY, - ys) = Alxt, o X Y1, Ys)-

Polynomials give a striking example that the decomposable tensors are scarce. In A[x, y]
for instance, the decomposable tensors are the polynomials that factor as a product
p(x)q(y) of which there are few compared to the total collection of polynomials.

(6.6) Be aware that the tensor product of two integral domains need not be an integral

domain. Even if both factors are fields, the tensor product might acquire zero-divisors.

A simple example is CQRC. The complex numbers C can be described as the quotient
R[x]/(x? + 1) so by Lemma 6.47 above it holds that CRRC = C[x]/(x? + 1). This latter
ring is isomorphic to the direct product C x C, sending the residue class of a polynomial
p(x) to the pair (p(i), p(—i)) yields an isomorphism, and the direct product has many
zero divisors.

*

Exercises

(6.17) Let k be a field and let f(x) be an irreducible polynomial in k[x] so that
K = k[x]/(f(x)) is field. Moreover let L be field extension of k in which f splits as a
product f(x) = f1(x) ... fr(x) of irreducible polynomials. Use the Chinese Remainder
Theorem to prove that K®L ~ [ | L; where L; is the field L; = L[x]/(fi(x)).

(6.18) Assume that K is an algebraic number field; i. e. a finite extension of the field
Q of rational numbers. Show that K®gR is isomorphic to a product of fields each
being isomorphic either to R or C. Show that [K : Q] = ry + 2r, where r; denotes the
number of factors isomorphic to R and 7, the number of factors isomorphic to C.
HINT: By the Primitive Element Theorem one may assume that K = Q[x]/(f(x)) where
f(x) € Q[x] is irreducible polynomial.

(6.19) Show that A = R[x,y]/(x? + y?) is an integral domain, but that AQRC is not.
(6.20) Let ¢: A — B be a ring homomorphism and p < A a prime ideal. Show that
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Flat modules (flate
moduler)

the fibre of ¢*: Spec B — Spec A over p is naturally homeomorphic to the spectrum
Spec k(p)®4B where k(p) is the fraction field of A/p; that is, k(p) = A, /pA,
(6.21) Let K be a field of positive characteristic p and let t € K be an element which is
not a p-th power. Show that L = K[x]/(x” —t) is a field and that L&gL has non-trivial
nilpotent elements.
(6.22) Let k be a field of positive characteristic p, and let a be an ideal in A =
k[x1,..., xr] generated by polynomials f;(x) = >, a;,x*. Let F: k — k be the Frobenius
map a — a”; and let kr denote the field k endowed with the k-algebra structure
induced by the Frobenius map; that is, members a of k act on kr as a - x = a’x, Show
that (k[x1,...,x;]/a)®kr ~ klx1,...,x/]/ar where af is the ideal generated by the
polynomials f; = 3, af x*
(6.23) Let C be C equipped with the alternative algebra structure induced by complex
conjugation; i. e. a -z = az. Let f(x) € C[x] be a polynomial. Describe C[x]/(f(x))®cC.
When are the C-algebras C[x]/(f(x))®cC and C[x]/(f(x)) isomorphic?

*

6.6 Appendix: Flatness

Recall that an A-module M is flat if the functor (—)®4M is exact. This functor is right
exact, as we established in Proposition 6.26 on page 157, so it being exact amounts to
it sending injections to injections. There is however a small, but important, point: it
suffices to consider injections between finitely generated modules.

PROPOSITION 6.48 Let A be a ring and M an A-module. Then the following three statements
are equivalent
i) M is flat;
ii) For all injective maps ¢: N — N’ between two A-modules, the induced map
PpRidpr: NOAM — N®4M is injective;
iii) For all injective maps ¢: N — N’ where N and N’ are finitely generated A-modules,
the map ¢idyr: NQaM — N®4M is injective.

Proor: We already remarked that i) and ii) are equivalent, and trivially #i) implies iii),
and we only need to show that iii) implies ii).

So assume that ¢: N — N’ is injective and that x = >}, ;. Xi®y; € N®@ M maps
to zero in N'®4 M; that is, the relation >, ¢(x;)®y; = 0 holds in N'® 4 M. To be able to
apply iii) we shall replace N and N’ with appropriate finitely generated modules.

The substitute for N is easy, the submodule generated by the x;’s (which are finite
in number) will do, so henceforth we may assume that N is finitely generated. To find
a replacement of N’ we appeal to Paragraph 6.6 on page 149, which furnishes finitely
generated submodules Nj < N” and My < M such that >; ¢(x;)®y; = 0 in Nj®4Mo.
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Now, clearly Nj = Njj + ¢(N) is a finitely generated submodule of N’ in which ¢ takes
values, and moreover, by construction, }; ¢(x;)®y; = 0 in Nj®4M. By assumption
assertion iii) holds, and we may infer that }}; x;®y; = 0, and we are done. Q

(6.49) When using Proposition 6.48 above to check that a module is flat, one may restrict
oneself to consider injections of ideals into the ring. Clearly if a € A, tensorizing the
sequence

0 a—5 A Ala 0

by a module M and remembering that A/a®sM = M/aM and AQ4M = M, one
obtains the exact sequence

id
a@ M —2 M M/aM ——0,

where :®idy; has the effect a®x — ax. It ensues that when M is flat, the map 1®id
will give an isomorphism a@4M =~ aM, and the theme of this paragraph is that the
converse also holds:

ProOPOSITION 6.50 The A-module M is flat if and only if a®aM ~ aM for all ideals a.
Moreover, it suffices to consider ideals that are finitely generated.

The modern standard proof of this result uses the derived functors of the tensor product
(i. e. the functors TorlA(—, —)). However a direct proof is not difficult, it involves
merely a diagram-hunt in a grand diagram; and of course, it is nothing but the tiny
relevant part extracted from the big machine that makes the Tor-functors function. The
reduction to the case of finitely generated ideals follows mutatis mutandis the proof of
Proposition 6.48 above, and we will not repeat it.

ProoF: Given an injection : N’ — N between two finitely generated modules. We may
assume that N requires just one more generator than N’; indeed, if this is not the case,
we may factor i as the composition of two injections N’ — N” — N where the numbers
of generators of N” lies strictly between those of N’ and N. By functoriallity y®idy
is the composition of the tensorized injections N4 M — N"®,M — N®4M, which
both may be assumed injective by induction on the difference of numbers of generators.

Hence we may concentrate on injections whose cokernel is cyclic, i. e. is shaped like
A/a.
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Fibered products
(fibrerte produkter)

Consider the grand diagram

0 0 0

0 NN A —— 0
T US| p2

0 I/ L2, 0
T __ _—

T

0,

—
o — T

0

where the upper sequence is the one we started with, and the rightmost one is the
canonical one. The hub of the diagram is the central module L, which is the so-called
fibered product of N and A. It is the submodule of the product N x A where the two
maps p; and p; coincide; that is, it is given as

L={(x,y)e Nx A|pi(x) = pa(y) }-

Filling out the rest of the diagram is easy: we just put L’ = ker 7y, D = ker 71y and
D’ = D n L. Notice that, and this is the salient point that makes the proof work,
because A is free, the middle horizontal sequence is split exact and therefore remains
exact after being tensorized by M. The tensorized diagram appears as

0 0 0

|

N®sM —— N@aM —— M/aM —— 0

l

0 — L'oaM —— LM M 0

|

D'@aM —— DM —— a@uM —— 0

|

0

where the rightmost sequence is exact by the assumption that a®4M = aM and, as
observed above, the middle horizontal one is exact. The finish of the proof is either an
adaption of the snake lemma (the snake is sneaking to the right and upwards), or a
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direct diagram-hunt, staring with an element x € N'® 4 M, mapping to zero in N® 4 M
and following the path indicated in the margin. Q

ExaMPLE 6.7 Flat modules over PID’s : The following criterion for when modules over

a PID are flat is an illustrating example of the use of the criterion in Proposition 6.50.

It applies e.g. to Z-modules and modules over the ring k[x] of polynomials with
coefficients in field. Recall that module M over a ring A is torsion free if ax = 0, with
x € M and a € A, implies that either x = 0 or a is a zero divisor (thatis,a =0if Aisa
domain).

PROPOSITION 6.51 A module M over a principal ideal domain A is flat if and only if it is
torsion free.

Proor: An arbitrary ideal a in A will be principal, say generated by ¢. All elements
of the tensor product a® 4 M are then of the form t®x, and the map a® 4 M — M acts
by sending t®x to tx. This map is obviously injective if and only if ¢ does not kill any
non-zero element from M, and this holds for all ideals (¢) if and only if M is torsion
free. EI

¥

Exercises

(6.24) Show that the direct sum @;c; M; of a familliy {M;};c; of A modules is flat if and
only if all the M;’s are flat. Conclude that free modules are flat, and hence projective
modules will be flat as well.

(6.25) Show that polynomial ring A[t] is a flat algebra over A.

(6.26) Let A be a ring and assume given a short exact sequence

0 M’ M M 0

of A-modules where M” is flat. Prove that if one of M or M’ is flat, then the other one
is also flat. Give an example where M’ and M are flat, but M” is not.

(6.27) Show that any direct product [ [,c; Z of copies of Z, is flat over Z.

(6.28) Let a< A be an ideal. Show that A/a is flat over A if and only if a® = a.
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Lecture 7

Localization

Very early in our mathematical carrier, if not in our lives, we were introduced to fractions,
so we should be well familiar with their construction and have their properties in the
backbone. Anyhow, recall that to every pair of integers m and n with n # 0, one forms
the “fraction” m/n. Two such fractions m’/n’ and m/n are considered equal—that is,
have the same numerical value—precisely when nm’ = n’m. The fractions, or the
rational numbers as we call them, are entities per se and not only results of division:
formally, they are equivalence classes of pairs (m, n) with respect to the equivalence
relation above. The fractions obey the familiar rules for adding and multiplying we
learned in school, and they form a field, the field Q of rational numbers.

There is a simple and very general version of this construction. It gives us the
freedom to pass to rings were a priori specified elements become invertible. Virtually
any set of elements can be inverted; there is merely one natural constraint. If s and ¢
occur as denominators, their product st will as well; indeed, one has sl = (st)*l.
Hence the natural notion is the concept of multiplicatively closed sets.

The process is indeed very general. It even accepts zero divisors as denominators,
but it will then be murderous: if a is a zero divisor, say a-b = 0 with b # 0, and a
becomes inverted, b gets killed; indeed, it will follow that b = alab=a1.0=0.In
principle, one can even push this as far as inverting 0, which however will be devastating:
the entire ring collapses to the null-ring.

There are several ways of defining these localized rings. We shall follow most text
books and mimic the way one constructs the rational numbers. This is a direct and
intuitive construction which does not require much machinery.

The name “localization” has its origin in geometry where one considers rings of
functions, say continuous functions on a topological space X. If U < X is an open set,
every function whose zeros all lie in the complement X\U of U, becomes invertible
when restricted to U; hence one obtains many functions on U by inverting certain
functions on X. In general, far from all are shaped like that, but in special situations,
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Multiplicatively closed
sets (multiplikativt
lukkede mengder)

important in algebraic geometry, all algebraic functions on U arise in this way.

7.1 Localization of rings

We start out with introducing the notion of multiplicatively closed sets, and proceed
to construction the localized rings. They will be characterized by a universal property.
Core examples will be given, and their basic properties will be established, notably the
relation between ideals in the ring A and ideals in the localizations S~! A.

Multiplicatively closed sets

(7.1) The notion of a multiplicatively closed set were already introduced in the formula-
tion of the Fundamental Existence Theorem (Theorem 2.49 on page 49), but we remind
you that a subset S of a ring A is a multiplicatively closed set, or for short also called a
multiplicative set, if it contains the unit element, and the product of every two elements
from S belongs to S. That is, the following two conditions are satisfied

a1les;
a Ifs,teS, thensteS.

Examples
Examples of multiplicative sets abound, but for the moment we only mention a few of
the more important ones.

(7.1) The set of all powers a of an element in A; that is, the set S = {a" | n € Ny },
obviously is multiplicatively closed.

(7.2) The complement S = A\p of any prime ideal p in A is multiplicatively closed;
indeed, from st ¢ S ensues that st € p and at least one of the factors s or ¢t belongs to
p; that is, it does not lie in S. In fact an ideal a is prime if and only if the complement
A\a is multiplicatively closed. This argument generalizes immediately and shows
that the complement S = A\ (J;c; p; of a union of prime ideals (finite or not) will be
a multiplicative set. Indeed, if st ¢ S, there is at least one index i so that st € p;;
consequently either s or ¢ belongs to p; and hence not to S.

(7.3) It is fairly clear that the intersection of any family of multiplicatively closed sets
is multiplicatively closed, and one may therefore speak about the the multiplicative set
generated by a subset T of A. It equals the intersection of all multiplicatively closed
sets containing T, and one convinces oneself on the spot that its elements are all finite
products of elements from T. So for example, the multiplicative set in Z generated by 2
and 5 consists of all numbers of the form 275, with a,b € INj.
(7.4) An occasionally useful multiplicatively set is the set S = 1 4 a where a is an ideal
in A.

¥

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



LOCALIZATION OF RINGS

The construction of the localization S™' A

The construction of the localized ring S™1 A follows grosso modo the same lines as the
construction of the rational numbers from the integers, but with a necessary twist due
to the possible presence of zero divisors in S, which has the serious consequence that
the cancellation law does not hold, and this complicates the matter.

(7.2) A fraction has an enumerator and a denominator, and in our context the latter
will be confined to S. A natural starting point is therefore the Cartesian product A x S
with the first factor representing all possible enumerators and the second all possible
denominators. The next step is to introduce an equivalence relation on A x S telling
when two fractions are to be considered equal, and inspired by the case of rational
numbers, we declare the pairs (4,s) and (b, t) to be equivalent when for some u € S, it
holds true that u(at — bs) = 0; the factor u is necessary to resolve problems possible
zero divisors would cause.

The salient point of the construction is that this is an equivalence relation. We shall
(temporarily) write (a,s) ~ (b,t) when (a,s) and (b, t) are equivalent. The relation is
obviously reflexive and symmetric. To see it is transitive assume given three pairs (a,s),
(b,t) and (c,u) such that (a,s) ~ (b, t) and (b, t) ~ (¢, u); transcribing the equivalences
into equalities in A, we find that v(at — bs) = 0 and w(bu — ct) = 0 for some elements
v, w € S. Since

tHau — ¢s) = u(at — bs) + s(bu — ct),

we infer that
vwt(au — cs) = wu(v(at — bs)) + sv(w(bu —ct)) = 0.

From S being multiplicatively closed it ensues that vwt € S, and so (a,s) ~ (¢, u). We let
the localization S™1 A of A in S be the set of equivalence classes A x S/ ~, and denote by
a/s or as~ ! the class of the pair (a,s).

The next task is to give a ring structure to S™' A, and there is no hocus-pocus about
that, it is done by the familiar formulas for adding and multiplying fractions we know
from school:

a/s+b/t = (at+bs)/st a/s-b/t =ab/st. (7.1)

However, some checking is necessary. First of all, the definitions in (7.1) are expressed
in terms of representatives of equivalence classes, and it is paramount that they do
not dependent on which representatives are used. Secondly, the ring axioms must be
verified. Once we know the definitions are legitimate, this is just straightforward high
school algebra, safely left to volunteering students.

Let us check that the sum is well defined, leaving the product to the eager students.
Notice that it will suffices to vary the representatives of one of the addends at the time;
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so assume that (a,s) ~ (a’,5'); i. e. it holds that u(as’ — a’s) = 0 for some u € S. We find
s't(at +bs) —st(a't +bs') = t*(as’ —a's)

which is killed by u. Therefore the sum does not depend on the representative of the first
addend, and by symmetry, neither on the representative of the second. Consequently
the sum is well defined.

Exercist 7.1 Show that the product is well defined. On a rainy day when all your
friends are away, verify the ring axioms for S~!A. *
(7.3) There is a canonical map t5: A — S~ A, which is called the localization map. It is
nothing but the map that sends an element a in A to the class of the pair (a,1); that
is, a is mapped to the fraction a/1. By the very definition in (7.1) of the sum and the
product in the localization S~' A, this a ring homomorphism. Seemingly, this map does
nothing to a, but kill it if necessary, and our next proposition details this murderous
behaviour of ig.

PROPOSITION 7.4 All elements in S~1A are of the form a/s. It holds true that i5(a) = 0 if and
only if a is killed by some element from S; i. e. if and only if there is an s € S such that sa = 0.

Proor: By definition, every element in ST!A is an equivalence class a/s. The zero
element in S™!A is represented by the pair (0,1) and t5(a) by the pair (a,1). Hence
1s5(a) =0ifand only ifs- (a-1—0-1) = 0 for an s € S; that is, if and only if s- a = 0 for
anseS. J
(7.5) When S contains no zero divisors, the map i will be injective, and we shall
identify A with its image in S~!A. This simplifies the notation significantly. We may
safely write a instead of i(a) or a/1, and the inverse image (5 ' (b) of an ideal (or any
subset for that matter) will simply be the intersection A N b.

The universal property

(7.6) The localized ring S~! A together with the localization map (s are characterized by
a universal property, which loosely may by phrased by saying that any ring map with
source A that maps elements from S to units, extends* to a ring map from S~!A.

PROPOSITION 7.7 Let A be a ring and S < A a multiplicative subset. Assume given a ring
map ¢: A — B that sends S into the group of units in B. Then there is a unique map of rings
¢: ST'A — Bso that ¢ = ¢ os.

ProoF: The sole way of realizing a ring map ¢: S™'A — B extending ¢ is to put
pla/s) = ¢(a) - §(s) 7, (7.2)

and the gist of the proof is that this is a legitimate definition, i. e. that ¢(a) - ¢(s) ™
is independent of the chosen representative (4,s). But from a/s = a’/s’ ensues that
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t-(as’ —sa’) = 0 for an element t € S, and hence, since ¢ is map of rings, that

o(1) - (9(a) - 9(s') — p(a') - (s)) = 0.

The element ¢(t) is invertible by assumption, and we conclude that ¢(a) - ¢(s)~! =
P(a’) - ¢(s') L. That ¢ = yog, is trivial, and that ¢ is a homomorphism follows directly
from (7.2) and the usual formulas for products and sums of fractions (the formulas in
(7.1)). 4
As any other object characterized by a universal property, the pair 15 and S™1A
is unique up to an unambiguous isomorphism: if /5: A — S71A’ solves the same
universal problem, one has i = 1 o 15 for a unique isomorphism ¢: S71A — S~1A’.

Examples

(7.5) We have not excluded that 0 lies in S. In this case however, the localized ring
will be the null-ring since 0 becomes invertible. This situation occurs e.g. when S has
nilpotent members.

(7.6) An simple situation to have in mind is when A is contained in a field K. The
localized ring S™!A is then just the subring A[s~!|s € S] of K generated by the inverses
of members of S. The elements of this ring are all shaped like as~!; indeed, every sum
D a,-sfl can be rendered on this form with s a common denominator of the terms. The
universal property of the localized ring S™' A then immediately gives a map of rings
S71A — A[s7!|s € S] which one easily checks is an isomorphism using the description
of S~! A in Proposition 7.4 on page 176.

(7.7) The ring of integers Z within the field rationals Q is a particular instance of the
situation in the previous example. When S is the set of all powers of a given number
p, thatis, S = {p" | n € Ny}, the ring S™1Z = Z[1/p] = {a/p" | a € Z,n € No}
will be the ring of rational numbers whose denominators are powers of p (see also
Example 1.12 on page 18).

In a similar vein, when p is a prime and S is the complement of the principal

ideal pZ, the localization S~!Z will be the ring Zy ={a/blabeZ (p,b)=1}of
rational numbers whose denominator is prime to p. We have already met these rings in
Example 2.23 on page 55.
(7.8) Consider the polynomial ring k[x,y,z] in three variables over the field k. Here
we aim at describing the localization of k[x,y, z] in the prime ideal (z) and showing
that k[x,y, z] ;) = k(x,y)[z]-); that is, the polynomial ring over the fraction field k(x,y)
localized at the prime ideal (z). The principle from Example 7.6 takes effect, and we
can work with subrings of the rational function field k(x,y, z).

Let S be the subset of k[x,y,z] whose members are the non-zero polynomials
involving only the variables x and y. It is obviously multiplicatively closed, and just

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



178 LOCALIZATION

The field of fractions of
a domain
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as obviously, it holds that S~'k[x,y, z] = k(x,y)[z]. Localizing both rings in the ideals
generated by z we obtain the desired equality, noticing that S < k[x, y]\(z), so elements
in S are already invertible in k[x, y,z] () and thus (S~ 'k[x,y,2])z) = k[x,, 2] 2)-

*

Functoriality

(7.8) The ring S™' A depends of course on both A and S, so functoriality is naturally
formulated in terms of the pair (A,S). Assume given another pair (B, T) and a map
of rings ¢: A — B such that ¢ sends elements of S into T. Then there is induced a
map of rings ¢g: S™1A - T1B satisfying ¢g 1 0tg = 17 o ¢: since ¢ takes S into
T, the elements ¢(s) become invertible in T~!B, and the universal property of S~ A
guarantees that (7 o ¢ extends to a uniquely defined map ¢s7: S~'A — T~1A. This
map simply sends a/s to ¢(a)/¢(s).

