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Problem 1. Let A = Z2, the fraction ring of Z with respect to the
multiplicative system {2i | i ≥ 0}. Prove that A is a finite type Z-algebra
and is not a finite Z-algebra.

Solution: Every element of Z2 is of the form a/2i for a ∈ Z and n ≥ 0.
This can be written as

a
(1

2

)n
a ∈ Z, i ≥ 0.

This shows that Z2 is finitely generated (by 1
2) as a Z-algebra. Hence Z2 is

a finite type Z-algebra.
To show that Z2 is not a finite Z-algebra, assume for a contradiction

that it is. This means that we can find finitely many elements
b1

2n1
, · · · bk2nk

∈ Z2

such that every element a/2n ∈ Z2 can be written

a/2n =
k∑
i=1

ci
bi

2ni
.

for some ci ∈ Z. Let n = max(ni)+1, and consider the element 1/2n+1 ∈ Z2.
We can then find ci ∈ Z such that

1
2n+1 =

k∑
i=1

ci
bi

2ni
.

Multiplying both sides by 2n+1 gives

1 =
k∑
i=1

cibi2n−ni ,

where n − ni ≥ 1 for all i. The right hand side is even and the left hand
side odd, which gives a contradiction.

Problem 2. Let A be a ring, and let p be a prime ideal such that there
are no prime ideals q ( p. Prove that if f ∈ Ap is not a unit, then f is
nilpotent.

Solution: The prime ideals of Ap are all of the form qe with q ⊆ p a
prime ideal. Since the only prime ideal contained in p is p, it follows that
the only prime ideal of Ap is pe. If f ∈ Ap is not a unit, then it must lie in
some maximal ideal. Since pe is the unique maximal ideal of Ap, it follows
that f ∈ pe. But then f lies in the intersection of all the prime ideals of Ap,
which implies that f is nilpotent.
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Problem 3. Let k be a field, and let m,n ≥ 1 be integers.

(a) Let f ∈ k[x, y] be given by

f =
∑
i,j

aijx
iyj aij ∈ k.

Give a condition on the coefficients aij such that f ∈ (xm, yn) if and
only if the condition holds.

(b) Let
I1 = (xm1 , ym1), I2 = (xm2 , yn2)

with m1, n1,m2, n2 ≥ 1. Consider the four ideals

• I1 + I2

• I1I2

• I1 ∩ I2

• r(I1) (the radical of I1).

Write each of these in the form

(f1, . . . , fn) fi ∈ k[x, y].

Solution:

(a) We claim that f ∈ (xm, yn) if and only if the following condition holds:

aij = 0 if i < m and j < n.

If the condition holds, we can write

f =
∑
i≥m

∑
j≥0

aijx
iyj +

m−1∑
i=0

∑
j≥n

aijx
iyj

= xm(
∑
i,j≥0

a(i+m)jx
iyj) + yn

m∑
i=0

(
∑
j≥0

ai(j+n)x
iyj),

so that f ∈ (xm, yn).
On the other hand, if f ∈ (xm, yn), we can find g, h ∈ k[x, y] such that

f = gxm + hyn.

It is clear that the xiyj-coefficient of gxm is 0 if i < m, and that that
xiyj-coefficient of hyn is 0 if j < n. Hence the xiyj-coefficient of f ,
which equals aij, vanishes if both i < m and j < n hold.
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(b) As a general comment, since a presentation of ideals via a list generators
is not unique, there are multiple correct answers for each of these.
I1 + I2: We have

I1 + I2 = (xm1 , yn1) + (xm2 , yn2) = (xm1 , xm2 , yn1 , yn2).

I1I2: We have

I1I2 = (xm1 , yn1)(xm2 , yn2)
= (xm1xm2 , xm1yn2 , xm2yn1 , yn1yn2)
= (xm1+m2 , xm1yn2 , xm2yn1 , yn1+n2)

I1 ∩ I2: We begin by analysing the elements of I1 ∩ I2. Since

I1 = {
∑

aijx
iyj | aij = 0 if i < m1 or j < n1}

and similarly

I2 = {
∑

aijx
iyj | aij = 0 if i < m2 or j < n2},

we see that a polynomial f = ∑
aijx

iyj lies in I1 ∩ I2 if the following
condition C holds: aij = 0 if either “i < m1 and j < n1” or “i < m2
and j < n2”.
We now claim that

I1 ∩ I2 = (xmax(m1,m2), xm1yn2 , xm2yn1 , ymax(n1,n2)).