(7.9) A particular case to notice is when A = B and ¢ = id4. If SC T, there is a
canonical map S~'A — T~!A which just interprets fractions a/s in S™'A as a fractions
in T~ A. This map might appear very much like doing nothing; but be aware, it can
have a non-trivial kernel. When some member of T kills elements in A not killed by
anyone in S, there will non-zero members of the kernel.

Exercise 7.2 Let S and T be two multiplicatively closed subsets of A. Let T = 15(T).
Prove that 15(T) is a multiplicatively closed subset of S~'A and that 15(T) 1S~ 1A is
canonically isomorphic with (ST) ™! A, where ST is the multiplicatively closed set whose
elements are products of elements from S and T. *

The field of fraction of a domain

(7.10) Every domain is contained in a field K(A) canonically attached to A, which in
some sense is the smallest field containing A. It is called the field of fractions of A and
is constructed as the localisation 1A of A in the set & of non-zero elements from A;
the set X is multiplicatively closed since A is a domain. Elements of K(A) are all of the
form ab~! with g and b elements from A and b # 0, and since zero divisors are absent
from A, it holds true that a/b = a’ /¥’ if and only if ab’ = a’b. In particular, we see that
K(A) is a field: that a/b # 0, means that a # 0 and then b/a is defined and serves as
the inverse of a/b.

The field K(A) is the smallest field containing A in the sense thatif AC L with L a
field, the universal property of a localization furnishes an injectiv map from K(A) into
L whose image is a copy of K(A) lying between A and L.

ExAaMPLE 7.9 A familiar example of fraction fields is the field Q of rational numbers,
the fraction field of Z. Another is the field C(x1,...,x,) of rational functions in the
variables x1, ..., x,, which is the fraction field of the polynomial ring C[x1,...,x:]. *
(7.11) Every multiplicatively closed set S not containing 0 is contained in >. Hence
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there is a canonical map S™'A — K(A), and since there are no zero divisors around, it

is an embedding. This map is as canonical as can be, simply, it sending as~! to as~!,

I and

but there is in the outset a subtle distinction between the two localizations as™
as~1; they live formally in the distinct rings S~ A and K(A) = £~'A. However, in the
sequel we gladly ignore these subtleties and consider the two rings to be equal: we
shall (when A is a domain) tacitly identify S™' A with its alter ego in K(A). Notice that
the maps ¢g r from Paragraph ??, where T is another multiplicatively closed subset T

containing S, then become inclusions.

Exercises
(7.3) Let A be a domain with fraction field K, and let ¥ = A\{0}. Let t1,...,t, be
variables. Show that 21 A[t,...,t,] = K[t ..., t].
(7.4) Show that the field of fractions of the formal power series ring k[t] is the ring
k((t)) of formal Taylor series in t. That is, the ring whose elements are series of the form
s, a;t' with a; € k and where addition and multiplication are the natural ones. The
addition is performed termwise and the multiplcation is the usual Cauchy product:
Zy;—m aﬂﬂl : Zv?—n byt" = Zizfmax (n,m) Z;H-v:i aHthl'

*

Saturation and equality

A very natural question is when will two multiplicative sets S and T give rise to the
same localization? As usual, care must be taken when saying that things are equal. In
the present context, the precise meaning of S™'A and T~!A being the same, is that
there is an isomorphism 6: S~'A — T~!A compatible with the localization maps; i. e.
it satisfies 0 o 1g = 17. However, when A is a domain and all localizations are considered
to be subrings of the fraction field K(A), there is no abracadabra, and equal means
equal.

(7.12) Recall that a multiplicatively closed set is said to be saturated if with s every factor
of s belongs to S; that is, if s = uv lies in S, so does u (and hence by symmetry v). Every
multiplicative S has a saturation, a smallest saturated multiplicative set S containing S.
It consists of all factors of elements from S, or when described in symbols, it appears as

§:{ueA|uveSforsomeUeA}.

This set is multiplicatively closed: uv € S and u'v’ € S implies uu’ - vv’ € S since S is
multiplicatively closed, and it is evidently saturated since a factor of a factor is a factor!

ExaMPLE 7.10 Let a be a natural number and let S be the multiplicatively closed set
S={a" | neNy} of powers of a. Moreover, let p1, ..., pr be the different prime factors
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of a. Then the elements of the saturation S are all integers of the form +p{' ... p)"
with the exponents v; being arbitrary non-negative integers. *
In the context of the Fundamental Existence Theorem (Theorem 2.49 on page 49) you
were asked (Problem 2.23 on page 53) to show that a multiplicative set S is saturated if
and only if the complement is a union of prime ideals. Connecting up with that, we
have the following description of the saturation S, or rather of its complement:

PROPOSITION 7.13 Let S be a multiplicatively closed set in A. The complement of the saturation
S is the union of the prime ideals maximal subjected to not meeting S.

ProoFr: A member x of A does not belong to Sif and only if the the principal ideal (x)
does not meet S. Hence, according to the Fundamental Existence Theorem, x € A\S if
and only if there is a prime ideal maximal subjected containing (x) and to not meeting
S. u

(7.14) The next lemma answers the retoric question at the top of this paragraph:

LemMA 7.15 The three following assertions hold true for multiplicatively closed subsets S and
T of a ring A:
i) The canonical map S1A >S5 1Aisan isomorphism;
ii) If SC T and the canonical map S~ A — T~ A is an isomorphism, then T S;
iii) There is an isomorphism between S~ A and T~ A compatible with the localization
maps if and only if S=T.

Proor: We begin with proving i): Take an element from ST1A. Itis shaped like au~!

! = gv(uv)~!, and the map is

with u € S, so that uv € S for some v € A. Hence au™
surjective. That an element as~! € S~! A maps to zero, means that 4 is killed by some u
in S, but u € S means that uv € S for some v. Hence (1v)a = 0and a = 0 in S~ A.

To establish i) we first observe that the canonical map being injective means that
an element a € A satisfying ta = 0 for some ¢ € T, also satisfies sa = 0 for some s € S.
Now, let t € T. The canonical map being surjective entails that ¢! lies in its image, i. e.
for an s € S it holds that ! = as~! in T~!A. This means that u(at —s) = 0 for some
u € T. But by the initial observation, it ensues that v(at —s) = 0 for some v € S, and t is
a factor of the element vs which lies in S.

The last assertion iii) is a direct consequence of the two others. a

Exercises

(7.5) Show that Z[1/10] = Z[1/2,1/5]. Generalize.

(7.6) Prove that any intermediate ring Z < A < Q is a localization of Z in a multiplicative
set S.

(7.7) Prove that the group of units A* in A is a multiplicative set. Show that the
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localization maps tg is an isomorphism if and only if S is a subset of A*.
(7.8) Consider be the polynomial ring A = k[x1, ..., x,] over the field k. Let S be the
set of non-zero polynomials in A that depend only on the first r variables; i. e. those
on the form p(xy,...,x;). Show that S is multiplicatively closed and that S™1A =
K[xy41,...,x4]) where K is the field k(x1, ..., x,) of rational functions.
(7.9) Let A be any ring. Describe the saturation of the set {1}.
(7.10) Both the set of even and the set of odd (non-zero) numbers are multiplicatively
closed . What are their saturations? Let p be a prime. Verify that the set of integers
congruent one mod p constitute a multiplicative set. What is the saturation?
(7.11) Describe all the saturated multiplicative sets in Z. Generalise to any factorial
domain A.
(7.12) Given an ideal a in A. Describe the saturation of the multiplicative set 1 + a.
(7.13) Let M be an A-module. A ring element x € A is called a zero divisor on M if
xm = 0 for some non-zero m € M. Show that the set S of non-zero divisors on M form
a saturated multiplicatively closed set. Hence the set of zero divisors Z(M) on M is the
union of prime ideals. Show that Z (M) is the union of the ideals maximal among the
prime ideals not meeting S. These are called the maximal associated ideals to M.
(7.14) When L is a set of primes in Z (finite or infinite), let Z) denote the localization
in all primes outside L; that is, we put Z ;) = ﬂpe L Z (). Show that there is a natural
isomorphism Z\®@zZ 11y ~ Z(p 1)

e

Ideals and localization

There is a strong relationship between ideals in A and ideals in S~!A. It relies on the
two functorial ways of transporting ideals to and fro along ring maps (as explained in
Section 2.9 on page 32). On the one hand any ideal b in S~!A may be pulled back to
give an ideal 15_1 (b) in A (when g is injective and A is considered to be contained in
S~1A, this is just the intersection A N b). On the other hand, one may extend ideals in A
to ideals in ST A: the extension of a< A to S™' A is the ideal aS~!A in S~! A generated
by i5(a). To simplify the notation we shall write S~'a for it.

(7.16) The extension map Z(A) — Z(S~!'A) preserves inclusions (but not strict inclu-
sions) and as extension maps always do, it preserves products and sums of ideals (see
Proposition 2.13 on page 33).

In general the extension map from Z(A) to Z(S~'A) is not injective. For instance,
it may happen that Sna # (J, in which case the extension S~'a will contain an
element invertible in S~'A and consequently be equal to whole ring S™'A; and of
course, this may be the case for several different ideals. In quite another corner, ideals
a contained in the kernel of is reduce to the zero ideal in S™1A. So, some ideals are
blown up to S~!A (those meeting S) and some collapsed to zero (those contained in
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ker ig). See Exercises 7.17 and 7.18 below for a discussion of when ideals have coinciding
localizations.

ExaMPLE 7.11 A simple instance of the extension map not being injective is the case
when A = Z and S = {p" | n € Z} for some prime p. All the ideals a = (p™)
extend to the entire ring S™1Z. This also illustrates that forming extensions does not
commute with forming infinite intersections; indeed, one has (,,(p™) = 0 whereas
Nnr"S 'z =5"12Z. *
(7.17) The extension map is however surjective. Any ideal b< S~'A equals S_lzs_lb ;
that is, when pulling an ideal back to A and subsequently extending the result, one
recovers the original ideal. To see this, notice that if b = a/s belongs to b, the element a
belongs to tgl(b) as tg(a) = b-s, and therefore b lies in the extension S_ltgl(b).

PROPOSITION 7.18 (IDEALS IN LOCALIZATIONS) The extension map from the lattice Z(A) to
the lattice T(S™'A) given by a — S~ 'a is surjective. It preserves inclusions, products, sums
and finite intersections. One has L5_1 (S~'a) ={ae A|sacaforsomeseS}, and for ideals
b< S~LA it holds true that b = S‘l(tglb).

Proor: We have already proved most of the proposition, only the assertions about sums,
products and intersections remain unproven. It is a general feature of extension of ideals
that products and sums are preserved, so we concentrate on the finite intersections; and
of course, the case of two ideals will suffice.

Clearly S~!(ana’) =S 'an S~la’. So assume that b € S~'a n S~'a’. One may then
express b as b = a/s = a’ /s’ with elements a and 4’ from respectively a and a’. This
yields t(a-s’ —a’-s) = 0 for some t € S. But then tsa’ = ts'a € a n o’ and consequently
b = tsa' /tss’ lies in S~ (an d). Q
(7.19) Prime ideals behave more lucidly under localization than general ideals. Either
they blow up and become equal to the entire localized ring S™' A, or they persist being
prime. Moreover, every prime ideal in S~!A is of the shape pS~!A for an unambiguous
prime ideal p of A, so that two different prime ideals persist being different unless both
blow up. One has:

PROPOSITION 7.20 (PRIME IDEALS IN LOCALIZATIONS) Assume p is a prime ideal in the ring
A and S is a multiplicative subset of A. Extending p to the localization S™' A has two possible
outcomes. Either S~'p = S™1A, and this occurs if and only if p N S # &, or otherwise S~y is
a prime ideal and 151(5_113) =p.

ProOF: If S np # (& the ideal p blows up to the entire ring in S 1 A; that is, it holds that
S7lp = ST1A. If not, S~!p is a prime ideal; indeed, suppose that bb’ € S™'p and that
b=a/sand V' = a’'/s’ with a,a’ € A and 5,5’ € S. We infer that tss’'bb’ = taa’ € p for
some t € S, and hence either a or a’ lies in p since t does not. Moreover, if i15(a) = a’s ™!

for some a’ € p, if follows that sta = ta’ € p, hence a € p since p is a prime ideal. a
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PROPOSITION 7.21 (PRIME IDEALS IN LOCALIZATIONS II) The prime ideals in the localization
S~LA are precisely the ideals of the form S~p for p a prime ideal in A not meeting S. The
prime ideal p is uniquely defined.

In other words, extension and contraction of ideals are mutually inverse maps between
the sets of prime ideals in S™! A and of prime ideals in A not meeting S.

ProOF: By the previous proposition, the ideals S~!p are all prime, so let q be a prime
ideal in S~'A. Then p = tglq is prime, and by the last sentence in proposition 7.18
above it holds that g = S~ 1p. a
(7.22) Localization commutes as we have seen, with several processes ideals can be
exposed to, like forming products, intersections and sums. In this paragraph we treat
the case of radicals, and as a further example, transporters are covered in Problem 7.23
below.

PROPOSITION 7.23 (RADICALS LOCALIZE) Let a be an ideal in A and S < A a multiplicative
set. Then it holds true that

VSlta=5"1/a
Proor: If xs~! € S71\/a with x¥ € a and s € S, it holds that (xs7!)" = x's™¥ € S~ la,
and so xs7! lies in v/S —14. For the other inclusion, assume that xs~—1 € \/S_la, which
means that for some natural number v it holds that (xs~!)V = at~! withte€ Sand a € a.
Hence (xt)" = s'at'~! € a, and consequently x € \/a and xs~' € S™1/a. a

Exercises

(7.15) Show that if S~'a = S™1 A, then the same holds for all powers a’ of a.

(7.16) Let p and q be different prime numbers and let S be the multiplicative set
S={p"|neNp}. Describe Z n (pq)S~'Z.

(7.17) Let S be multiplicatively closed in the ring A and let a £ A be an ideal.

a) Show that the ideals (a : s) when s runs through S form a directed family of

ideals; hence their union is an ideal;

b) Show that [ J,eg(a:s) = 151 (S a);

c) Show that | J,cs(a : s) is maximal among the idelas b such that S_1b = S~1a.
(7.18) Let a and b be two ideals and S a multiplicative set in the ring A. Show that
S~la = S~1p if and only if for each pair of elements a € a and b € b there are elements s
and f in S such that sa = tb.

(7.19) Suppose that p is a prime ideal and that a an ideal contained in p. Show that
15 (S a) cp.
(7.20) Let j: Spec ST!A — Spec A be the map induced from the localization map
15: A— STTA.
a) Show by an example that j is not necessarily an open embedding. HINT: Let e.g.
A = Z and S the multiplicative subset generated by every second prime.
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b) Show that j is a homeomorphism onto its image (when the image is endowed
with induced topology). Show that the image j(Spec A) equals the intersection
of all the open sets containing it.

(7.22) Given an example of a ring A and a non-zero prime ideal p such that A, = A/p.
HiINT: Let A be the product of two fields.
(7.23) Let a and b be two ideals in A, Prove that S~!(a: b) = (S~!a: S~1b).

The local ring at a prime ideal.

A few ways of forming rings of fraction are omnipresent in algebra and algebraic
geometry and they are used over and over again. The most prominent one is the
localization Ay, of A at a prime ideal p.

The complement S = A\p of a prime ideal p is as we have seen multiplicatively
closed, and the corresponding localized ring is written as A. The elements are fractions
a/b with b ¢ p. The ring A, will be a local ring whose only maximal ideal is the
expansion of p; that is, the ideal pAy:

PROPOSITION 7.24 The localisation Ay is a local ring with maximal ideal p Ay. The assignment
q — qAy is a one-to-one correspondence between prime ideals in Ay and prime ideals q in A
contained in p. The inverse corresprondence is the pull-back p — 15_1 (p).

Notice, that when all zero-divisors of A lie in p, so that the localization map is injective,
and we identify A with its image in Ay, the inverse correspondence will just be
p—pnA.

Proor: This is nothing but Proposition 7.21 on the previous page, according to which
the prime ideals in Ay are precisely the ideals in A, of the form qA, where q is a
prime ideal in A not meeting S, that is, contained in p. Moreover 7.21 also tells us that
q=1"(qAp). -

Examples

(7.12) If p is a prime number, the localized ring Z, at the maximal ideal generated
by p consists of the rational numbers which when written in lowest terms, have a
denominator relatively prime to p. The maximal ideal in Z ) is generated by p, and
the residue field is the field IF, with p elements.

(7.13) If p(x) is an irreducible polynomial in the polynomial ring k[x]| over a field k,
the ring k[x](,(y)) is the subring of k(x) consisting of the rational functions whose
denominator when written in lowest terms does not have p(x) as factor. The maximal
ideal is generated by p(x), and the residue field will be the field obtained by adjoining
a root of p(x) to k. In particular, if p(x) is linear, say p(x) = x —a, the elements of
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k[x] (p(x)) are the rational functions whose denominator does not vanish at a. The residue
field will be k itself.

(7.14) We continue working with a prime ideal p in a ring A. The quotient A/p is
naturally contained in the residue field k(p) = A, /pA;, as the inverse image of pA,
equals p, and since elements in the latter are all classes of the form [as~!] witha € A
and s € A\p, it ensues that the residue field k(p) equals the fraction field of A/p.

*
(7.25) Although the prime ideal pA; pulls back to the prime ideal p, powers of pA;, do
not always pull back to powers of p. However, there is always a ring map

A/pr d Ap /prAp (73)

for the simple reason that p” maps into p" Ay, but it might very well fail both to be
injective and surjective. That surjectivity may fail is not unexpected, since, for instance,
Ay /pAp will be a field whereas A/p is not unless p is maximal. That injectivity may
fail, is certainly more subtle. It leads to the introduction of the so called symbolic
powers p() = p"Ap N A of p (they will be treated more thoroughly in Exercise 10.11 on
page 275). The kernel of the map in (7.3) equals the quotient p(") /p’, so the map is not
injective precisely when the two differ. Below (Example 7.15) we shall give an example
of a symbolic square p(2) being different from the plain square p2 . When p is a maximal
ideal, however, the map in (7.3) will always be an isomorphism.

LEMMA 7.26 Let m be a maximal ideal in A. Then m" Ay n A = w". Moreover, the canonical
map A/m" — Ag/m" Ay is an isomorphism.

Proor: This hinges on a classic from algebra, namely the formula
1-x)1+x+...+xH+x =1,

valid for r > 1 and in any ring. It implies that elements in A/m" not lying in the
maximal ideal are invertible. Indeed, if s € A\m, we may find an element t € A\m such
that x = 1 — st € m (simply because A/m is a field: lift the inverse of [s] in A/m to A).
With that x the formula above gives

st Z (1-st)i—1lem.

o<i<r—1

Consequently the class of st in A/m", and hence a fortiori the class of s, is invertible.
Now, take any element a2 € m" Ay, N A; it may be written as a = xs~! with x e m”

and s ¢ m. Hence sa = x € m’, but since s is invertible mod m’, it ensues that a € m’.

Indeed, 2 = (1 — ts)a + tx € m” where f is an element in A such that 1 —tse m’.
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In the same vein, the map in the lemma is surjective because with t as above, we
find as—1 — at € m" Ay,,, and the element at of A maps to as~! mod m’. a
ExaMmrLE 7.15 A symbolic square that differs from the plain square: Lemma 7.26 does not
always hold for prime ideals that are not maximal; the ideal of a line in the cone over
a plane quadric is among the simplest examples: Let k be a field and let A = k[x, y, z]
with constituting relation z2 = xy. The ideal p = (z, x) is a prime ideal, since putting x
and z to zero induces a map A — k[y| whose kernel is p. Neither x ¢ p nor y ¢ p, since
in the polynomial ring k[X, Y, Z] no non-zero linear form lies in (XY, XZ, X2, 7% — XY),
simply for degree reasons, so in particular the map just defined is surjective.

In the local ring Ay the element y is invertible and we therefore have

p2Ap = (22,zx,x2)Ap = (xy,zx,x2)Ap = (x)Ap,

whereas in A we have p? = (xy,zx, x?). We already observed that x ¢ (xy,zx,x?) so
p? < p2A, N A. *

Exercises
(7.24) Let m be a maximal ideal in the ring A and let r be a natural number. Show
that the localization map A — Ay, induces an isomorphism between m”/m’*! and
m A /m' LA, as vector spaces over A/m.
(7.25) Let A be a domain with fraction field K. Show that A =), Am. HINT: For any
x € Knot in A prove that the ideal {y € A | yx € A} can not be a proper ideal.

H*

Inverting powers of a single element.
Given an element f € A. Theset S = { f" | n € Ny } of all powers of f is obviously
multiplicatively closed, and the corresponding ring of fractions S~!A is denoted A f-
The prime ideals in Af are exactly those on the form pAy for p a prime ideal in A with
f ¢ p; that is, for the members of the distinguished open subset D(f) of Spec A.

There is a natural isomorphism between A[x]/(xf —1) and Ay that sends x to f~1.
By the universal mapping property of the polynomial ring the map is well defined, and
f being invertibel in A[x]/(xf — 1), the unversal property of Ay furnishes an inverse.
This makes the notation A[f~!] for A  legitimate; the usage is however poisonous when
f is a zero-divisor. Adding f~! kills, and in case f is nilpotent, the intoxication is lethal;
everything is killed and A[f~1] = 0.
ExamrLE 7.16 It is worthwhile mentioning a concrete example. Consider the ring
A = C[z] of complex polynomials in the variable z and let f = z — a. The localized
ring Ay consists of those rational functions that are regular away from a; that is, they
have at most a pole at a. This generalizes to the ring O(Q) of functions holomorphic in
any domain Q) of the complex plane containing a. The localized ring O(Q)),—, has the
functions meromorphic in () with at most a pole at a as elements. *
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The total ring of fractions

The set S of non-zero divisors in ring A is closed under multiplication; indeed, if s and ¢
are non-zero divisors and st -a = 0 with a # 0, it would follow that ta # 0 which would
contradict that s is a non-zero divisor. The set S is even a saturated multiplicative set
since a zero-divisor can not be factor of a non-zero-divisor.

The localization of A in S is denoted by K(A) and is called the total ring of fractions
of A. When A is an integral domain, S = A\{0}, and all non-zero elements become
invertible in K(A). Consequently K(A) is a field; it is called the field of fractions of A, a
construct we already met in Paragraph 7.10 on page 178.

The ring K(A) is in general not a field, but by definition has the property that all
non-zero divisors are invertible. In any case, the canonical map A — K(A) is injective
since by their very nature non-zero divisors do not kill non-zero elements.

Proros1iTION 7.27 The total ring of fractions K(A) of a ring A has the property that every
non-zero divisor is invertible. The natural map A to K(A) is injective. Moreover, K(A) is a
field if and only if A is an integral domain.

(7.28) The total rings of fractions of a certain class of reduced rings—recall that A being
reduced means it is without non-zero nilpotent elements—has a closer description. The
class of rings we have in mind are the reduced rings with a finite number of minimal
primes. Since the radical 1/(0) equals the intersection of the minimal prime ideals, in
these rings the zero ideal is the intersection of finitely many prime ideals; that is, one
has

0)=p1n...0py, (7.4)

where the p; are distinct prime ideals. This is a large class of rings encompassing all
reduced Noetherian rings (a class of rings soon to be introduced). The p;’s occurring in
(7.4) being minimal the intersection is irredundant; i. e. the intersection of all but one of
the p;’s is never zero. An important observation is that the set of zero-divisors in A is
precisely the union pj U ... U p, of the p;’s (see Exercise 7.30 below).

PROPOSITION 7.29 (TOTAL RING OF FRACTIONS OF REDUCED RINGS) Let A be a ring without
non-zero nilpotent elements.
i) The local ring Ay at a minimal prime p is a field;
ii) When A has only finitely many minimal prime ideals p1, ..., p,, the total ring of
fraction is a product of fields; i. e. K(A) = Ap, X ... X Ap,.

Let us first remark that the statements are not generally true for non-reduces rings see
Example 7.17 below of what may happen if A is not reduced.

The closed subsets Spec A/pi are the irreducible components of Spec A; that is,
Spec A = Spec A/p1 u...u Spec A/p,, and the proposition says that the total ring of
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fractions of Spec A equals the product of the fraction fields of the irreducible compo-
nents of Spec A.
Proor: We begin with proving i) which is the easier: If p is a minimal prime, the local
ring Ay has p as its sole prime ideal simply because prime ideals in Ay, correspond to
prime ideals A contained in p. Radicals localize well (7.23 on page 183), and A being
reduced, we infer that A, is reduced as well. Because the radical of A, equals pAy, it
follows that pA, = 0, and consequently, A, is a field.

Statement ii) is a little more elaborate. For each index i the localization map A — Ay,
extends to a map K(A) — Ay, because no non-zero divisor lies in p;, and recollecting
these maps we obtain a map

0: K(A) > Ap, x ... x Ap,.

It sends as~! to the string (as~!,...,as71). An element a from A maps to zero in Ay,

precisely when a is killed by an element not in p;, and thence a € p;. If this occurs for all
indices i, the element 4 lies in the intersection of the p;’s and is therefore equal to zero
(the intersection of the p;’s vanishes as A is reduced). This proves that 6 is injective.

To see that 6 is surjective requires some further effort. We begin with choosing an
element s; for each i such that s; ¢ p;, but s; € p; when j # i. Then s; becomes invertible
in Ap,, but maps to zero in Ay, when j # i; indeed, each s; is killed by any non-zero
element in ﬂj# pj, and there are such since the intersection in (7.4) is irredundant.

Now, we come to the salient point of the proof: For any choice of elements ¢y, ..., ¢,
with each ¢j not in i, the combination x = Z]- Cjsj is a non-zero divisor. Indeed, if x
belonged to p;, it would ensue from s; € p; when j # i that ¢;s; = x — 3., ¢js; belonged
to p;, which is absurd since neither c; nor s; lies there. Consequently Z]- ¢js; is invertible
in K(A), and in view of s; mapping to zero in Ay, when j # i, one finds

-1 —1.—1 —1.-1
6((chs]-) ) =(cy sy 0 s ).
j
Finally, if a1, ..., a, are are arbitrary elements A one arrive at

6((2 Siai)(z cjsi) ) = (mcy !, e ),
J )

showing that 0 is surjective. a

To describe the total quotient rings of of rings that are not reduced is in general
much more involved, as indicated by the following example. For a certain class of
rings—those “without embedded components”—a description similar to the one in the
proposition holds. An indication is given in Exercise 7.26 (7.31) below.

ExamrLE 7.17 Let B = k[X, Y]/ (X?, XY), and as usual, let the lower case versions x and
y denote the classes of X and Y in B. We contend that m = (x,y) consists of all the
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zero-divisors in B, and the total quotient ring K(B) is therefore given as the local ring
K(B) = Bm.

Clearly both x and y are zero divisors, so all members in m will be too. Assume then
that ab = 0 with neither a nor b being zero. Consider the classes [a] and [b] in B/m = k.
Their product is zero, hence at least one of them vanishes, say [a], which means that
a € m. Assuming that b ¢ m, after possibly rescaling b, one may write 2 = cx +dy
and b =1+ ex + fy, where d and f do not belong to the ideal (x)B. Then, using the

2

relations x* = xy = 0 which hold in B, one finds

0=ab=(cx+dy)-(1+ex+ fy) = cx +dy + fdy* = cx +yd(1+yf),

and hence yd € (x)B. But because B/ (x)B = k[X, Y]/(X?, XY, X) = k[Y], the ideal (x)B

is a prime ideal, and one infers that either y € (x) or d € (x), which is a contradiction.
The ring By, has two prime ideals, the maximal ideal (x,y) whose elements consti-

tute all zero-divisors, and a sole minimal prime ideal (x) whose elements are all the

nilpotents of B. *
Exercise 7.26  With reference to the example, show that B(,) equals the rational function
field k(Y). *
Exercises

(7.27) Let n be a natural number. Determine the total quotient ring of Z/nZ.
(7.28) Let A be any ring. Show that the nil-radical of K(A) is equal to the extension of
the nil-radical of A.
(7.29) Let A be aring.
a) Show that if the elements of A are either zero divisors or invertible, then
A=K(A).
b) If A has only one prime ideal, prove that K(A) = A.
c) Let A be a direct product (indexed by a set of any cardinality) of rings each
having only one prime ideals. Prove that K(A) = A.
(7.30) Assume that A is a reduced ring so that (0) = [),c; p; where the intersection
extends over the minimal prime ideals of a ring A. Show that the union | J;; b; equals
the set of zero divisors in A. HinT: Observe that p; kills ﬂ#i pj-
(7.31) Lett Abearing. Assume that 1/(0) = p; N ... p, is an irredundant intersection
of prime ideals. Assume further that the set of non-zero divisors of A equals the union
p1U...Up,. Show that the total ring of fractions K(A) decomposes as the direct product
K(A) = Ap, x ... x Ap,. HINT: Be inspired by the proof of the second assertion in
Proposition 7.29.
(7.32) Let k be a field and consider the polynomial ring A = k[xq,...,x,]. Let r < n be
a natural number. Let S be the subset of A of polynomials in the variable x,1,...,xy.
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Show that S is multiplicatively closed and that S~'k[x1,...,x,] = K[x1,...,x,] where
K =k(x;11,...,%y) is the field of rational functions in the variables x, 1, ..., X;.
(7.33) Let A be a domain with quotient field K. Denote by S the multiplicative set A\0
of non-zero elements in A. Show that S™1A[T] = K[T].

e

7.2 Localization of modules

There is also a procedure to localize an A-module M in a multiplicatively closed set S
closely resembling the way the fraction ring S™' A was constructed, and the localized
module will be denoted by S™!M. The construction of S™'M is functorial in M and
gives a functor Mod4 — Modg-1 4, with the important properties of being additive and
exact. Moreover, it preserves tensor products and hom-sets between finitely presented
modules. It takes submodules to submodules and respects most of the standard
operations on submodules. The localisation functor turns out to coincide with the base
change functor M — M®,S~ ' A.

Just as with rings, one writes M, and My for S~IM when S is respectively the
complement of a prime ideal p i. e. S = A\p and the set S = {f"} of non-negtative
powers of an element.

(7.30) To construction the localized module S™'M we mimick the way S~!A was
fabricated. Details will be skipped, but they may be verified mutatis mutandis as in the
case of ring.

To begin with one introduces an equivalence relation on the Cartesian product M x S
by declaring two pairs (m,s) and (m’,s’) to be equivalent if

t(ms' —m's) =0 (7.5)

for some t € S. One checks that this is an equivalence relation (transitivity is the only
challenge) and defines S~!M to be the set of equivalence classes S™'!M = M x S/ ~.
The equivalence class of a pair (m,s) will be designated either by m/s or by ms~1.
The additive group structure of S~!'M is introduced in analogy with the usual way of
adding fraction, namely as m/s +n/t = (mt + sn)/st. And the action of an element
a/s € ST1A is given in the straightforward way: a/s - m/t = am/st. There is canonical
map t5: M — S™!'M that sends m to the class of (m,1).

Naturally, there is a lot of checking to be done; that definitions are legitimate and
that axioms are satisfied. Every single step is straightforward, and we leave these

soporific verifications to the students for a misty day. Summing up, one has:

ProrosiTiON 7.31 The localization S ~IM is an S~ A-module, and the canonical localization
map 1s: M — S™'M is A linear. Every element of S~ M is of the form m /s and two such, m/s
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and m' /', are equal precisely when ts'm = tsm’ for some t € S. The kernel of i consists of the
elements m in M killed by some member of S; that is, kerig = {m e M | tm = 0 for some t €
s).

To simplify the notion, just as with rings, one soon drops the reference to the map ¢g
and writes x or x/1 for i5(x), but with some cautiousness since the image very well can
be zero.

(7.32) When the module M is finitely generated, say by members my, ..., m,, the images
15(m;) of the m;’s will obviously generate S~'M. Indeed, pick a member xs~! from
S~IM and write x = > a;m; then of course xs~ ! = Y a;s™'m;.

Functoriality

(7.33) Given two A-modules M and N and an A-linear map ¢: M — N. Sending xs !
to ¢(x)s~! gives an S~! A-linear map between the localized modules S~'!M and S~!N;
that is, a map S~'¢: S'M — S~IN.

A formal definition starts with the map (x,s) — (¢(x),s) between the Cartesian
products M x S and N x S, and the salient point is that this respects the equivalence
relations from (7.5). Indeed, a relation like t(xs’ — x’s) = 0 leads to the relation
t(p(x)s’ — p(x')s) = 0 because ¢ is A-linear. Thus ¢(x)s~! does not depend on the
choice of representatives, and xs~! — ¢(x)s~! is a legitimate definition.

(7.34) From the definition of S~1¢ we infer immediately that a linear combination of
maps between N and M localizes to the corresponding linear combination; that is, one
has

S~ Hagp +by) =aS g+ Sy,

where ¢ and ¢ are A-linear maps from M to N and a4 and b ring elements. And it is
equally clear that the association is functorial; it holds true that

STHyop)=STlposTlg
whenever ¢ and ¢ are composable, since it holds true already at the level of the Cartesian

products—and of course, S~!(idp1) = idg_1,.

PROPOSITION 7.35 Let A be a ring and S a multiplicative subset of A. The localization functor
Mod4 — Modg-1, is additive and exact.

Proo¥: The only subtle point is that the functor is exact. In other words that it brings
an exact sequence

N oMt r (7.6)

to an exact sequence. So our sole task is to verify that the sequence

g1 -1
soIN 2 g2t g1y
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is exact, which amounts to checking that ker S~'¢ = im S~!¢. To that end, pick an
element xs~! in the kernel of S~!¢. This means that ¢(x)s~! = 0, hence t¢(x) = 0 for
some t € S. But then tx € ker ¢, and since the sequence (7.6) is exact, there is an element
y in N such that ¢(y) = tx. But then we have S~ lp(ys~ 1t~ 1) = ¢(y)s 1t~ = xs71,
and we are through. a

Submodules

Given a submodule N € M. The localized module S™'N can be considered to be a
submodule of S~!M. The inclusion map localizes to an injection whose image consists
of elements shaped like fractions ns~! with n € N and s € S, and thus it can naturally
be identified with S™!N. Notice that since localization is an exact operation, there is a
canonical isomorphism S~ (M/N) ~ S™!M/S~!N sending a class [m]s~! to the class
[ms~1], and certainly, we shall not refrain from the slight abuse of language it is to
consider the two to be equal.

(7.36) Localization behaves nicely with respect to many of the standard operations one
may perform on submodules like taking sums and finite intersections and forming
annihilators and transporters. However, localization does not commute with infinite
intersections as we saw in example 7.11 on page 182, nor does it commute with forming
annihilators of infinitely generated modules (Exercises 7.34 and 7.35 below), but the
formation of arbitrary direct sums commute with localizations. We summarize some of
these properties in the following proposition:

PROPOSITION 7.37 Let A be a ring and S a multiplicative set in A. Let N, N" and {N;} be
submodules of the A-module M. Then the following four properties hold true:
i) STIYNi =X, SNy
ii) SSI(INAN')=S"INnSTIN/;
iii) 7' @jer M ~ @iy ST My,
iv) Assume that N is finitely generated, then (N’ : N)S™1A = (STIN’: S7IN).

Proor: To establish the first equality, observe that from the inclusion N; < }}; N; ensues
that STIN; = S71 3, N;, hence one has }; STIN; = S71 3, Ni. Any element in S™' 3, N;
is of the form (}; x;)s~! with merely finitely many of the x;’s being non-zero, and
therefore lies in >}; ST'N;.

It holds that S~'(N n N’) € S™!N n S~IN’ as localization respects inclusions, and
the second assertion follows because if y € STIN n S™IN’ we have y = n/s = n'/s’
with 7 € N and #’ € N’ and s,s’ € S, which means that ts'n = tsn’ for some t € S.
Putting x = ts'n = tsn’, we infer that xe N n N’ and y = x/tss’ € ST} (N n N’).

The third assertion is a direct consequence of the two first for a direct sum of two
modules; hence it holds for a finite sum by an obvious induction argument. Finally, the
case of an infinite sum follows from the finite case since each element in @,.; M; and
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each in @, S~! M, lies in a submodule which is a direct sum of a finite number of the
Mi’s.

In the fourth and last assertion the module N is assumed to be finitely generated.
Let my, ..., m, be generators. These also generate the localized module S™'N over S~ A.

The trick is to consider the A-linear mapping

i A— s @ M/N
that sends a ring element a to the sequence ([amy], ..., [am,]) where classes are taken
mod N’. The transporter (N’ : N) = {a | aN < N’} satisfies (N’ : N) = [);(N' : Am;)
and appears as the kernel of this map and thus lives in the exact sequence

0— (N': N) —— A—— @, ., M/N.

Because localization is an exact operation which commutes with direct sums, when
localized in S, this sequence becomes

0 S UN':N) 5 51A @, SIM/SINY,
where S~1u(a) = ([amy],...,[am,]) with a € ST'A and the classes being taken mod
S~IN’. Since the m;’s generate ST!N, it holds that keru = (S7!N’ : S7IN), and the
equality ST}(N’: N) = (S~!N’: S~IN) follows. a
It is worthwhile mentioning two particular cases of the fourth assertion, namely
when N = M and N’ = (0), in which case (N’ : N) = Ann M, and the case when

N’ =0and N is generated by a single element m. Then (N’ : N) = (0: Am) = Annm.
In short, for finitely generated modules forming annihilators commute with localization.

COROLLARY 7.38 Assume that A is a ring with a multiplicative set S and that M is an
A-module. Then

i) For any element m € M it holds true that S~1(0: Am) = (0: S~ Am);
ii) If M is finitely generated, one has S~ Ann M = Ann S~ M.
Exercises
(7.34) Localization does not commute with infinite direct products in general. Let

p € Z be a number and denote by S the multiplicative set S = {p” | n € Ny} in Z.

Show that there is a natural inclusion
s'[[z<[]s'z
ieN ieN
but that the inclusion is strict. HINT: Strings shaped like (a;p™");cn will not lie in the
image when n; tends to infinity with i.
(7.35) Let p be a prime and let S be the multiplicative set {p" | n € Ng} in Z
of all non-negative powers of p. Consider the abelian group @;Z/p'Z. Show that
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S™H®,;Z/p'Z) = 0. Show that Ann(@; Z/p'Z) = (0). But of course it holds true that
AnnS~Y@;Z/p'Z) = S~'Z = Z[p~'], hence localization and forming annihilators
do not always commute.

*

Relation with the tensor product

(7.39) Given an A-module M, the “action” of S™'A on M is expressed by the map
M x S7'A — S~ M that sends (m,as~!) to am - s~1. This is obviously A-bilinear, and
in view of the universal property enjoyed by the tensor product, induces an A-linear
map ¥: M®4S~'A — S™!'M, which on decomposable tensors acts by sending m®as 1
to ams~—!. This map turns out to be an isomorphism:

PROPOSITION 7.40 The map ¥ is an M®,S™ 1A ~ S~'M of A-modules.

Proor: The crux of the poof is that the tensor product M®4S~ 1A is one of the rare
instances that all elements are decomposable; that is, they are all of the form m®s~!
with m € M and s € S. Granted this, if m®s~! is mapped to zero, the element m is
annihilated by some t from S. But then m®s~! = tm®s~1t~! = 0. So the map V¥ is
injective, and it obviously is also surjective.

A priori an element from M®S™'A is of the shape >}, i<, m,@aisi_l with a; € A and
s; € 5. Moving the g; through the tensor product, we we may bring it on the form

V=g ...5...5, and with

D ml-@si_l. The trick is now to let s = s;---s, and t; = ss;”
this we find

X = Zmiti@)s*l = (Z mit))®s 1 = ms 71,
i i

with m = ), m;t;. a
(7.41) Base change functors preserve tensor products (Proposition 6.37 on page 162)
which combined with Proposition 7.40 above, yields that the localization process pre-
serves tensor product:

PROPOSITION 7.42 Let M and N be two A-modules and S a multiplicative set in A. Then there
is a canonical isomorphism

STHM®aN) ~ STIM®s-14,S7'N.

(7.43) When it comes to hom-sets, the behaviour is rather nice, at least for mod-
ules of finite presentation. In general, sending an A-linear map ¢ between two A-
modules M and N to the localized map S~'¢ is an A-linear map Hom (M, N) —
Homg-1,(S~'M, S~IN). By the universal property of localization it extends to a map
S~'Hom4 (M, N) — Homg-1 ,(S~'M, N); and in case M is of finite presentation, this
map is an isomorphism:
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PROPOSITION 7.44 Let M and N be two A modules and S a multiplicative set in A. Assume
that M is of finite presentation. Then the canonical map

S™'Hom (M, N) — Homg-1,(S™'M,SIN)

induced by sending ¢ to S~'¢ is an isomorphism.

Proor: Recall that both localization and the hom-functors are additive functors, hence
the proposition holds true whenever M is a free A module of finite rank n; indeed, one
finds

S 'Homy (nA,N) ~ S71nN ~ nS™!N ~ Homg_1 ,(nS™'A,S7IN), (7.7)

where the isomorphisms are the natural ones (the one in the middle is an isomorphism
since localization is additive, and the two others because hom-functors are additive).
Since M is assumed to be of finite presentation, it lives in an exact sequence

I4 7

mA nA M 0, (7.8)

with m,n € N and where ¢ and 7t are A-linear maps. Consider the diagram

0 ——— S~ 'Homy (M, N) ———— S~'Hom (nA,N) ——— S~ 'Homy (mA, N)

| | |

0 — Homg-1,(S7'M,S7IN) — Homg-1,(nS7A,S7IN) — Homg_1,(mS™1A,STIN).

The upper sequence is obtain from (7.8) by applying the functor S™'Homy(—, N)
to it, and it is therefore exact by left exactness of hom-functors and exactness of
the localization functor. The bottom sequence comes from (7.8) with the functor
Homg-1,(S7!(—),S™!N) applied to it, and is exact for the same reasons. The vertical
maps are the canonical maps induced by sending maps ¢ to S™1¢, and it is a matter of
simple verification that the squares commute.

Now, the final point is that the two rightmost maps are isomorphisms by the
beginning of the proof, and then the Five Lemma tells us that the third map is an
isomorphisms as well, which is precisely what we aim at proving. EI

The first part of the proof fails when M is not of finite presentation; for instance,
when M = @) A, one has

Hom, (P A, A) = [ [Homa(A,A) =[] A
ieN ieN ieN
and infinite products do not in general commute with localization as we saw in Exer-
cise 7.34. The proof only relies on the two facts that the hom-functor’s are left exact and
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Local properties (lokale
egenskaper)

that localization is exact, and thus remains valid for any flat base change; or for that
matter, the hom’s may be replaced by any additive left exact functor that sends free
modules to free modules of the same rank.

7.3 Local properties

Based on the belief that modules over local rings are simpler than others, a general
technique is to try to pass from local knowledge—that is, knowledge of the localized
modules My—to global knowledge. One envisages to infer properties of the module M
itself from properties of the localized modules M.

In this context it is quite natural to introduce the notion of a local property. A property
of modules, call it P, is said to be a local property if all the localizations M, at prime
ideals have P if and only if that the module M itself has P. Equally well, one may speak
about local properties of homomorphisms of modules: Such a property P is local, if a
map ¢: M — N has P whenever all localizations ¢, have P.

The localness of being zero

We shall see several instances of the local to global principle, but begin with the simplest
of all properties, namely that of being zero! Applied to kernels and cokernels this leads
to local criteria for homomorphisms to be injective or surjective.

(7.45) The point of departure is the following easy lemma which describes when
elements remain non-zero in a localization.

LEMMA 7.46 Let M be an A-module and x and element in M. Assume that p is a prime ideal
in A. Then x does not map to zero in My, if and only if Annx < p.

Proor: The module My, is M localized in the multiplicative set S = A\p. Recall from
Lemma 7.31 on page 190 that the image of x in My, being zero is equivalent to x being
killed by an element in S; that is, by an element belonging to Annx butnottop.
This lemma immediately translates into the following fundamental principle:

PROPOSITION 7.47 (BEING ZERO IS A LOCAL PROPERTY) An A-module M is equal to zero if
and only if either of the two following assertions holds.

i) My = 0 for all maximal ideals m in A;

it) My = 0 for all prime ideals p in A.

Proor: Two of the implications are obvious; localizing the zero module yields the zero
module. For the rest, it suffices to show that the weaker condition in assertion i) implies
that M = 0. To this end, assume that M is non-zero and let x be a non-zero element
in M. The annihilator Ann x of x is then a proper ideal and is contained in a maximal

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193



LOCAL PROPERTIES

ideal m. By the simple lemma above, the image of x in My, is non-zero and a fortiori
M, is non-zero. a
We have seen that localization is an exact operation and therefore it commutes with the
formation kernels and cokernels of homomorphisms. In combination with the localness
of being zero, this yields the following important local criterion for a map to be injective
or surjective.

COROLLARY 7.48 (BEING INJECTIVE OR SURJECTIVE IS A LOCAL PROPERTY) Assume M and
N be two A-modules. Any A-linear map ¢: M — N is injective (respectively surjective) if and
only if either of the two following equivalent conditions is satisfied.
i) The localization ¢ : My — Ny, is injective (respectively surjective) for all maximal
ideals m in A;
ii) The localization ¢p: My — Ny is injective (respectively surjective) for all prime
ideals p in A.

PrOOF: Localization is an exact functor, so (ker¢)y, = ker(¢m) for every maximal
(respectively prime) ideal m, and Proposition 7.47 above tells us that ker¢ = 0 if
and only if ker ¢, = 0 for all m. This takes care of the part about injectivity, for the
surjectivity part, one replaces ker ¢ by coker ¢. EI

COROLLARY 7.49 (BEING AN ISOMORPHISM IS A LOCAL PROPERTY) Let M and N be two A-
modules. An A-linear mapping ¢: M — N is an isomorphism if and only if the localized map
¢m: My — N is an isomorphism for all maximal ideals w, or equivalently, if and only if
¢p: Mp — Ny is an isomorphism for all prime ideals p.

(7.50) There are many other instances of local properties, but let us mention two, namely
flatness and projectivity.

PROPOSITION 7.51 (FLATNESS IS A LOCAL PROPERTY) An A-module M is flat over A if and
only if My, is flat over Ay, for every prime ideal p € Spec A.

Proor: We are to check that an A-module M is flat over A if M, is flat over A, for all
p € Spec A. So let

0— NN (7.9)
be an injection. We are to prove that ¢®4idys is injective. But for any A-module
L and any prime ideal p it holds (L®M), = Ly®a,M; and ditto, for any module
homomorphism ¥ one has (¢®idm)y = Pp®a,idy,. Hence the maps in the two
sequences

(p®idm)p

0 ———— (N®@aM)p (N'®©aM)yp (7.10)
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and
Pp®a,idmy,
0 ——— Np®s,Mp ———— Ny®a, My

coincide. The latter is obtained from (7.9) by the two step process of first localizing in
p, which is exact, and subsequently tensorizing by M, which also is exact since M, is
assumed to be flat. The map in (7.10) is therefore injective, and citing Corollary 7.48
that injectivity is a local property of homomorphisms, we are through. a

Along the same lines one may show that being projective is a local property for
finitely generated modules; it is true without the finiteness limitation, but we content
ourselves with the case of finitely generated modules, and we also content ourselves
with announcing the result, leaving the proof as an exercise.

PROPOSITION 7.52 (LOCALNESS OF BEING PROJECTIVE) Let M be a finitely generated module.
Then M is a projective A-module if and only if My, is a projective Ap-module for all prime ideals

p.

Exercises
(7.36) Prove Proposition 7.52. Hint: Follow the lines of the proof of Proposition 7.51.
The isomorphism in Proposition 7.44 might be useful.
(7.37) Let C. be a complex of A-modules. Show that localization commutes with
taking homology; that is, show that for every prime ideal p € Spec A one has canonical
isomorphisms H;(C.)®aAp ~ H;j(Ce®aAp). Conclude that being exact is a local
property of complexes.

*

7.4 An extended version of Nakayama’s lemma

We are prepared to revisit Nakayama’s lemma as announced, and give a version whose
proof relies on a localization technique. The extended version is valid for all ideals not
only those lying in the Jacobson radical; but of course, when weakening the hypothesis,
you get a weaker conclusion.

PROPOSITION 7.53 (NAKAYAMA EXTENDED) Let a be an ideal in the ring A, and assume that
M is a finitely generated A-module satisfying aM = M. Then M is killed by an element of the
form 1+ a with a € a; that is, there is an a € a so that (1 +a)M = 0.

PrOOF: Let S be the multiplicative set {1+a | a € a}. The ideal S~'a is contained in
the Jacobson radical of S~1A (by Proposition 2.66 on page 54): indeed, we are to check
that for each a € a and each x € A the element 1 + s~ xa is invertible in S™' A whatever
seSis. But 1+s 'xa =s"1(s+xa) =s (1 + x'a’ + xa) with o’ € a and ¥’ € A, and
both factors are invertible in S~' A. By Nakayama classic (Proposition 4.52 on page 106)
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we may then conclude that S~!M = 0. Thence there is for each generator x; of M, an
element s; € S killing x;. The x;’s being finite in number we may form their product,
which obviously kills M and is of the required form. Q

7.5  The support of a module

Since prime ideals p such that M, = 0 are insignificant in the local-to—-global process
we just described, it is very natural to introduce the subset Supp M of Spec A consisting
of the prime ideals p so that M, # 0; that is, we define

SuppM = {peSpec A| M, #0}.

It is called the support of M. In many cases, e.g. when M is finitely generated, the
support of M is a closed subset of Spec A, but whether M is finitely generated or not, it
has the weaker property of being closed under specialization; that is, with every p lying in
Supp M the closed set V(p) lies there.

When M and N are finitely generated, the support of the direct sum* M @® N equals
the union Supp M U Supp N and the support of the tensor product N® 4 M equals the
intersection Supp N n Supp M. It is worth while observing that the support takes the
two “ring-like-operations” direct sum and tensor product in the category of finitely
generated A-modules into the two operations union and intersection of the boolean
ring of closed subsets of Spec A.

Closure properties of the support

(7.54) For a cyclic module M = A/a the support coincides with the closed set V(a)
associated with the ideal a since a prime ideal p belongs to V(a) precisely when
(A/a)p # 0, just apply the simple lemma 7.46 to the element 1 in A/a. This observation
may be generalized to finitely generated modules. Any such module has a support
which is a closed subset of Spec A:

PROPOSITION 7.55 If M is finitely generated A-module, the support Supp M equals the closed
subset V(Ann M) of Spec A; that is, it consists of the prime ideals p containing Ann M.

Proor: Our task is to show that M, # 0 if and only if Ann M < p, or equivalently, that
M, = 0if and only if Ann M ¢ p. In case an element a € A not belonging to p kills
M, it holds that M, = 0; indeed, a becomes invertible in Aj. This takes care of the if
part of the proof. To attack the only if part, assume that M, = 0, and let xy,...,x; be
generators of M. By Lemma 7.46 above, there is for each of the x;’s an element s; not in
p killing x;. The product of the s;’s clearly kills M and does not belong to the prime
ideal p since none of the s;’s does; hence Ann M is not contained in p. a
(7.56) The hypothesis that M be finitely generated was used only in the last part of
the proof above, and for a general module M it holds true that Supp M < V(Ann M):

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193

The support of a
module (stotten til en
modul)

* More generally this is
the case for any
extension of M by N.



200 LOCALIZATION

Extensions of modules
(utvidelser av moduler)

from M, # 0 follows that My # 0 whenever q 2 p. Indeed, if Annx < p, it obviously
holds that Ann x < g, and an element x mapping to a non-zero element in My, maps to
a non-zero element in M. We have thus established

PROPOSITION 7.57 Let M be an A-module. The support of M is closed under specialization;
that is, for each prime ideal p € Supp M it holds that V (p) < Supp M.

Examples

(7.18) As already observed, the support of a cyclic module A/a equals the closed set
V(a).

(7.19) One has Supp Q = Spec Z since S~!Q = Q for any multiplicative set S in Z.
More generally, for the fraction field K of any domain A is of global support; that is,
Supp K = Spec A.

(7.20) An example of the failure for “large modules” of the support being the closed set
defined by the annihilator, can be the Z-module Z = = Z[p~'/Z, where p is a prime.

Each element of Z,« is the class of a rational number of the form x = a/p" with a
prime to p. Since yx € Z if and only if y is divisible by p”, one has Annx = (p”), and
from Lemma 7.46 above it follows that Supp Z,= = {(p)}.

Even though every element of Z,« is killed by a power of p, the annihilator of Z e«
reduces to the zero ideal because no power of p kills the entire module Z = (a power p”
kills the class of p~" only if n < r). This shows that Supp Z =, although being closed,
differs from V(AnnZ,x).

(7.21) The support of a module is not always a closed subset of Spec A. Take any infinite
sequence of primes p; which does not including all primes—for instance, every second
prime—and consider the module M = @, Z/p;Z. The support of M is the infinite
subset {(p;)}. The only infinite closed subset of Spec Z being the entire spectrum, this
set is not closed.

*

The support of extensions

(7.58) Since localization is an additive functor so that (M@ N), ~ M, @ N}, it is obvious
that the support of a direct sum of two A-modules is the union of their supports. This
generalizes to so-called extensions; that is, modules in the midst of an exact sequence
(which is not necessarily split exact).

PrOPOSITION 7.59 Assume that

0 N M L 0

is an exact sequence of A-modules. Then Supp M = Supp N u Supp L.
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Proor: The proposition follows immediately from the localization functor being exact.
For each prime p the localized sequence

0 N, M, Ly 0

is exact, and the middle module vanishes if and only if the two extreme ones do. 1

The support of a tensor product

(7.60) The aim of this paragraph is the prove that the support of a tensor product is the
intersection of the supports of the two factors, at least when the involved modules are
finitely generated.

PrROPOSITION 7.61 Let M and N be two finitely generated A-modules. Then the following
equality holds true Supp M®sN = Supp N n Supp M.

The basic argument takes place over a local ring:

LEMMA 7.62 Let A be a local ring with maximal ideal m and let M and N be two finitely
generated A-modules. Then M®aN = 0 if and only if either N = 0 or M = 0.

Proor: The proof is an application of Nakayama’s lemma. Let k = A/m be the residue
class field of A. Assume that both N and M are non-zero. Nakayama’s lemma then
ensures that both N® 4k and M® 4k are non-zero, and since base change respects tensor
products (Proposition 6.37 on page 162), one has

(M@®aAN)®ak = (M® k)@ (N®4k).

The tensor product of two non-zero vector spaces being non-zero (e.g. Proposition 6.21
on page 155), we infer that (M®4N)®ak # 0, and hence N® 4 M # 0 a fortiori. Q
ProoF oF ProPOSITION 7.61: The localized modules Ny and M, are finitely generated
over Ay whenever M and N are finitely generated over A, and in view of the isomor-
phism

(M®AN)p = NIp@Ap Ny,
the proposition then follows from the lemma. EI

ExamrLE 7.22 Proposition Proposition 7.61 may fail when one of the factors is not
finitely generated. For instance, if one factor equals the fraction field K of a domain
A and the other is of the form A/a where a is a non-trivial proper ideal, it holds true
that A/a®4K = 0; hence Supp A/a®4K = (&, but the fraction field K is of global
support (one has K, = K for all p € Spec A) so that Supp K nsup A/a = V(a), which
is non-empty. ¥
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Groups of bounded
exponent (grupper med
begenset eksponent)

The rank of a module
(rangen til en modul)

Exercises
(7.38) Let M be a finitely generated A-module. Prove that if M®4A/m = 0 for
all maximal ideals m in A, then M = 0. HinT: Combine Nakayama’s lemma with
Proposition 77.47 on page 196.
(7.39) An abelian group M is said to be of bounded exponent if some power p" of a prime
p kills every element of M. Give an example of a group of bounded exponent that is not
finitely generated. Prove that if M is of bounded exponent, then Supp M = V(Ann M).
(7.40) Let p be a prime number and let M be the abelian group M = DN, Z/ pZ.
Determine the annihilator Ann M and the support Supp M.

*

7.6 The rank of a module

In this section M is a finitely presented module over a ring A. Recall that this means
that M lives in a short exact sequence

F E— M 0

where E and F are free A-modules of finite rank. Let furthermore p be a prime ideal
in A and k(p) is the fraction field of A/pA; i.e. k(p) = Ap/pAp. One defines the local
rank rk, M of M at p as the dimension rky, M = dimy,) M®ak(p).

We conclude this chapter by taking a closer look at the special case when A is a
domain and the prime ideal is the zero ideal. That is Ay is the fraction field K of A.
Then M® 4K will be a vector space over K, and the dimension dimg M®4K is called

the rank of M. The properties of the localization functor translates into properties of the
rank, it will have the nice properties of being both additive and multiplicative:

THEOREM 7.63 Let A be a domain with fraction field K and let M and N be two A-modules. It
then holds true that
i) tk M = 0 if and only if M is a torsion module;
i) tk M =1tk N +rk M/N when N < M;
iii) tk M@ N =rk M -rk N.
iv) If M is finitely presented then tk Homs (M, N) = rk M - rk N.

ProoOF: As already said, this follows from the properties of the localization functor
combined with the appropriate properties of the dimension of a vector space. a
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Lecture 8

Projective modules

In paragraph 5.18 we introduced the projective modules as those A-modules P such
that Homy (P, —) is an exact functor, and we showed that P is projective if and only
if it is the direct summand in a free module. The projective modules play a special
and important role both in number theory and algebraic geometry. Certainly more
involved than free modules, but still to a great extent maniable, they enjoy a series of
good properties. In many cases they furnish important invariants of rings, and they are
the supermen of homological algebra, where they among other things serve to define
the so-called Ext- and Tor-groups, which describe respectively the ‘missing cokernels”
and the “missing kernels” we mentioned in Paragraph 5.12 on page 129.

Contrary to what usually is the case, infinitely generated projective modules turn
out to be much simpler than the finitely generated ones. A famous result of Hyman
Bass’s ([?]) states that over Noetherian rings with connected* spectra projective modules
requiring infinitely many generators are in fact free. We shall not treat Bass’s theorem,
but it justifies largely that we mostly work with finitely generated projectives.

There is also a result of Kaplansky’s pointing in the same direction as Bass’s, but
without the Noetherian hypothesis. It asserts that over a local rings all projective
modules are free. A projective module P thus has the virtue of being locally free; that
is, the localization P, is a free Ap-module for all primes p € Spec A. We shall give a
proof of this when P is finitely generated, which is a classical application of Nakayama’s
lemma.

The geometrical counterpart to the locally free modules are the so-called vector
bundles. In topology these are continuous maps E — X with all fibres being vector
spaces (either real or complex) which are locally trivial; that is, over a suitable open cover
{U;} of X it appears (in the complex case) as the projection C* x U; — U; (additionally,
there is also an important requirement that the transition functions arising over the
intersections U; n U; all be linear).

*The exceptions will
be free over each
connected component
of Spec A, but can of
course have bases with
different cardinality on
different components
(and can even be zero
on some of them).

Locally free modules
(lokalt frie moduler)
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8.1 Projective and locally free modules

Being projective is a local property of a module as we established in Proposition 7.52
on page 198, but being free is not local—in Examples 5.5, 5.6 and 5.8 on page 133
we exhibited projective modules that are not free, but they are easily checked to be
locally free. This illustrates the general fact that the locally free modules, at least
among those that are finitely generated are exactly the projective ones. To establish this
as a generally valid principle one merely needs to show that over local rings finitely
generated projective modules are free:

PrROPOSITION 8.1 Let A be a local ring and P a finitely generated projective module. Then P is
free.

Proor: This is a classical application of Nakayama’s lemma. Let k be the residue field
of A and consider PR 4k. It is a finite vector space over k and has a basis, say with r
elements. Lifting the basis elements to elements in A we obtain a map ¢: rA — P such
that ¢®idy is an isomorphism, and Nakayama’s lemma yields that ¢ is surjective. The
kernel of ¢ lives in the short exact sequence

0 ker ¢ rA / P 0,

and the module P being projective the sequence is split and hence stays exact when
tensorized by k. Again since ¢®idy is an isomorphism, it follows that ker ¢® 4 id; = 0.
Now, any direct summand in a finitely generated module is finitely generated. Therefore
Nakayma’s lemma applies to ker ¢, and we may infer that ker ¢ = 0, which is exactly
what we need to conclude that P ~ rA; hence P is free. |
As announced, the proposition gives the following corollary:

COROLLARY 8.2 Let A be a ring and P a finitely generated A-module. Then P is projective if
and only it is locally free; that is, if and only if Py is a free Ay-module for all p € Spec A.

(8.3) A local basis for P at a prime ideal p can be extended to a basis for P over an open
and distinguished neighbourhood of p in Spec A, and we have the following slightly
stronger result than Proposition 8.1.

PROPOSITION 8.4 Let P be a finitely generated projective module over the ring A. Then there
exist a finite set {f;}ic; of elements from A so that the distinguished open sets D(f;) cover
Spec A and such that each localization Py, is a free module over Ap,.

Proor: Since Spec A is quasi-compact (see Exercise 2.58 on page 66) it suffices to
find a distinguished neighbourhood round each point p over which P is free; in clear
text, given a prime ideal p we search for an element f ¢ p such that Py is free as an
Ag-module.
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To find such an element, begin with a basis {4;}, with say r elements, for the localized
module P, over A, whose elements belong to P. Such a basis defines a map ¢: rA — P,
and it lives in the exact sequence

0 ker ¢ At p cokerp —— 0.

Now, coker ¢ is finitely generated (since P is); its support equals V(Ann coker ¢) and
does not contain p. Hence the annihilator ideal Ann coker ¢ is non-zero, and we let g be
any one of its non-zero elements. Over the localization A; the map ¢ is surjective so
that the kernel ker ¢ is a direct summand in rA and thus it is finitely generated. The
support equals V(Ann ker ¢, ), which is not the entire Spec A (it does not contain p),
and we may find a non-zero element 1 € Ann coker ¢¢ N A. Then f = gh is your man.

Q

The rank of projective modules

(8.5) Suppose we are given a finitely generated projective module P. At any point p
in the spectrum Spec A the module P being locally free has a local rank r,(P), namely
the non-negative integer r so that P, ~ rAp. This local rank may vary, it can assume
different values along different connected components of the spectrum Spec A (see
Example 8.1), but when it is constant, it is simply called the rank of P. This is e.g. the
case whenever Spec A is connected. In fact, Proposition 8.4 above, about extension of
local bases, yields that the rank is a locally constant function on Spec A:

PROPOSITION 8.6 (THE RANK IS LOCALLY CONSTANT) Assume that P is a finitely generated
projective module over A. Then the rank rky, (P) is locally constant; that is, for each r the set
U, = {p e Spec A | rky P = r} is both open and closed. In particular, if Spec A is connected,
the local rank is constant.

Proor: That U, is open for all 7 ensues from 8.4, and hence the complement U; =
Us»r Us is open as well. a
ExamrLE 8.1 When the spectrum is not connected, it is easy to find projective modules
whose local rank takes on different values on different connected components. These
will also be examples of projective modules that are not free. The simplest example is
a direct product A x B of two non-null rings A and B (the most minimalistic example
was already given in Example 5.5). The spectrum Spec (A x B) equals the disjoint union
Spec A U Spec B. Both A and B are natural A x B-modules—realized as A x (0) and
(0) x B—and as such are direct summands in A x B, thus they are projective. But for
instance, 7, (A) =1 for p € Spec A and r,(A) = 0 for p € Spec B. *

Modules of constant rank
(8.7) A projective module P is, as we just saw, free over each of the local rings A, and
of course, it stays free when tensored with the quotient A,/pA,: When P is of rank
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r, it holds true that P®4 A, /pAy ~ rA,/pA, for each prime ideal p; hence "the fibre
dimensions" dimy,) P®k(p) will all be the same and equal to r (where, we remind
you, k(p) denotes the fraction field of A, /pAp). When A is reduced, the converse holds
true too; that is, if a finitely generated module has constant "fibre dimenison", it will be
projective. Actually, only the maximal and the minimal primes come into play. Recall
that when A is reduced, the local rings A at the minimal primes p of A are fields
(Proposition 7.29 on page 187), and moreover he set of zero divisors in A is precisely
the union of the minimal prime ideals.

PROPOSITION 8.8 Assume that A is a reduced ring with finitely many minimal prime ide-
als and let P be a finitely generated A-module. Let r be a natural number. Assume that
dimy,y P®aA/m = dimy, PRaAy = 1 for all maximal ideals m and all minimal prime
ideals p in A. Then P is projective of rank r.

Proor: Since being projective is a local property, it suffices to show the proposition
when A is local. Let m be the maximal ideal of A and k = A/m the residue field. The
k-vector space P®k has a basis of r element, which may be lifted to elements in P. By
Nakayama'’s lemma these elements generate P, so that P lives in a short exact sequence
shape liked

0 M rA P 0,

which when localized at a minimal prime p, becomes the short exact sequence

Now, Ay is a field over which P, is assumed to be a vector space of dimension 7, and
therefore My, = 0. We contend that this implis that M = 0; aiming at a contradiction,
assume the contrary and pick a non-zero element x € M.

Let py,...,pt be the minimal prime ideals in A. Since M, = 0, it holds that
Annx ¢ p; and from Prime Avoidance it ensues that Annx & pg U ... U py, so there is
a non-zero divisor killing x. But M is contained in rA and having non-zero element
killed by a non-zero divisor, would be absurd, consequently M = 0. |

ExamrLE 8.2 The proposition does not hold for modules over the simplest non-reduced
ring Z/47. The quotient [F, = Z /27 is not projective (no submodule of a free
Z/4Z-module is killed by 2), but the rank is one everywhere (well, everywhere is not
very widespread; the ideal (2) is the only prime ideal). A similar example would be
A = k[x]/(x?) where k is a field. The residue field k = A/(x) is not projective, but of
rank one everywhere. ¥
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Exercises
(8.1) Let A =[], k; be a finite product of fields. Show that any A-module is projective.
Single out those which are free.
(8.2) Let I be a finite set and for each i € I let A; be a local ring with residue field k;.
Describe the projective modules over | [; A;.

+*

8.2 Working formulas

The day-to-day working formulas for projective modules basically say that tensor
products and direct sums of projective modules are projective. One might be tempted to
say that the category of projective A-modules is “ring-like” a point of view pursued in
Exercise 8.6 below. Since probably most projective modules one would meet practising
algebraic geometry or commutative algebra, are finitely generated (and in fact, in view
of Bass’ result, the only non-trivial case), we just treat those.

For free modules the formulas are already established (trivial for sums, see Para-

graph 6.20 for products), and bearing in mind that tensor products and hom’s in good
cases commute with localization, the formulas follow easily from the fact that being
locally free is equivalent to being projective when the involved modules are finitely
generated.
(8.9) Before proving the working formulas, we need two new notions. The dual of a
module M is denoted M* and is defined as M* = Homy4 (M, A). Sending M to M* is
an additive and contravariant functor from Mod 4 to itself, and the double dual M**
will be a covariant and additive endofunctor of Mod 4. For each M there is a canonical
evaluation map yp: M — M** = Hom4 (Homy4 (M, A), A) defined by the assignment
X (¢ = ¢(x)).

If E is a finitely generated free module with basis {e;}1<i<,, the dual module E* is
free with basis the so-called dual basis {¢;}. It is defined by éi(ej) = ¢j, and the easily
verified formula ¢ = ; ¢(e;)é;, shows that it indeed is a basis.

Furthermore, for every pair of A-modules M and N, there is a canonical map
PMN: M*®sN — Homy (M, N), which on decomposable tensors is defined by the
assignment ¢pRx — (y — ¢(y)x).

LeEMMA 8.10 (DUAL OF A FREE MODULE) For a finitely generated free module E, the map g
is an isomorphism. Moreover, if F is another finitely generated free module, the map pg r is an
isomorphism.

Proor: The map 7 sends the basis element e; to the map ¢ — ¢(e;). Hence, one has
the formula ¢ = >, ve(e;) (¢)é;, which shows that 7 is an isomorphism.
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Letting {f;} be a basis for F, it holds that pr r sends é;®f; to the map e, — 6, - f}.
Hence, if ¢: E — F has matrix (a;;), it holds that ¢ = 3}; ;a;; - pg r(6i®f;}), from which
we deduce that pg r is an isomorphism. 4
(8.11) We are now well prepared for the working formulas for finitely generated
projective modules:

ProPOSITION 8.16 Let P and Q be two finitely generated projective modules over the ring A.
Moreover, let p denote a prime ideal in A.
i) The direct sum P @ Q is projective and r, (P ® Q) = rp(P) + 1,(Q);
ii) The tensor product PR 4Q is projective, and r, (P®4Q) = rp(P)ry(Q);
iti) The dual module P* = Homa (P, A) is projective and r,(P) = rp(P*). The
canonical evaluation map «yp yields an isomorphism P ~ P**;
iv) The module Hom 4 (P, Q) is projective, and the canonical map pp ois an isomorphism
P*®4Q ~ Homu (P, Q).

Proor: As noted above, these statements follows from the facts that a module is
projective if and only if it is locally free (i. e. P, is free over A, for all p € Spec A)
and that the corresponding statements hold for free modules, together with the good
behaviour of tensor products and hom-modules with respect to localization.

The first statement i) is clear.

To prove statement ii) recall that base change respects tensor productucts (Proposi-
tion 6.37 on page 162), so it holds that (P®4Q)y = Py®4,Qp. And when P, and Q,
both are free, it follows from Corollary 6.22 on page 155 that (P®4Q); is free of rank
o (P)rp(Q)

Statement iii) follows since by Proposition 7.44 on page 195 it holds that (P*), =
(Pp)* and the latter is free of rank r,(P). Moreover, Lemma 8.10 gives that (yp), =
7Yp, is an isomorphism for all p, and hence 1, is an isomorphism because being an
isomorphism is a local property.

Finally, statement iv) is a consequence of Lemma 8.10 and that forming tensor
products and homomorphism modules commute with localization. a

ExaMmPpLE 8.3 Recall Exercise 4.27 on page 103 where you were asked to prove that
the direct product [ [;cp Z of countably many copies of Z is not a free Z-module,
thus giving an example of an infinite product of free modules which is not free. A
slight extension of the proof indicated there shows that neither is [ [,c; Z a projective
Z-module (check it!), so infinite direct products of projective modules are not always
projective. *

Exercises
(8.3) Show that P — P** is always injective, but that it is not necessarily an isomorphism
when P is not finitely generated, even when the base ring is a field. HiNnT: Consider the
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Q-vector space P = @, Q and show that P and P** are not of the same cardinality.
(8.4) Show that the tensor product P®4Q of two projective modules is projective
wether they are finitely generated or not. HINT: Use adjointness, Proposition 6.24 on
page 156.

(8.5) The Eilenberg swindle. The simplistic behaviour of infinitely generated projectives,
is to a large extent rooted in the so called Eilenberg swindle. Let F be a free A-module
that is not finitely generated and assume that P is a direct summand in F. The swindle
is the assertion that P@ F ~ F. Let Q be a complement of P in F so that F = Q@ P.

a) Show that F is isomorphic to the direct sum of countably many copies of itself;
thatis, F~F®F®...;

b) Show that P®@F ~ PP QP PPQPPD...;

c) Conclude that P@® F ~ F. HINT: Swap parantheses.

(8.6) K" of aring. At the top of the present subsection we alluded to the category of
projective A-modules being “ring-like”. It possesses a sum operation and a product
operation and these satisfy formulas closely resembling the ring axioms, but notably
only up to isomorphism and not up to equality; and of course, there is no subtraction.
Passing to isomorphism classes repairs the first fault, and for the second, there is general
technique to extend monoids and introduce a subtraction. One passes to so-called virtual
projective modules; formally one introduces the ring K°(A) whose elements are finite
linear combinations ) ; a;[P;] of isomorphism classes of finitely generated projective
modules with the a;’s being integers (allowed to be negative). The ring operations
comply to the rules [P® Q] = [P] + [Q] and [P®4Q] = [P] - [Q].

The construction goes as follows: One begins with the free abelian group G with a
basis the set of all isomorphism classes of finitely generated projective A-modules. Next,
one considers the subgroup H of G generated by expressions P® Q — P — Q where a
bar indicates an isomorphism class, and introduces the underlying abelian group of
K%(A) as the quotient KY(A) = G/H. The class of a module P in K%(A) is designated
by [P]. Then by construction [P @® Q] = [P] + [Q].

a) Show that the asigment [P] - [Q] = [P®AQ)] extends bilinearly to the entiere
K°(A) and makes K°(A) a commutative ring with [A] as unit element;

b) If A — B is a ring homomorphism, show that base change functor P — PQ4B
induces a ring homomorphism K°(A) — K%(B). Show that this makes K° a
functor;

c) Show that the local rank at a prime ideal p, is a ring homomorphism 7, :
KY(A) - Z.

(8.7) If one in the definition of K%(A) had allowed all projective modules, and not
only the finitely generated ones, show that K°(A) would have been the zero ring.
Hint: Consider the countable direct sum P = @);.p; A and show that A@P ~ P.
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8.3 The Picard group

One of the most basic invariant of a variety is the so-called Picard group. The elements
are isomorphism classes of creatures called invertible sheaves and whose algebraic
avatars are the invertible modules which we are about to define. Among other things—
and which might be their most important role—they govern maps from the variety
to projective spaces. The analogue of the Picard groups in algebraic number theory
are the so-called ideal class groups, a notion which actually predates the notion of the
Picard group by about a century. It is of fundamental importance for the study of
number fields and measures how far the ring of integers in a number field is from being
factorial.
(8.17) The tensor product M®4 N induces a binary operation on the set of isomorphism
classes of A-modules, and the basic working formulas in Proposition 6.14 show it is
associative and commutative and has the class of A as a neutral element. Modules do
not in general have inverses, but there are good hopes that the tensor product will give
a group law on the set of those that have. This motivates the notion of invertible modules:
an A-module M is invertible if there is an A-module N such that N9 4M ~ A.

The invertible modules turn out to coincide with the finitely generated projective
modules of rank one, or in view of Corollary 8.2 on page 204 the finitely generated
modules which are locally free of rank one.

ProrosITION 8.18 Let A be a ring and M an A-module. The following three statements are
equivalent:
i) M is an invertible module;
ii) M is finitely generated and projective of rank one;
iii) M is finitely generated and locally free of rank one.
Moreover, if M is invertible, it holds true that the evaluation map gives an isomorphism
M®aM* ~ A so that the dual M* serves as an inverse for M.

Proor: The third assertion iii) is included only for completeness; its equivalence with i)
was established already in Corollary 8.2 on page 204.

We begin with proving that i) implies ii); so assume that M is invertible and let N
be such that M®4 N ~ A. Let us first establish that M is finitely generated. To that end,
identify M®4N and A and write 1 = ) x;®y; with x; € M and y; € N. We contend
that the x;’s generate M. Indeed, let M’ be the submodule of M generated by the x;’s
and consider the quotient M/M’. Since the inclusion M’ — M induces a surjection
M®4N — M®aN, it holds that M/ M'® 4N = 0, and consequently

M/M ~ M/M®aA ~ M/M@4(NR4M) ~ (M/M@4N)@4M = 0.
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We proceed to show that M is projective. Since being projective is a local affair, we
may as well suppose that A is a local ring. Let m be the maximal ideal and k = A/m
the residue field. Using that base change preserves tensor products (Proposition 6.37 on
page 162) we find

(M@AN)®Ak ~ (M@Ak)®k(N®Ak) ~ k®k ~ k.

We conclude that dimy M®k = 1, and thus M®4k ~ k. Nakayama’s lemma then gives
that M is monogenic so that we may write M ~ A/a for some ideal a. Then a kills M,
and therefore also A as A ~ M®4N, which is absurd unless a = (0).

We assume next that M is finitely generated and projective of rank one and aim at
showing the isomorphism M®M* ~ A. Being an isomorphism is a local property
(Corollary 7.49 on page 197) and localization commutes with forming hom'’s (Propo-
sition 7.44 on page 195) so we may certainly assume that A is local and that M = A
(M is locally free of rank one). In that setting the evaluation map appears as a map
A® Homy (A, A) — A, which in view of the harmless identity A = Homy (A, A), is
nothing but the map A®4A — A that sends a®b to ab; and that is surely an isomor-
phism. This also proves the final statement in the proposition. Q
(8.19) According to the proposition the inverse of an invertible module is well defined
and hence the set Pic A of their isomorphism classes is an abelian group when equipped
with the tensor product as a group law. It is called the Picard group. Summed up we
have:

ProrosITION 8.20 The set Pic A formed by the isomorphism classes of invertible modules is
an abelian group. The product of the classes of P and Q equals the class of P® Q. The neutral
element is the class of A, and the inverse of the class of P is the class of P* = Homx (P, A).

Whenever A — B is a ring-homomorphism, the base change functor (—)®aB takes Pic A
into Pic B making Pic: Rings — Ab a functor.

ProoF: Merely the last statement remains to be commented, and it hinges on the base
change functor respecting the tensor product. If P®,Q ~ A, we find

(PR®4B)®8(Q®4B) ~ (PR4Q)®4B ~ A®4B = B.

Fractional and invertible ideals

Over an integral domain A, there is a large class of projective modules of rank one,
which we are about to introduce, formed by the so-called invertible ideals. Up to a certain
equivalence, the invertible ideals constitute a group—the ideal class group—which turns
out to be isomorphic of the Picard group. Contrary to the invertible modules which
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suffer from a certain elusiveness, invertible ideals are concrete, being submodules of the
fraction field, and in many cases are a lot easier to lay hands on. The Picard group, on
the other hand, generalizes well: many geometric objects like varieties and schemes, are
inhabited by creatures called invertible sheaves whose isomorphism classes constitute
their Picard group.

In Kummer’s set-up, with his ideal numbers in centre stage and where the numbers
are represented by the principal ideals, fractions will most naturally be represented by
principal submodules of the fraction field K of A; in other words, A-submodules of
K requiring a single generator. The obvious “idealizations” are the A-submodules of
K, which when complying to a minor condition, are called fractional ideals. Fractional
ideals can in a natural way be added and multiplied, and the invertible ideals are those
that possess an inverse.
(8.21) The precise definition is as follows: An A-submodule a < K is called a fractional
ideal if there is some non-zero x € A such that xa < A; one may think about x as a
common denominator for the elements in a. Just as for ideals, the fractional ideal a
is said to be principal if it generated by a single element. That is, if it is shaped like
{xa | x € A} (which is fractional since the denominator of a serves as a common
denominator), and naturally, it will be denote (a).

Two fractional ideals a and b can be multiplied; exactly as for ideals one defines

a-b= {Zaibi | I finite,a; e aand b; € b},
i€l
which obviously is an A-submodule of K, and it is a fractional ideal since if x-a < A
and y - b < B, it surely holds that xy - ab < A.

Every finitely generated submodule a of K is fractional; the product of the denomi-

nators of members of a generating set multiplies a into A. Over Noetherian domains*
the reciprocal holds true since each fractional ideal is isomorphic to a genuine ideal.
However, submodules of K requiring infinitely many generators need not be fractional;
an example can be subgroup Z[p~!] of Q where one finds elements with any power of
p as denominator.
(8.22) The inverse of a fractional ideal is the fractional ideal a=! = (A : a)x = {x e K|
xa< A}*. Obviously a~lac A, and when equality occurs, one says that a is invertible.
The invertible ideals form an abelian group J(A) with a- b as product, a~! as inverse
and A as neutral element.

If a is principal, say a = (a/b), it holds true that a=! = (b/a); indeed, in a domain
the equality x-a/b = d is equivalent to x = d - b/a; so the name inverse is merited.
The principal fractional ideals form a subgroup P(A) of the ideal groupe J(A), and
the quotient CI(A) = J(A)/P(A) is the ideal class group. Two invertible ideals a and
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b belong to the same class in CI(A) if and only if there is an element f € K so that
a = f - b; or equivalently, there are non-zero elements a,b € A such thatb-a=a-b.
(8.23) Early in the course (Proposition 4.38 on page 100) we saw that in a domain the
free ideals are precisely the principal ones, so just as projective modules form a larger
class than free modules, the invertible ideals form a larger class than the principal ones.
In view of every (finitely generated) projective modules over a local ring being free, the
invertible ideals may be described as the ideals that are locally principal.

PrOPOSITION 8.24 (CHARACTERIZATION OF INVERTIBLE IDEALS) Let A be a domain with
fraction field K and let a be a fractional ideal over a. Then the following statements are
equivalent:
i) a is invertible;
ii) a is finitely generated and projective as an A-module;
iii) aAw is principal for every maximal ideal m in A.

PrOOF: i) = ii): There is by hypothesis a relation 1 = >}, ;. a;b; with the a;’s from a
and the b;’s from a~!, and multiplying through by any x € a one finds

X = Z(bix)ai, (8.1)

i

where we notice that b;x € A since b; € a~!. This shows that the a;’s generate a. To prove
that a is projective, we let E be a free A-module with a basis ey, ..., ;. The assignments
a(e;) = a; define an A-linear map «: E — a, and we contend that « is a split surjection.
It is surjective by the observation above that the a;’s generate a, and in view of (8.1),
the map o: a — E given by o(x) = > ;(b;x)e; serves as a right section for a (note that
bix € A since b; € a~! and x € a).

ii) = iii): This is just the facts that every finitely generated projective module over a
local ring is free (Proposition 8.1 above), and that an ideal in a domain being free means
it is principal.

iii) = i): When iii) holds, the inclusion a~!a € A becomes an equality when localized at
each maximal ideal because principal fractional ideals are invertible, and we conclude
by the local nature of being equal (Corollary 7.49 on page 197). 0
(8.25) Among invertible ideals we now have two group operations; when considered
to be invertible modules, the product is given as a®4b and the inverse as Hom 4 (a, A)
whereas when viewed as invertible ideals, the two operations are ab and a~1. Of course,
the two ways coincide, which is the principal step towards showing that the Picard
group and the ideal class group are isomorphic. Note that for any two ideals a and
b there is an almost tautological map ¢: (b : a)x — Homy4(a, b) that sends an element
x € (b: a)g in the transporter to the transporting “multiplication-by-x-map”.
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LEMMA 8.26 If a and b are two invertible ideals in the domain A, the multiplication map
u: a®ab — ab is an isomorphism. Each A-linear map from a to b is a homothety; that is, the
canonical inclusion 1 is an isomorphism (b : a)x ~ Homy (a,b). In particular, it holds true
that a=' = (A : a)g ~ Homy(a, A).

Proor: The multiplication map y is surjective by definition of products of ideals. Now,
localizing in the multiplicative set S = A\{0}, we find S~'a = S~!b = K, the fraction
field of A, and hence S~!(a®4b) ~ S~1a®xS~'b = K. Thus S~!y is an isomorphism.
It follows that S~! ker u = 0, and the kernel ker y is a torsion module. Both a and b are
projective, and by ii) of Proposition 8.16 on page 208 their tensor product a® b is also
projective. It is therefore a direct summand in a free module and consequently torsion
free since by assumption A is an integral domain. We conclude that ker 4 = 0.

Each element x from (b : a)g gives by multiplication a map a — b, and the assertion
in the second claim is that every map a — b is shaped like this. This hinges on the
simple fact that two elements a and b from a commute so that x = ¢(a)a—! will not
dependent on the element a € a, and hence ¢ will be the homothety by x. Indeed,
because ¢ is A-linear, it follows that

ag(b) = ¢(ab) = ¢p(ba) = bg(a).

Thus ¢(a)a=t = ¢(b)b 1. o
(8.27) The invertible fractional ideals are not a sparsely populated outskirt in the land
of rank one projectives; on the contrary, each isomorphism class of projective rank one
modules contains invertible ideals. Any non-zero element in the dual P* is a map
P — A whose localization S~1¢ in the multiplicative set S = A\{0} is an isomorphism.
It ensues that ker ¢ is killed by a non-zero element, and this is only possible if ker ¢ = 0
(P is contained in a free A-module and A is a domain). Hence P is isomorphic to its
image ¢(A), which is an ideal.

The invertible ideals are invertible modules, and if a and b belong to the same class
in CI(A), they are isomorphic A-modules; indeed a = f - b for some f € K. Hence there
is a natural map CI(A) — Pic A that sends the class of an ideal to its isomorphism class.
By what we just did it is surjective, and from Lemma 8.26 one deduces painlessly that it
is an injective group homomorphism. Hence:

ProrosiTION 8.28 If A is a domain, the Picard group Pic A and the ideal class group CI(A)
are isomorphic.

ExamrLE 8.4 The Picard group of a p1p A vanishes since by definition all ideals are
principal, and one may show that Pic A = 0 also for Noetherian factorial rings A. %
ExercisE 8.8 Let a be an invertible ideal which is generated by two elements. Show
that A® A ~ a@®@a~!. Hint: Copy the staging in the proof of Proposition 8.24 that i) =
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ExerCISE 8.9 A sequence x,Yy of two elements in a domain A is said to be regular if
ax = by implies that 4 = ay and b = ax for some a € A. For instance, two elements
in a UDF without common factors form a regular sequence. Let a £ A be an ideal in a
domain that contains a regular sequence of two elements, show that Homy4 (a, A) = A.

*

8.4 Examples

Modules over principal ideal domains

Any submodule of a free module over a PID is free, which is a rather rare property for
a ring to have—ideals in a domain, for instance, are free if and only they are principal—
it holds unconditionally, but we shall prove it merely for modules of finite rank to avoid
diving into the deep waters of transfinite induction. A simple proof for the non-finite
case may be found in Kaplansky’s book ([?]) (which of course later was superseded
Bass’s general result), and for those who would appreciate a transfinite swim, we have
included an exercise with hints. It follows that a principal ideal domains enjoy the
property that all projective modules are free; among the finitily generated modules even
the torsion free ones will be free.

The class of finitely generated modules over a PID is one of the very rare classes of
modules which are completely classified up to isomorphism. This includes the classical
“Main theorem for finitely generated abelian groups”, which states that such a group M,
up to isomorphism, decomposes as a direct sum of cyclic groups; that is, one has

M=~Z'©PZ/p'Z,
1

where v is non-negative integer (the rank of M), the p:,/"’s are prime powers; and of
course, the sum is finite. Abelian groups that are not finitely generated can be extremely
complicate and are a largely unexplored part of the mathematical world—even the
apparently simplest cases; i. e. subgroups of Q @ Q, seem to form an impenetrable
jungle.

(8.29) We are mainly concerned with rings which are principal ideal domains. However,
the case of their big brothers, the Bézout rings, are of considerable interest—if for nothing
else, functions holomorphic in an open domain form a Bézout ring—and as working
with Bézout rings adds no complications, we shall do that. A Bézout ring is a ring all
whose finitely generated ideals are principal.

THEOREM 8.30 Let A be a Bézout rings; that is, a ring where each finitely generated ideal is
principal, and let M be a finitely generated A-module.
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Scottish mathematician

i) If M is torsion free, then M is free;
ii) If M is projective it is free, in particular it holds that Pic A = 0.

Since the property of being torsion free obviously is passed to submodules, one has
the corollary that every finitely generated submodule of a free module over a Bézout
ring is free; note however, that when A is a pID, the requirement that the submodule be
finitely generated is automatically fulfilled.

We we shall need the following general lemma.

LEMMA 8.31 Assume that M is a finitely generated non-zero torsion free module over a domain
A. Then there are non-zero A-linear maps ¢: M — A.

Proor: As usual K denotes the fraction field of A. The module M being torsion free
will be a submodule of the non-zero K-vector space M® 4K which spans M®4K as a
K-vector space, and thus we may find a non-zero K-linear map ¢: M®4K — K. As M
spans M® 4K, the map 3 does not vanish on M, but of course, it does not necessarily
assume values in A. To achieve this let my,...,m, be generators for M and let a be a
common denominator for the images (m;). Then ¢ = a - ¢ does the job. Q
The lemma is not generally valid for modules requiring infinitely many generators; for
instance, it holds true that Homy (Q, Z) = 0; indeed, the image of an element from Q
will be an integer divisible by any other integer, and zero is the only such integer.
Proor oF THEOREM 8.30: We proceed by induction on the rank of M. Any non-zero
A-linear map ¢: M — A has an image which is a principal ideal since A is Bézout and
M finitely generated, and therefore the image is isomorphic to A. We have thus the
split exact sequence:

0 N M- A 0.

The kernel N is torision free and obviously of rank one less than the rank of M.
Induction applies, and N is free. But M being isomorphic to N @ A is therefore free as
well. aJ
(8.32) The classification result of finitely generated modules over a Bézout ring A is
established by showing the apparently stronger result that every map between free
modules of finite rank over A, or equivalently any matrix with elements from A, can
be diagonalized. The arche-typical case of the all-important matrices with integral
coefficients, were treated back in 1861 by the Irish mathematician Henry John Stephen
Smith. The case of matrices of holomorphic functions was solved by Joseph Wedderburn
in 1915. His proof relies only on the base ring being Bézout and is the one we shall
present.
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THEOREM 8.33 Let E and F be free modules of finite rank over a Bézout ring A. Any map
¢: F — E can be represented by a diagonal matrix. In other words, if D is a matrix with
coefficients in A, there are invertible matrices C and C' with entries in A so that CDC' is
diagonal.

Proor: We continue with the stage set as in the previous proof. For each surjective map
m: E — A we may form the commutative diagram

0 F F—" A 0
Jf/’ s qu J
0 E E A 0
Vs

where E’ and F’ denote the kernels of 77 and ¢ o 7t respectively, and where the rightmost
square is constructed as follows: the image of 7t o ¢ is a principal ideal; chose a generator
g foritand putp = ¢g~!- (7o ¢). The rank of E is one less than that of E so by induction
we may find bases for E’ and F/ in which ¢|p is represented as a diagonal matrix.

Chose a basis {¢;} for E, and let f be an element of F which is part of a basis and
which does not map to zero in E (the zero map is trivial to treat). The expansion of
¢(f) in the basis takes the form ¢(f) = > cje; = d Y bje; with d being the greatest
common divisor of the ¢;’s. Then }}; a;b; = 1 for appropriate ring elements a;. Introduce
the projection 71: E — A by the formula 71(}] xje;) = >} xja;. If d = 1, it holds that
(¢(f)) =1, and ¢(f) (respectively f) forms a basis for E (respectively for F) together
with any basis for E’ (respectively for F’); thus in that case ¢ is represented by a diagonal
matrix.

In case d # 1, we extend f to a basis f, f», ..., fs for F with f,, ..., fs being one for
F’. The trick is to factor ¢ as a product ¢ = ¢ o T with both ¢ and T having diagonal
matrices. To that end, let ¢: F — E be defined by /(f) = > ; bie; and ¢(f;) = ¢(f;) for
i>2,and 7: F — F by 7(f) = df and 7(f;) = f; for i > 2. Obviously 7 has a diagonal
matrix in any basis for F, and ¢ has one by the first part of the proof. a
(8.34) As a corollary of the diagonalization theorem one deduces the classification of
finitely presented modules over principal ideal domains.

THEOREM 8.35 (MAIN THEOREM FOR MODULES OVER PID’s) Every finitely generated module
M over a principal ideal domain A is isomorphic to a direct sum of cyclic modules. More precisely,
it holds true that
M~vA®@ A/pjiA (8.2)
1

where the p;’s are irreducible elements in A. The integer v and the integers v;'s are unambigu-
ously determined by the isomorphism class of M, and the irreducible elements p;’s are unique up
to association.
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*This is the only place
where we use that A is
a PID and not merely a

Bézout rings

Since A is a PID, the hypothesis that M is finitely presented in Theorem 8.33, may be
weakened to M being finitely generated; indeed, over a P1D every submodule of a free
module of finite rank is of finite rank. This is ensues from the general theory of modules
over a Noetherian rings (which we soon shall develop), but an ad hoc proof is offered in
Exercise 8.10 below.

The first part of the theorem, that M is a direct sum of cyclic modules persists being
true for modules of finite presentation over Bézout rings, but the summands are not
of the form described in the second statement. The ring () of entire functions in the
complex plain C is a Bézout ring, but there are entire functions divisible by infinitely
many irreducibles—our old friend sin 71z is one example— and if f is one, Q0/(f)Q) is
cyclic, but not of the prescribed kind.

ProoF: It should be clear that if the map ¢ in the sequence

¢

F E—"5 M 0, (8.3)

where E and F are finitely generated free modules, has a diagonal matrix in some bases,
then its cokernel M is a direct sum of cyclic modules (we leave details to the students).

This shows that M is a direct sum of cyclic modules of the form A/(f)A. If
f = pgq with p and g elements from A without common factors, one may write 1 =
ap + bg, and one easily verifies that ap and bq act as orthogonal idempotents in A/ (f)A.
Consequently A/(f)A decomposes as A/(f)A ~ A/(p)A® A/(q)A. Induction* on
the number of irreducible factors finishes the proof.

Finally we attack the uniqueness issue. The number v equals the rank of M and
is of course unambiguously determined. Localizing at a maximal ideal (p)A throws
away factors not involving p, so we may assume that A is local with maximal ideal
(p) and that the matrix ¢ is diagonal with all entries lying in (p). We contend that
two resolutions as in 8.3 are isomorphic in the sense that they enter in a commutative

diagram
0 RN BN Y| 0
Ziﬁ Z\ltx Hlid M (8.4)
0 F . Ey —— M 0.

One then easily finds pairs of bases diagonalizing the two matrices so that the diagonal
elements of the two matrices coincide. Once « is in place, p will be the restriction
of « to the kernels of the 7;’s. To obtain the isomorphism «, note that ;®idy are
isomorphisms as ¢;®id; = 0. By a now standard Nakayama-argument, any map
«: E; — Ejp lifting ids (that is, rendering the right hand square in (8.4) commutative)
will be an isomorphism since a®idg equals the isomorphism (7,®id;) ! o (m;®idy). A
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Finitely generated modules over k|[t]
(8.36) The polynomial ring over a field merits to be mentioned specially:

TueoreM 8.37 If k is field any finitely generated module M over the polynomial ring k|[t] is of
the form
M =~ vk[f] @ D[]/ (p;')
iel
where 1 is a finite set. Moreover, the non-negative integers v and v; are unambiguously defined
by M as is the the sequence (p;)icr of irreducible monic polynomials. In particular, if k is
algebraically closed it holds true that

M ~ vk[t] ® P k[t]/ (t — a;)"

iel
where the a;’s are elements in k.

Exercises

(8.10) Let A be a PID. Show that any submodule of a free module over A of finite rank
is finitely generated. HINT: Induction on the rank.

(8.11) Assume that B is an integral domain which is a finite algebra over a 1D A. Show
that B is a free A-module of finite rank. If n is the rank, show that every ideal in B can
be generated by n elements.

(8.12) Jordan—Chevalley decompositon. Let k be an algebraically closed field and V' a
vector space of finite dimension over k. Show that any ¢: V — Vis a sum ¢ = ¢s + ¢y,
with ¢s and ¢, commuting and where ¢; is diagonalizable and ¢, nilpotent. Show that
¢s and ¢, are uniquely defined by ¢. Hint: Consider V to be an k[t]-module with ¢
acting via ¢. On a summand of the type k[t]/(t —a)" put ¢s = aid and ¢, =t —a.
(8.13) Let m be a maximal ideal in the ring A and let v be a natural number. Show that
any projective module over A/m" is free. HINT: Nilpotent Nakayama.

(8.14) Dedekind-Weber normal form. The following result is due to Dedekind and Weber:
Let k be a field and let D € Gl(n, k[x,x!]) be an invertible matrix. Then there are
matrices C € Gl(n, k[x]) and C" € Gl(n, k[x~1]) so that

x™M 0
CDC' =

0 xr

The restrictions on C and C’ are important parts of the theorem. Show the Dedekind—
Weber theorem. HiNT: The group of units of k[x,x 1] is {ax* |[a e k* anda € Z }.

(8.15) Show that any finitely generated projective graded module over the polynomial
ring A = k[x1, ..., xy] is free; that is, it is isomorphic to a finite direct sum P; A(d;). Itis
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true that every finitely generated projective A-module free, but this is a big theorem. It
was conjectured by Jean Pierre Serre and proved independently by Suslin and Quillen.
Hint: Graded Nakayama.

(8.16) Assume that A is a domain such that all non-zero ideals are projective. Show
that each finitely generated projective module P is of the form P ~ (P, a; where the sum
is finite and the q;’s are ideals.

(8.17) Assume that A is a PID. An A-module M is a torsion module if any element m
is killed by a non-zero ring element a. If p € A is an irreducible, we let M, be the set of
elements in M killed by some power of p.

a) Show that M, is a submodule of M, and that M, n M; = 0 if p and q are
irreducibles that are not associate.

b) Show that whether M is finitely generated or not, M decomposes at M = P, M,
where the summation extends over a set of representatives for the irreducible
elements up to association.

¢) Show that the abelian group Q/Z is a torsion group whose p-torsion part
equals the group Z,» = Z[p~!]/Z. Conclude that there is a decomposition
Q/Z = (—Bp Zpoo where the sum extends over all primes.

(8.18)  For transfinite swimmers. Submodules of free modules over PID’s are free
regardless of the free module being finitely generated or not. In this exercise you are
guided to give a proof of this, but you are warned that it requires you be initiated in
the witchcraft of transfinite induction.

So let E be a free module over the Pip A and let {¢;};c; be a basis indexed by a
well-ordered set of ordinal type 7. For each ordinal o < T we let E; = > ;.. Ae, and put
Fo=FnE,.

i) If ¢ < T show that the quotient F,/F, will be contained in E,;;/E, and
hence it is either zero or isomorphic to A. Conclude that F; lies split in F,1.
Hint: Prove that F, = F;11 n E,.

ii) If T has an immediate predecessor, show that F free.

iii) If T is a limit ordinal, prove that F = | J,_, Fr with the union extending over
0’s that are not limit ordinals. Conclude that F is free. HINT: Each F, has a
basis and lies split in F,;1
H*

Elliptic curves 111

We have already met elliptic curves at several occasions, or to be precise, one should
rather say affine elliptic curves on Weierstrass form (there are other standard forms like
for instance Tate’s normal form; one example: the curve with equation y? + 2xy — x3 —
1/2 = 0, whose real points are depicted below). The coordinate ring A of such a curve

equals A = k[x,y] with constituting relation y> = p(x) where p is a monic polynomial
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of degree three with distinct roots, and we must assume that k is an algebraic closed
field whose characteristic is not equal to two. This example is about computing the
Picard group Pic A, which we shall describe in an ad hoc manner. There are general
theories and tools in algebraic geometry that make such an exercise easier and place it
as a small part in a wider general picture, however, we find an abecedarian approach
instructive. It gives use the opportunity to do some amusing and concrete algebra, and
one may view it as a motivation for the more advanced xyzetarian technologies.

(8.38) According to the Nullstellensatz in dimension two (Theorem 3.32 on page 78)
all maximal ideals in A are of the form I(P) = (x —a,y — b) where P = (a,b) is a point
in k? lying on the curve C; that is, b?> = p(a). This allows us to introduce an auxiliary
quadratic polynomial g(x) by the relation

y* —b% = p(x) - b* = (x —a)g(x), (8.5)

of course it depends on the point, but for simplicity this is not reflected in the notation.
(8.39) Our first ad hoc observation is that all ideals in A and consequently all ideals in
the local rings Ay, are finitely generated*; actually they are generated by at most two
elements. Since A is a free module of rank two over the 1D k[x], this follows directly
from Exercise 8.11.

Lemma 8.40 For each maximal ideal 1(P) the local ring Aypy is a PID. In particular, every
non-zero ideal in A is invertible. At the point P = (a,b) the maximal ideal I(P)Aypy is
generated by x —a if b # 0 and by y if b = 0.

There is a simple heuristics behind this lemma. If you take a look at the real curve
depicted below, you will se it has vertical tangents near the intersection points with the
x-axis, and the projection to the y-axis is locally bijective there. This indicates that one
may use the y-coordinate as a parameter in a vicinity of such points. All other points
have neighbourhoods where the projection onto the x-axis is one-to-one and where one
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thus may use the x-coordinate as a parameter, or x — a if you insist on the parameter
being zero at the point under consideration.
Proor: The proof is divided in two part according to b being zero or not. We first
treat the case b # 0. Then y +b ¢ I(P) and is invertible in Ajp), and since y —
b= (y+b)~'(x—a)g(x), we see that I(P)Ayppy = (x —a). Assume then that b = 0.
Differentiating (8.5) shows that g(a) = p/(a) # 0 (the polynomial p(x) is assumed not
to have multiple roots). Therefore q(x) ¢ I(p) and is thus invertible in Ajp). Hence
x—a=1y*q(x)"!and I(P)Aypy = (y). The maximal ideals I(P)Ap) are therefore all
principal, and the claim follows from the next lemma (which is a precursor for Krull’s
intersection theorem).

Finally, after having established that each local ring Ay (p) is a PID, we know that
each non-zero ideal in A is locally free of rank one; hence it is projective of rank one
and thus invertible by Proposition 8.24 on page 213. a

LEmMA 8.41 Assume that B is a local ring where all ideals are finitely generated and whose
maximal ideal m is principal. Then B is a PID.

PrOOF: Let t be a generator for m. We contend that a = ();m’ = 0; indeed, assume
a # 0 and let ¢y,...,cr be a generator set for it with » minimal. It holds true that
c1 = tx for some x € a. One may write x = ajc; + ...+ a,c, with 4; € B, and thence
c1 = ayteg + ...+ taye,. Now 1 —aqt ¢ m and is therefore invertible in B. It ensues that
c1 = t(1—ayt)taser + ...+ t(1 — ay) ~lasc,, which is in flagrant contradiction with the
¢;’s forming a minimal generator set.

This done, let a be a non-zero ideal in B. Since (), m! =0, there is a largest natural
number v so that a € mY, and we contend that a = m? = (#'). Indeed, let x € a
but x ¢ m“*!. Then x = at’, but a ¢ m. The ring B being local, a is invertible and
consequently a = (7). u

PROPOSITION 8.42 Each non-zero and proper ideal a in A is a product of finitely many maximal
ideals. In other words, the Picard group Pic A is generated by the maximal deals.
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ProoF: Let f € a be non-zero. Then the norm N(f) is a non-zero polynomial which
belongs to a. If the maximal ideal I(P) contains a, it contains N(f) so that the x-
coordinate of P is among the finitely many roots of N(f). We conclude that only finitely
many maximal ideals contain a.

For each point P € C, there is a maximal vp so that a < I(P)"? (for most P it will be
zero). Localizing in I(P), we find aAjp) = I(P)"? by Lemma 8.41 above, and we may
conclude since equality is a local property. EI
(8.43) Actually, much more is true. Not only is the group Pic A generated by the
maximal ideals, but as we shall see, the association P — I(P) is a bijection between C
and Pic A\{0}. This a very specific property of elliptic curves; most other curves only
share the property that the Picard group is generated by maximal ideals. The natural
question then arises: How is the group law in Pic A expressed in terms of points on C?
Or phrased differently: To which maximal ideal is the product of two maximal ideals
isomorphic?

Before answering that question we introduce a natural involution ¢ on A. It arises
from the equation y?> = p(x) being invariant under the change of the sign of y. We shall
use an exponential notation, and denote the action of ¢ on element f(x,y) from A as
f7%(x,y) = f(x,—y), and for each ideal a in A the image { f’ | f € a} will be denoted
by a”. The geometric incarnation of ¢ is just the reflection about the x-axis. Its action
on points P € C will be denoted by ¢(P), and o (a,b) = (a, —b). It has the three points
where C meets the x-axis as fixed points; that is, the three roots of p(x).

We shall answer the rhetoric question above by proving:

THEOREM 8.44 (THE GROUP LAW ON AN ELLIPTIC CURVE) Associating each point P on the
curve C with the maximals ideal in I(P) in A yields a bijection between C and Pic A\{0}. The
group structure on C L {0} induced from that on Pic A has the two properties:
i) —P =o(P);
ii) When P # —P, it holds true that P+ Q + R = 0 if and only if P, Q and R are
collinear.

Even though the Picard group has a group law induced by the tensor product and so
has a multiplicative touch, it is customary to use an additive notation for the induced
group structure on C. Notice also that the neutral element 0 does not correspond to a
point on C; this reflects the fact that C is an affine curve. Adding 0 to C as “the point
at infinity” (or closing C up in the projective plane, if you want) yields a so-called
complete* curve which is in bijection with the entire Pic A.

The group law is very geometric. To add two points P and Q on C, draw the line
through them (which means the tangent to C at P if Q = P) and determine the third

14TH JUNE 2021 AT 10:26AM
VERSION 4.1 RUN 193

EXAMPLES 223

*When the ground
field is C, one may give
C the topology
inherited from the
standard topology on
C?, and thenC U {0}
will be a
compactification of C.
It is even a Lie group
which turns out to be
isomorphic to the
product S' x S of two
circles



224 PROJECTIVE MODULES

-
N

l

intersection point it has with C; then P + Q will be the reflection of that point through
the x-axis.

(8.45) The following lemma reflects the substance of the theorem. We shall explain the
lemma, but leave it to the students to carefully carry out the deduction of the theorem.

LEMMA 8.46 Let P, Q and R be three points on the elliptic curve C. The following three
statements hold true:

i) Each ideal 1(P) is projective of rank one and has 1(P)7 as inverse;
ii) The ideal I(P) is never principal; i. e. it is never a free module;
iit) If no two of the points are conjugate, the three points are collinear if and only if the
ideal I(P) - I(Q) - I(R) is principal;
iv) I(P) ~ I(Q) if and only if P = Q.
PrOOF: Proof of i): From Lemma 8.26 above we know that I(P)®4I1(Q) = I(P) - I(Q)

for any two points P and Q on C. So our task is to prove that I(P) - I(P)? is principal.
Let the point be P = (a,b). We naively compute the product I(P) - I(P)":

I(P)-I(P)" =(x—a,y—b)(x—a,y+b) =
((x—a)% (x—a)(y—b),(x—a)(y +b), (> - 1)) =
((r— )%, 2b(x — a), 29(x — a), (x — a)q(x)).

This shows that I(P) - I(P)? < (x — a) and to arrive at an equality we have to get rid of
either of the factors 2b, 2y or g(x). When b # 0, we quickly discard the factor 2b and
are happy (this is where we use that k is of characteristic different from 2).

In case b = 0, note that g(a) # 0, so g(x) and x — a do not have common factors, and
we may write 1 = f(x)q(x) + g(x)(x —a) with f and g from k[x]. This gives the identity
(x —a) = f(x)(x —a)q(x) + (x —a)?g(x), and we conclude that (x —a) € I(P) - I(P)”.
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Proof of ii): Assume that I(P) is a principal ideal, say generated by f, from which ensues
that (x —a) = I(P)-I7(P) = (f- f7). Hence x —a = ¢ f - f9, which is impossible
unless f is a unit because x — a is irreducible (Example 3.6 on page 81).

Proof of the “if implication” of iii): The geometric reason behind this is simply, when the
three points are aligned, say they are lying on the line ¥ = ax + §, that the line through
them intersects the curve C precisely in the three points (when possible multiplicities
are take into account): the x-coordinates of these points are determined from the cubic
equation

p(x) — (ax+ B)* =0. (8.6)

Denote the three roots by a1, a; and a;, but be aware that two or all three may coincide.

The corresponding y-coordinates will be aa; 4 . Rebabtising the points as P;, P, and
P3, we contend that

(y—(ax+p))A = 1(P1) - I(P2) - I(P3),

which is the proper algebraic way of asserting that the line intersects C exactly in
the three points. By Proposition 8.42 above the ideal (y — (ax + pB)) is a product
m;'-...-m;” of maximal ideals and the exponents v; can be found by localization. We

examine (y — (ax + B)) Ay (p) for a general point P in C. There are three cases to handle.

i) P is not among the three P;’s. Then y — (ax + ) does not vanish at P; it does
not belong to I(P), and (y — (ax + B))Aj(p) = Aj(p)- The ideal I(P) does not
occur as factor in (y — (ax + B)).
ity P = P; = (a;,b) and b # 0. Then y + ax +  does not vanish in P; since no two
of the Pj’s are conjugate. It follows that (y — (ax + B))Ayp,) = (y? — (ax +
B)?)Ap, = (x — a;)"i where v; is the multiplicity of the root ;.
iii) If P; = (a,0). Thenaa+ B =0and y = y — (ax + B) + a(x — a). It follows
that ((y — (ax + B)))Ayp) = (v), and the the corresponding multiplicity is
one. Differentiating 8.6 one sees that a is simple root of 8.6, since it is a simple
zero of p(x).
Proof of iv): Assume that I(P;) ~ I(P,). There are three cases: If the two points are
different and non-conjugate points, and consider the line L through P; and o (P,). If
P, = o(Py), we note that b # 0 since the two points are different, and we let L be the

tangent to C at P;. It has the explicit equation y — i/ (a) (x —a) — b where y'(a) = q(a) /2b.

In both cases L intersects C in a third point Ps.
In view of i) and the if part of iii) , we find

A = 1(P3)@al(P)®@41(P2)" ~ I(P3),

which is a flagrant contradiction of assertion ii).
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Proof of the “only if implication” of iii): Assume finally that I(Py) - I(P,) - I(Ps) is
principal, and let R be the third intersection point the line through P; and P, has
with C. According to what we just did, I(P;) and I(R) are then both isomorphic to
I(P1)"'®41(P;)~!, and by iv) we may conclude that I(P;) = I(R); thatis, R=P;. O

The algebraic Mobius band

In Exercise 3.18 on page 83 we examined the ring A = R[x, y] with constituting relation
x? + y? = 1; which is the ring of real polynomial functions on the unite circle, or if one
wants, one may interpret A as the ring of trigonometric polynomials by letting x = sin6
and y = cos 0. Exercise 3.18 was about showing that A is not a UFD, and we are about
to prove that Pic A ~ Z/2. There is in other words up to isomorphism just one rank
one projective module which is not free and its square is trivial. In the analogy between
projective modules and vector bundles the module P is the algebraic incarnation of the
only nontrivial real line bundle on the circle, the Mobius band.

For each point P = (a,b) on the unit circle S, the ideal I(P) = (x —a,y —b) is a
maximal ideal in A being the kernel of the evaluation map at P. However, there are
other maximal ideals as described in the next lemma, they are however all principal,
generated by equations of lines not meeting S.

LeEMMA 8.47 The maximal ideals m in A are of the following two types:
i) Either m = I(P) for a point P = (a, b) on the unit circle S,
ii) or m is principal and generated by a linear form ax + By + p where a, p and p are
real constants such that a> + B> =1 and p > 1.

PrROOF: Let m be a maximal ideal in A, and consider the extension Cl[x,y] of A; if n is
a maximal ideal in C[x, y] that contains m - C[x, y], it holds that n n A = m; likewise,
the conjugate ideal n contains m-C[x,y], and nn A = m. Now, according to the
Nullstellensatz in dimension two (Theorem 3.32 on page 78) it holds true that n =
(x —a,y — b) with a and b being complex numbers such that a®> + b? = 1. If a and b are
both real, we are in case i). If not, we evoke Exercise 3.19 on page 83 and conclude that
n=(u—c)withu = x+iyand ¢ = a+ib. Obviously (u—c)- (4 —c) =14 cc—uc— i,
and writing u = ¢/ and ¢ = re% we the find

271 (1 + e + uc —iic) = cos(t—60) + (r+r71)/2,

which is of the form required in the lemma since 7 +r~! > 2 forall . Butn niin A = m;
hence m is generated by the real linear form (u —c) - (i — ). N

LEMMA 8.48 Let P and Q be two real points on the unit circle S.
i) The maximal ideal I(P)Aypy in the localized ring Ayp) is a principal ideal, but I(P)
itself is not principal;
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ii) The product 1(P) - 1(Q) is principal; in particular, I(P)? ~ A;
iii) It holds that I(P) ~ I1(Q).

Proor: Choosing appropriate coordinates, we may assume that P = (1,0), and since
x +1 does not vanish at P, it is invertible in the local ring Ayp). Hence x —1 =
y*(x+1)"1in Aypy and (x =1L, y)Ayp) = (y)Ajp). However, I(P) is not principal
since both y and x — 1 are irreducible (Exercise 3.18) and neither is a factor of the other.

For the second statement, we choose coordinates so that two points are (x —a,yy — b)
and (x 44,y —b) (just see to the x-axis being parallel to the line joining P and Q or
to the tangent to S at P if P = Q). We find by an abecedarian manipulation, stupidly
multiplying out and using the identity x> + y? = a® + b?, that

(x—a,y—b)-(x+a,y—b) = (2b(y —b),2x(y — b),2a(y — b), (y — b)?),

and this ideal is equal to (y — b); indeed, a and b are never simultaneously zero. EI
We conclude

THEOREM 8.49 One has Pic A ~ Z /27 generated by the class of the maximal ideal I1(P) for
any point P on the unit circle S.

Proor: The proof of Proposition 8.42 on page 222 goes word by word through in
the present case so that Pic A is generated by the classes of the maximal ideals. By
Lemma 8.48 above it holds that 2[I(P)] = 0, and thus [I(Q)] = —[I(P)] = [I(P)]. Q
(8.50) There are clear and simple heuristic geometric explanations of these results. Any
two points on the circle are connected by a real line intersecting the circle precisely in
the two points, and the product of the corresponding maximal ideals is generated by
the linear form defining the line. In a similar fashion, the tangent to the circle at a point
does not intersect the circle elsewhere, hence the maximal ideals are two-torsion. Lines
that do not intersect S intersect the complex curve x* + y? = 1 in C? in two conjugate
points, whose maximal ideal therefore have a product generated by the corresponding
linear form, and these are the "other" maximal ideals from case ii) in Lemma 8.47.

Exercises
(8.19) Let C be an elliptic curve as in Subsection 8.36 above . Let A be the coordinate
ring and K its fraction field. Let furthermore let P and Q be points on C.
a) Show that I(P)®I(—P) ~ A® A;
b) More general show there is an isomorphism I(P)®I1(Q) ~ A®I(P+ Q).
HiNT: There is a natural map I(P) ® I(Q) — I(P) + I(Q); examine its kernel.

(8.20) Let A be aring. A finite free resolution of an A-module M is an exact sequence

0 F F_1 .. A R M 0
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where each F; is a free module. An A-module M is said to be stably free if M@ VA
is free for some non-negative number v. Show that a stably free projective A-module
having a finite free resolution is free.

(8.21) With the notation from the subsection above about elliptic curves (Paragraph 8.45
etc), consider the two matrices

o= Y70 ) g (VD A
—(x—a) y+0b x—a y—b
with coefficients from A. Show that ¢ = ¢ = 0 and that the complex

o aoa s aea— s apat

which extends infinitely in both directions, is exact. Show that coker ¢ ~ I(P) and use
(part of) the complex above to exhibit an infinite free resolution of I(P). Show that I(P)
is not stably free.

e
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Lecture 9

Chain conditions

One of the great moments of mathematics was the appearance of Emmy Noether’s
revolutionary paper Idealtheorie in Ringbereichen in 1921 where she introduced the
ascending chain condition on ideals and proved the general version of the Primary
Decomposition Theorem. The chain conditions have turned out to be extremely useful,
and today they permeate both commutative and non-commutative algebra.

9.1 Noetherian modules

We introduced the concept of chains in partially ordered sets already when discussing
Zorn’s lemma (in Theorem 2.46 on page 49). Recall that a chain C in a partially ordered
set X is just a linearly ordered subset; that is, a set such that any two members of the
subset C are comparable.

(9.1) In the present setting, when studying modules over a ring A, we give the term
chain a more restrictive meaning. The chains we shall consider will all be countable and
well ordered. Two sorts of chains will be distinguished, ascending and descending ones.
An ascending chain in M will be a sequence of submodules {M;};en, such that every
term M; is contained in in the successor M;1; or written out in a display, it is a chain
of inclusions like

MycMic...cM;cMj1<....

Similarly, a descending chain is a sequence {M;};ciN, of submodules fitting into a chain of
inclusions shaped like

.CEMi 1S M; S ... € M S M.

Such chains are said to be eventually constant or eventually terminating if the submodules
become equal from a certain point on; that is, for some index iy it holds that M; = M]-
whenever 7,j > ip. Common usage is also to say the chain stabilizes at i.

(9.2) An A-module M is said to be Noetherian if every ascending chain in M is eventually

Emmy Noether
(1882-1935)

German mathematician

Ascending chains
(oppstigende kjeder)

Descending chains
(nedstigende kjeder)
Eventually constant
chains (terminerende
kjeder)

Noetherian modules
(noetherske moduler)
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Noetherian and
Artinian rings
(noetherske og artinske
ringer)

Emil Artin
(1898-1962)

Austrian

mathematician

constant. This condition is frequently referred to as the Ascending Chain Condition
abbreviated to Acc . The module is Artinian if every descending chain terminates, a
condition also called the Descending Chain Condition with the acronym pcc.

A ring A is called Noetherian if it is Noetherian as module over itself, and of course,
it is Artinian if it is Artinian as module over itself. The submodules of A are precisely the
ideals, so A being Noetherian amounts to ideals of A satisfying the aAcc, and similarly,
A is Artinian precisely when the ideals comply with the pcc.

(9.3) The two conditions, being Noetherian and Artinian, might look similar, but there
is a huge difference between the two. Noetherian and Artinian modules belong in
some sense to opposite corners of the category Mod,. In what follows we shall treat
Noetherian modules and Noetherian rings and establish their basic properties, but will
lack time to discuss the Artinian modules in any depth, although Artinian rings will be
discussed (in Section 9.7 below). In fact, according to a result of Yasuo Akizuki they
turn out to be Noetherian as well, they form the class of so-called finite length, and are
important both in geometry and number theory.

(9-4) The constituting properties of Noetherian modules is asserted in the following
theorem. It is due to Emmy Noether and appears as one of the main theorems in her
famous paper from 1921.

PROPOSITION 9.5 (MAIN THEOREM FOR NOETHERIAN MODULES) Let A be a ring and let M
be a module over A. The following three conditions are equivalent:

i) M is Noetherian; that is, it satisfies the ascending chain condition;
ii) Every non-empty family of submodules has a maximal element;
iit) Every submodule of M is finitely generated.

Proor: Assume first that M is Noetherian and let X be a non-empty set of submodules.
We must prove that & has a maximal element’. Assuming the contrary—that there is no
maximal elements in X—one proves by an easy induction on the length that every finite
chain in ¥ can be strictly extended upwards. The resulting chain does not terminate,
and the Acc is violated.

Next, suppose that every non-empty set of submodules in N possesses maximal
elements. Our mission is to prove that every submodule N is finitely generated. To
that end, let = denote the set of finitely generated submodules. It is clearly non-empty
(the zero modules is finitely generated) and consequently has a maximal element Nj.
Let x € N be any element. The module Ax + Nj is finitely generated and contains N,

'Even though resembling Zorn’s lemma this is quite different. The acc assumption is stronger than what
Zorn's lemma asks in that chains are required to be eventually constant not only bounded above; on the other
hand the acc places restrictions only on countable and well ordered chains. Anyhow, it is of interest that the
proposition is independent of the Axiom of Choice
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NOETHERIAN MODULES 231

so from the maximality of Nj it ensues that x € Ng. Hence N = N, and N is finitely
generated.

For the third and last implication, assume that all submodules of N are finitely
generated, and let an ascending chain

MoycsMic....cM;cM;1<...

be given. The union N = | J; M; is by assumption finitely generated and have say
x1,...,%; as generators. Each X; lies in some MV]., and the chain being ascending, they
all lie in M, with v = max; ;. Therefore N = M,, and the chain stabilizes at v. a

There are statements for Artinian modules that correspond to the two first claims
in the theorem, which are of a kind of order-theoretical nature (you are asked to give
a proof in Exercise 9.5 below). However, there is no substitute for the third, about
submodules being finitely generated, which draws module theory into the business.
(9.6) The Noetherian modules, as do the Artinian modules, form a subcategory of Mod 4
which enjoys a strong closure property. They are what in category theory are called
thick subcategories. Submodules and quotients of Noetherian modules are Noetherian as
is an extension of two, and for of Artinian modules the same holds true.

PROPOSITION 9.7 Let M', M and M” be three A-modules fitting in a short exact sequence

0 M M M 0.

Then the middle module M is Noetherian (respectively Artinian) if and only if the two extremal
modules M’ and M" are.

In particular—as follows by a straightforward induction—finite direct sums of Noe-
therian (or Artinian) modules will be Noetherian (respectively Artinian), and vice
versa: If a direct sum is Noetherian (or Artinian) it is finite and all the summands are
Noetherian (or Artinian).
Proor: We may without loss of generality identify M’ with its image in M. Every chain
in M’ is then a chain in M, so if M is Noetherian (or Artinian), the same is true for M’.
In the same vein, if f: M — M” denotes the quotient map, a chain {N;} in M” lifts to
the chain {7!(N;)} in M. Since B is surjective, it holds that B(87!(N;)) = N;, so that
{N;} stabilizes whenever {871(N;)} does. Hence, if M is Noetherian (or Artinian), so
will M”.

To prove the remaining half of the proposition assume that the two extreme modules
M’ and M” are Noetherian (or Artinian) and let {N;} be a chain in M. The chain
{N; n M'} stabilizes at some v, hence N; n M" = N; n M’ for i,j > v.

Mapping the N;’s into M” one obtains the chain {8(N;)} in M”, and since M" by
assumption is Noetherian (or Artinian), it stabilizes at some . Hence B(N;) = B(N;)
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fori,j > p. Fori,j = max(p,v) this gives
Ni/Nl‘ M M/ = ﬁ(Nl) = ‘B(N]) = N]/N] M M/ = N]/Nl M M/,

and hence N; = N;. a
(9.8) The properties of being Noetherian or Artinian are retained when a module is
localized.

PROPOSITION 9.9 Let S be a multiplicative set in the ring A and let M be an A-module. If
M is Noetherian (respectively Artinian the localized module Mg is Noetherian (respectively
Artinian).

Proor: The proof is based on the simple observation that for any submodule N of
S~!M one has S~!(:7!N) = N, where :: M — S~!M denotes the localization map:
indeed, if an element ((y)s~! in S~'M belongs to N, so does ¢(y).

Now, any chain {N;} in S™'M, whether ascending or descending, induces a chain
{i=1(N;)} in M, and if this chain stabilizes, say :~!(N;) = L’l(N]-) for i,j = ip, it holds
true that N; = ST1(17IN;) = Sfl(Fle) = Nj, and the original chain stabilizes at ij as
well. a

Examples

(9.1) Vector spaces: A vector space V over a field k is Noetherian (or Artinian) if and
only if it is of finite dimension. Indeed, if V is of finite dimension it is the direct sum of
finitely many copies of k, hence Noetherian (and Artinian).

If V is not of finite dimension there will be infinite sets vy,...,v;,... of linearly
independent vectors, and for such the subspaces V; =< vy,...,v; > will form a strictly
ascending chain of subspaces; hence V is not Noetherian. A similar argument shows
that neither is V' Artinian: the spaces W; =< v;,v;,1--- > form a strictly decreasing
chain of subspaces.

(9.2) Finite product of fields: The conclusions of the preceding example extend to rings
that are finite products of fields; say A = [[;<;<,ki- Modules over such rings are
direct sums V = D¢, V; where each V; is a vector space over k; with the A-module
structure induced by the projection A — k;. From Proposition 9.7, or rather the
succeeding comment, ensues that V is Noetherian (or Artinian) if and only if each V; is
of finite dimension over k;.

¥

Exercises

(9.1) Prove the assertion just after Proposition 9.7 that if a direct sum of Noetherian
modules is Noetherian, the sum is finite and all the summands are Noetherian.

(9.2) Show that Z is a Noetherian Z-module, but that Z, = Z[p~']/Z is not. Show
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NOETHERIAN RINGS 233

that Z,~ is an Artinian Z-module, but that Z is not. HinT: The only submodules of
Z, are the cyclic ones generated by the images of p™' for different i's.

(9-3) Let ¢: A — B be a map of rings and let M be a B-module. Prove that if M is
Noetherian as an A-module, it is Noetherian as an B-module as well. Show by exhibiting
examples that the converse is not true in general, but holds true when ¢ is surjective.
(9.4) Show that a direct sum of finitely many simple modules is both Noetherian and
Artinian.

(9.5) Let M be an A-module. Show that the following two claims are equivalent:

i) M is an Artinian module;
if) Every non-empty family ¥ of submodules of M has a minimal element.

9.2 Noetherian rings

Recall that a ring A is called Noetherian if it is Noetherian as a module over itself. The
Noetherian rings form a large natural class of rings with a very rich theory. The lion’s
share of the rings appearing in classical algebraic geometry are of so-called essential
finite type over a field k (or over a Noetherian ground ring); that is, they are localizations
of finitely generated k-algebras (or algebras over the ground ring). All these rings are
Noetherian. Hilbert’s basis theorem ensures that algebras finitely generated over a
Noetherian base are Noetherian, and by Proposition 9.9 above localizing a ring preserves
the property of being Noetherian.

Be aware that although having lots of nice properties, Noetherian rings can be
treacherous and show an unexpectedly bad behaviour. Even among local Noetherian
rings, which usually are rather tame and well-behaved animals, one finds example with
strange properties.

(9.10) The ring A being Noetherian means that any ascending chain of ideals eventually
terminates. Applying Proposition 9.5 on page 230 to the ring A itself while remembering
that the submodules of A are precisely the ideals, we arrive at the following;:

PROPOSITION 9.11 (THE MAIN THEOREM FOR NOETHERIAN RINGS) For a ring A the follow-
ing three conditions are equivalent:
i) A is Noetherian; that is, the ideals in A comply with the ascending chain condition;
ii) Every non-empty family of ideals in A has a maximal element;
iii) Every ideal in A is finitely generated.

It is trivial that fields are Noetherian, and shortly we shall see that polynomial rings
over fields are Noetherian too; this is a special case of the celebrated Hilbert’s Basis
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Theorem. Other examples of Noetherian rings are the principal ideal domains, where
ideals are not only finitely generated, but generated by a single element.

(9.12) Quotients of Noetherian rings are Noetherian (Proposition 9.11 on the previous
page), but not necessarily subrings. Non-Noetherian domain are obvious examples:
they are contained in their fraction fields, which are Noetherian. A subtler example will
be given below (Example 9.4).

PROPOSITION 9.13 Let A be a Noetherian ring and M an A-module. Then M is Noetherian if
and only if M is finitely generated.

Proor: A finitely generated A-module M can be realized as the quotient of a finite direct
sum nA of n copies of A. When A is Noetherian, it follows from Proposition 9.7 on
page 231 that nA is Noetherian; indeed, one obtains 1A by successive extensions of A by
itself. By Proposition 9.7 again, all quotients of nA, in particular M, will be Noetherian.
Finally, Noetherian modules are finitely generated since all their submodules are. 1
(9.14) A converse to Proposition 9.13 does not hold in the sense that rings may have
non-zero Noetherian modules without being Noetherian themselves; in fact, this applies
to all non-Noetherian rings: simple modules are Noetherian (all submodules are finitely
generated!), and every ring possesses non-trivial simple modules by The Fundamental
Existence Theorem for Ideals (Theorem 2.49 on page 49). These examples are in some
way illustrative; any Noetherian module over a non-Noetherian ring must have a non-
trivial annihilator ideal; or phrased in another way, if A has a Noetherian module with
global support— what is also called a faithful module—it is a Noetherian ring.

PROPOSITION 9.15 Assume that M is a module over A. If M is Noetherian, then A/ Ann M
is Noetherian as well.

Proor: Let x1,...,x; be generators for M, and consider the map ¢: A — rM that
sends x to the tuple (x-xq,...,x-x;). If x kills all the x;’s, it kills the entire module M,
since the x;’s form a generating set, and we may infer that the kernel of ¢ equals the
annihilator Ann M. This means that A/ Ann M is isomorphic to a submodule of rM,
hence it is Noetherian by Proposition 9.7 above. J

Minimal primes in Noetherian rings

(9.16) The minimal prime ideals of an ideal a in a ring A (that is, the prime ideals
minimal among those containing a) are in the front line when one starts examining a.
Geometrically, their corresponding closed subsets are the irreducible components of of
Spec A. And an important feature—in fact a basic finiteness property—of Noetherian
rings is that the set of minimal primes of any ideal is finite. For this reason it is
appropriate and natural to include a proof at this stage, which also has the bonus of
furnishing a nice and simple illustration of an ever recurring technique called Noetherian
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induction: If a statement about ideals is not true for all ideals, the set ideals for which it
fails—the gang of bad guys, so to say—is then non-empty and consequently will have a
maximal member, and working with this maximal scoundrel, one tries to establish a
contradiction.

Remembering that the radical of an ideal is the intersection of its minimal primes, one
obtains—as a prelude to the general theory of primary decompositions—the corollary
that radical ideals in Noetherian rings equal the intersections of their finitely many
minimal prime ideals; that is, one has

Va=pio...npy (9.1)

with the p;’s being the minimal primes of a. And, of course, the minimal primes are
unambiguously determined by the ideal a, and moreover, no inclusion relation among
them persists.

PrROPOSITION 9.17 Each ideal a in a Noetherian ring has only finitely many minimal prime
ideals.

ProOOF: Let X be the set of proper ideals in A having infinitely many minimal prime
ideals. If X is non-empty, it has maximal member, say a. Obviously a is not a prime
ideal, so there are elements x and y neither lying in a, but whose product xy belongs to
a. Then a + (x) and a + (y) are proper ideals (their product is contained in a) strictly
larger a, and consequently each has merely finitely many minimal primes. Any prime
ideal containing a contains either x or y, hence each minimal prime ideal of a is either
among the finitely many minimal primes of a + (x) or the finitely many of a + (y). 1

CoROLLARY 9.18 A radical ideal in a Noetherian ring is an irredundant intersection of finitely
many prime ideals. In particular, the nil-radical is the intersection of finitely many prime ideals.
The involved prime ideals are unique.

Examples

Examples of Noetherian rings will soon abound, so here we merely give a few examples
of non-Noetherian rings, noting the words of wisdom of Sun Tzu: “If you know the
enemy and know yourself”.

(9.3) The obvious example of a non-Noetherian ring is the ring A[xj, xp, . ..] of polyno-
mials in infinitely many variables over any ring A. Clearly, the chain of ideals
(x1)c (x1, %) ...c(xq,x2,..., %)< ...

does not stabilize.

(9-4) One might be mislead by the previous example to believe that non-Noetherian
rings are monstrously big. There are, however, non-Noetherian rings contained in the
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polynomial ring Q[x]. The simplest example is even a subring of the ring Z[p~!][x]
where p is a natural number greater than one. It is formed by those polynomials in
Z[p~'][x] that assume an integral value at zero; that is, the polynomials P(x) such that
P(0) € Z. In this ring A one finds the following ascending chain of principal ideals

(p~'x)c (p~2x)c ...c(p i) ...,

which does not stabilize. Indeed, if p~(*Dx € (p~ix), one would have p~(+Dx =
P(x)p~ix for some polynomial P(x) € A. Cancelling p~'x would give p~! = P(x),
which contradicts that P(0) € Z.
(9.5) A large class of important non-Noetherian rings are formed by the rings H(Q))
of holomorphic functions in an open domain () in the complex plane. Chains that do
not terminate arise from sequences of distinct points in () that do not accumulate in
Q. If {z;} is such a sequence, let a, be the ideal of functions in H((Q)) vanishing in
the set Z, = {241,242, ...}. These ideals clearly form an ascending chain, and from
Weierstrass’ Existence Theorem ensues that there are functions f, holomorphic in ()
whose zeros are exactly the points in Z,,. Then f, € a,, but f, ¢ a,_1, and the chain can
not stabilize at any stage.

*

Exercises
(9.6) Let A< Q be any proper subring. Show that the polynomials in Q[f] assuming
values in A at the origin, is not Noetherian.
(9.7) Let {A;j}ic; be a family of Noetherian rings all different from the null ring.

a) Show that the product [ [; A; is Noetherian when [ is finite.

b) Show that the product [ [; A; is not Noetherian when [ is infinite.
(9.8) The ring of numerical polynomials. A polynomial p(x) in Q[x] is called a numerical or
integral polynomial if it assumes integral values on the integers. Every such polynomial

) = Yo}

where () = x(x —1)... (x —v)/v! and where the ¢,’s are integers.

has a unique expansion

Show that the ring Int(Z) of numerical polynomials in Q[x] is not Noetherian.
HiINT: Show for instance that the ideal m = { f € Int(Z) | f(0) is even } is not finitely
generated.

(9.9) The ring of algebraic integers. Let A be the subring of the complex numbers C
whose elements are algebraic integers; that is, they are solutions of equations of the
type

2 ta, 2"V 4 mz+ay=0
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where the coefficients a; are integers. Show that A is not Noetherian. HINT: For instance,
the principal ideals ( 3/2) form an ascending sequence that does not terminate.
*

9.3 A structure theorem for modules

As an illustration of the strength and elegance the Noetherian method can show, we
offer a structure theorem for finitely generated modules over Noetherian rings—it does
not reveal the finer features of a module, but rather describes the overall structure.
Every such module is obtained by a series of successive extensions of cyclic modules
shaped like A/p with the p’s being prime ideals. It has the important consequence that
all additive invariants® of Mod4 are determined by their values on the quotients A/p
with p prime.

(9.19) The proof of the structure theorem is built on the following result which is of
independent (and fundamental) importance and will be use later.

PROPOSITION 9.20 (MAXIMAL ANNIHILATORS) Assume that A is a ring and M an A-module.
Let Ann x be maximal among the annihilators of non-zero elements in M. Then Annx is a
prime ideal.

The prime ideals that are annihilators of an element of M are said to be associated to M,
and the set they form is denoted Ass M.

Proor: To begin with, observe that Ann x is a proper ideal as x is non-zero. Let then a
and b be ring elements such that ab € Ann x and assume that a ¢ Annx. Then ax # 0.
It is generally true that Annx € Annax, but since ax # 0 it holds that Annx = Annax
because Ann x is maximal among annihilators of non-zero elements. Now, bax = 0, so
b e Annax = Annx. a

COROLLARY 9.21 Any non-zero module over a Noetherian ring contains a module isomorphic
to A/p for some prime ideal p.

Proor: Observe that the set of annihilators of non-zero elements is non-empty and has
a maximal element since A is Noetherian. Then cite Proposition 9.20 above. a
ExERCISE 9.10 Show the slight extension of Proposition 9.20 that if Ann x is maximal
among annihilators of non-zero elements from M that are contained in a fixed prime
ideal p of A, then Ann x is prime. b
(9-22) The ground is now well prepared for the promised structure theorem; here it
comes:

2An additive invariant is a map x: Mody — G where G is a commutative monoid, such that x(M) =
X(M') + x(M") each time

0 M M M 0
is an exact sequence.
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THEOREM 9.23 (STRUCTURE OF MODULES) Let A a Noetherian ring and let M be a non-zero
A module. Then M is finitely generated if and only if it possesses a finite ascending chain of
submodules {M;}o<i<, with Mg = 0 and M, = M whose subquotients are shaped like cyclic
modules A/p; with the p;’s being prime; that is, there are short exact sequences

0 —— M M; Alp; 0

forl<i<r.

ProoF: Let M be finitely generated A module. The set of submodules of M for which
the theorem is true is non-empty by Corollary 9.21 and has thus a maximal element,
say N. If N were a proper submodule, the quotient M/ N would be non-zero and hence
contain a submodule isomorphic to A/p for some prime p. The inverse image N’ of
A/p in M would be a submodule containing N and satisfying N'/N ~ A/p, so the
theorem would also hold for N’ violating the maximality of N. a

Associated prime ideals and the support

In Section 7.5 of Chapter 7 we introduced the notion of support Supp M of an A-module
M as the subset of Spec A formed by the prime ideals p such that M is non-zero. Over
Noetherian rings there is an intimate relation between the support of a module and the
set Ass M of associated primes. The latter is always a subset of the former, and they
have the same minimal elements, so if Supp M is closed, for instance, if M is finitely
generated, it equals the closure of the set Ass M.

(9.24) The result follows here; note that we do not require M to be finitely generated,
but A needs to be Noetherian.

PROPOSITION 9.25 Let A be a Noetherian ring and M an A-module.
i) Then Ass M is non-empty and Ass M < Supp M.
ii) The sets Ass M and Supp M have the same minimal elements.

Proor: That Ass M is non-empty is just a restatement of Corollary 9.21 (the combination
of maximal annihilators being prime and that A being Noetherian ensures that they
exists). If p = Annx is a prime annihilator, the element x survives in M, according to
Lemma 7.46 on page 196, and so p belongs to Supp M.

We proceed proving the second statement and let p be minimal in the support
Supp M. Consider the A,-module M. It is a non-zero module whose support is
reduced to the maximal ideal p Ay since p is minimal in Supp M, so in view of statement
i) the maximal ideal p A, must be associated to M. The maximal ideal is therefore
an annihilator, say Ann Ay X and moreover, the element x may be chosen to lie in M.
It holds that p = pA, n A = Anny, x 1 A. We contend that there is an s ¢ p so that
p = Anngsx. Indeed, let a4, ...,a, be generators for p; for each there is an s; with
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siaix = 0. If s = s1-...-5,, it holds that p < Annsx, and consequently p = Annsx
because evidently Annsx < p. We conclude p is a prime annihilator, hence it belongs to
Ass M.

For the reverse inclusion, pick a minimal element p from Ass M and let q < p be
a prime ideal. If My # 0, there must be an element y € M so that Anny < g, but as
A is Noetherian, there is a maximal such annihilator ideal, which according to the
Principle of Maximal Annihilators (9.20 on page 237), or rather the extended version in
Exercise 9.10, is prime; and this contradicts that p is minimal in Ass M. |
(9.26) The union and the intersection of the associated prime ideals have a special
significance for the module M, quite parellel to what is the case for ideals. One has:

LEMMA 9.27 Let A be a Noetherian ring and M a finitely generated A-module. Then

i) mpeussMp = /Ann M;
i) Upeass v P 15 the set of zero-divisors in M.

Prookr: The first follows since Supp M and Ass M have the same minimal prime ideals,
and since Jpesupp M P = vAnn M when M is finitely generated (Proposition 7.55 on
page 199). The second follows by the observation that a zero-divisor x lies in an
annihilator, hence in a maximal annihilator, which is prime and belongs to Ass M. [

Exercises
(9.11) Let R = k[t, x1, x,...] with constituting relations x; = tx;;1 for i > 1 and let
A = Ry, where m is the maximal ideal m = (#). Consider the module M = A/ (x1)A.
Show that Ass M = ¥, but that M is of global support; i. e. SuppM = Spec A.
HINT: A has two non-zero prime ideals mA = (t)A and p = [);o; w'.

*

9.4 Hilbert’s Basis Theorem

There is almost an infinity of strong results about Noetherian rings, unfortunately we
have time to treat too few of them. As a beginning, in this section we shall discuss two.
In addition to Hilbert’s basis theorem, we treat a criterion for rings being Noetherian
due to L.S. Cohen. and in the next section we follow up and give one of Wolfgang
Krull’s many important results, his intersection theorem.

Hilbert’s Basis Theorem

As one might think the name indicates, Hilbert’s Basis Theorem lies at the basis for the
theory of commutative rings, and thereby is paramount for the development of algebraic
geometry. It guarantees that most rings appearing in those parts of mathematics are
Noetherian. However the name originate from the content of the theorem, that any
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ideal in a polynomial ring over a field has a finite basis—the modern version is that
polynomial rings over Noetherian rings are Noetherian.

Hilbert proved this theorem as early as in 189o. The proof was published in the paper
Uber die Theorie der algebraischen Formen. Naturally the formulation was slightly different
from the modern one (the term Noetherian was of course not in use; Emmy Noether was
only eight years old at the time), and the context was confined to polynomial rings over
fields or specific rings like the integers, but the spirit was entirely the same. The abstract
and non-constructive proof was revolting at a time when that part of mathematics
was ruled by long and soporific computations, making it extremely difficult to obtain
general results, and it opened up the path to modern algebra. Part of the mythology
surrounding the theorem is the exclamation by the “Konig der Invariant Theorie” Paul
Gordan: “Das ist nicht Mathematik, das ist Theologie!”. The truth is that Hilbert had
proved in a few pages what Gordan and his school had not proved in twenty years.
(9.28) There are several different proofs in circulation, and we shall give one of the
shortest. These days many constructive proofs are known and good algorithms exist for
exhibiting explicit generators for ideals in polynomial rings; however, we shall present
a non-constructive proof in the spirit of Hilbert’s.

THEOREM 9.29 (HILBERT'S Basts THEOREM) If A is a Noetherian ring, then so i the polyno-
mial ring A[x].

Before giving the proof of Hilbert’s basis theorem we state three important corollaries.
A straightforward induction on the number variables immediately yields the following:

COROLLARY 9.30 The polynomial ring A[xy, ..., Xy) over a Noetherian ring A is Noetherian.

An important special case is when the ground ring A is a field. Since fields are
Noetherian, the Basis Theorem tells us that polynomial rings over fields are Noetherian.
Moreover, quotients of Noetherian rings are Noetherian, and we obtain directly the next
corollary. In particular it says that algebras of finite type over a field, a class of rings
that include the coordinate rings of affine varieties, are Noetherian.

COROLLARY 9.31 Any algebra finitely generated over a Noetherian ring is Noetherian.

Finally, the last corollary we offer before giving the proof of Hilbert’s Basis Theorem,
combines that theorem with Proposition 9.9 on page 232 which states that localization
preserves Noetherianess. Recall that and A-algebra is said to be essentially of finite type if
it is the localization of a finitely generated A-algebra.

COROLLARY 9.32 Any ring essential of finite type over a Noetherian ring is Noetherian.

PROOF OF HILBERT’S BASIS THEOREM: Let a be an ideal in A[x| and for each n let a, be
the set of leading coefficients of elements from a of degree at most n. Each a, is an ideal
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in A, and they form an ascending chain, which since A is assumed to be Noetherian,
eventually stabilizes, say for n = N. Each qa, is finitely generated, so for each n < N we
may chose a finite set of polynomials of degree at most n whose leading coefficients
generate a,. Let fi, ..., fr be these polynomials in some order and let a4, . .., 4, be their
leading coefficients.

We contend that the f;’s generate a. So assume not, and let f be of minimal degree v
among the bad guys; that is, among those polynomials in a that do not belong to the
ideal generated by the f;’s. If the leading coefficient of f is 4, it holds that a € a, and we
may write a = }; bja;; with the polynomials fl-j whose leading coefficient is a;;, all are of
degree at most the degree of f. The numbers d; = (deg f — deg fl-j) are all non-negative,
and we may thus form the polynomial f —3; bjxdi fi;- It is of degree less than deg f: the
term of degree deg f vanishes by the very choice of the b;. It does not lie in the ideal
generated by the f;’s since f does not, and that contradicts the minimality of deg f. 1

Cohen’s criterion

One may wonder if there are conditions only involving prime ideals that ensure a ring
being Noetherian. An Acc-condition on prime ideals is far from sufficient; there are
non-Noetherian rings with merely one prime ideal. For instance, let m be the ideal
generated by all the x;’s in the ring k[x1,xp,...] of polynomials in countably many
variables. The quotient k[x1,xy,...]/ m? has only one prime ideal, namely the one
generated by the images of all the variables, but is not Noetherian since that ideal is
not finitely generated. However, a result of Irvin Cohen’s tells us that for a ring to be
Noetherian it suffices that the prime ideals are finitely generated.

(9.33) We begin with stating a lemma about maximal ideals that are not finitely
generated; it joins the line of results of the type asserting that ideals maximal subjected
to some specific condition are prime:

LEMMA 9.34 Let a be maximal among the ideals in A that are not finitely generated. Then a is
a prime ideal.

Cohen’s criterion ensues easily from this lemma:

PROPOSITION 9.35 (COHEN’S CRITERION) Assume that all prime ideals in the ring A are
finitely generated. Then A is Noetherian.

Proor: Assume that A is not Noetherian. The set of ideals that are not finitely generated
is then non-empty and according to Zorn’s lemma has a maximal element, say a; indeed,
if the union (J; a; of an ascending chain of ideals were finitely generated, the chain
would stabilize (argue as in the last part of the proof of Proposition 9.11 on page 233)
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and a member of the chain would be finitely generated. From the lemma we infer that
a is prime, which is a flagrant contradiction. a
Proor oF LEMMA 9.34: The ring A/a is Noetherian since all its ideals are finitely
generated. Let g and 4’ be two members of A and assume that the product aa’ lies in a,
but that neither a nor a’ lies there. Let ¢ = a + (a) and ¢ = a + (a’). These ideals both
contain a properly and are therefore finitely generated by the maximality of a, hence
the product ¢’ is finitely generated. Moreover, it holds that ¢¢’  a, because aa’ € ¢. The
quotient ¢/cc’ is a finitely generated module over the Noetherian ring A/a and contains
a/cc’. Hence a/cc’ is finitely generated, and by consequence a is finitely generated as
well since cc’ is finitely generated. |

Exercises
(9.12) Hilbert Basis Theorem for Power Series. Let A be a ring. The purpose of this
exercise is to prove that if A is Noetherian, so is the power series ring A[x].

a) Let {gi}ien, be a sequence of power series in A[x]. Show that }; xig; is a well

defined power series in A[x].

Let ¢: A[x] — A be the map that sends x to zero; i. e. a power series f(x) is sent to the
constant term f(0). Let p be a prime ideal in A[x] and assume that ¢(p) = (ay,...,a,).
Chose elements f; from p so that f;(0) = a;.

b) If x € p, show that p = (x, f1,..., fr).

c) If x ¢ p, show that p = (f1,..., f;). HINT: Given f € p; for each i recursively
construct a power series h; so that f = hif; +... + I f.

d) Conclude by Cohen’s criterion that A[x] is Noetherian whenever A is.

9.5 Krull’s intersection theorem

The German mathematician Wolfgang Krull was one of the greatest contributor to the
development of algebra in the years between the two World Wars, and in this section
we shall discuss one of his more famous results, the so-called “Krull’s intersection
theorem”. In its simplest form, the theorem asserts that all the powers a" of a proper
ideal a in a local Noetherian ring do not have common elements apart from 0; that is, it
holds true that (), a” = 0.

There are several proofs of Krull’s intersection theorem, and the one we give is
among the shortest possible with the means at hand at the present stage of the course.
There is another really simple and elementary proof for the case of the ring* itself due
to Hervé Perdry which we present as Exercise 9.19.

ExaMPLE 9.6 To motivate and illustrate the reasons behind Krull’s theorem, let us
consider the ring of complex polynomials C[xy,...,x,] and a point a = (ay,...,4,) in
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C’. The ideal m = (x; —ay,...,x, — a,) consists precisely of the polynomials that vanish
at 4, and the members of the powers m" are those that vanish to the v-th order. In this
simple situation Krull’s theorem expresses the well-known and obvious fact that no
non-zero polynomial vanishes to all orders. Another obvious example is found in the
ring Z of integers where of course it holds that [, (p") = 0 for any integer p, for the
simple reason that no integer has infinitely many factors. Of course, Krull’s result is
a vast generalization of these prosaic examples; ideals in local Noetherian rings are
infinitely more intricate than maximal ideals in a ring of complex polynomials or than
principal ideals in Z. *
(9.36) The show begins with a technical lemma, and again submodules maximal
subjected to a specific condition enter the scene, but this time chiefly as catalysts. In
general if NS M is a pair of a module and a submodule and a an ideal in A, the
intersection aM n N is not always contained in aN: elements in N might be divisible in
M by elements from a, but not in N. However under appropriate finiteness conditions,
if an element in N is “sufficiently divisible” in M, it will be divisible in N as well; one
has the important:

LEMMA 9.37 Let a< A be a finitely generated ideal and M be a Noetherian A-module with a
submodule N. If K is a submodule of M maximal subjected to the condition that K n N = aN,
then a" M < K for a sufficiently large v € IN. In particular it holds true that a¥M n N < aN.

ProoF: Since a is finitely generated, it suffices to show that x'M < K for every x € a and
v sufficiently big. By the maximality of K, it suffices to prove that (x"M + K) n N = aN.
The crucial inclusion is (x! M + K) n N € aN, the other being clear as aN = K n N.
Now, the transporter submodules (K : x') form an ascending chain, which since M
is Noetherian, stabilizes at say v; so that (K : x¥) = (K : xV*1). If y = xYm + k with
m € M and k € K, is a member of (xYM + K) n N it holds that xy € xXN<S K n N from
which ensues that m e (K : x'*1) since xy = x"*!'m + xk. Hence m € (K : xV), and
ye€Kn N =aN. Q

PROPOSITION 9.38 Suppose that A is a ring, that a is a finitely generated ideal in A and that
M is a Noetherian module over A. Putting N = (); a' M, one has aN = N.

Proor: By the lemma there is a v so 