To prove the inclusion ⊇, note that each of the elements

xmax(m1,m2), xm1yn2 , xm2yn1 , ymax(n1,n2)

is contained in both I1 and I2, and so in I1 ∩ I2. It follows that the
ideal which they generate is contained in I1 ∩ I2.
For the inclusion ⊆, let f = ∑

aijx
iyj ∈ I1 ∩ I2. If aij 6= 0, this means

that condition C above fails, which can happen in 4 ways:

• i ≥ m1 and i ≥ m2.
• i ≥ m1 and j ≥ n2.
• j ≥ n1 and i ≥ m2.
• j ≥ n1 and j ≥ n2.
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In these 4 cases we get, respectively

• xiyj ∈ (xmax(m1,m2))
• xiyj ∈ (xm1yn2)
• xiyj ∈ (xm2yn1)
• xiyj ∈ (ymax(n1,n2)).

In each case, we find that

aijx
iyj ∈ (xmax(m1,m2), xm1yn2 , xm2yn1 , ymax(n1,n2)).

Since f is a finite sum of such terms aijxiyj, we get

f ∈ (xmax(m1,m2), xm1yn2 , xm2yn1 , ymax(n1,n2)),

which concludes the proof.
r(I1) : We have xm1 ∈ I1, so x ∈ r(I1), and similarly yn1 ∈ I1 implies
y ∈ r(I1). Thus (x, y) ⊆ r(I1). On the other hand 1 6∈ I1 implies
1 6∈ r(I1), so r(I1) ( (1). Since k[x, y]/(x, y) ∼= k, the ideal (x, y) is
maximal, and so we must have r(I1) = (x, y).

Problem 4. Let A be a ring, and let M be an A-module. Prove that for
every m ∈M there is an injective A-module homomorphism

A/Ann(m)→M.

Solution: Define a homomorphism of A-modules φ : A → M by
φ(a) = am. The kernel of this map is Ann(m), and so the fundamental
homomorphism theorem says we get an isomorphism A-modules

A/Ann(m) ∼= im(φ) ⊆M

Problem 5. Let φ : A→ B be a homomorphism of rings, and let M be an
A-module. Prove that if M is flat as an A-module, then MB = B ⊗AM is
flat as a B-module.

We take the following fact as known (see Exercise 2.15 i [AM] for a more
general statement).

Lemma Let M be an A-module, N be a B-module. Then there is an
isomorphism of A-modules

ψ : (M ⊗A B)⊗B N →M ⊗A (B ⊗B N),
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such that
ψ((m⊗ b)⊗ n) = m⊗ (b⊗ n).

Let now ρ : N ′ → N be an injective homomorphism of B-modules.
Consider the following diagram, which we can easily verify has commutative
squares.

MB ⊗B N ′ M ⊗A (B ⊗B N ′) M ⊗A N ′

MB ⊗B N M ⊗A (B ⊗B N) M ⊗A N

idMB
⊗ρ

ψ

∼=

idM⊗(idB⊗ρ)

∼=

idM⊗ρ

ψ

∼=

∼=

Now since M is flat as an A-module, the rightmost vertical arrow is an
injective, and since the horizontal lines are isomorphisms, it follows that
the leftmost vertical arrow is injective. Since this holds for all injective
homomorphisms ρ of B-modules, we have shown that MB is flat as a B-
module.

Problem 6. For a finitely generated moduleM over a ring A, define r(A,M)
as the minimal number of generators of M , i.e. the minimal n such that we
can find elements m1, . . . ,mn ∈M generating M as an A-module.

Let B be a local integral domain with maximal ideal m, and let N be a
finitely generated B-module.

(a) Prove that r(B,N) = r(B/m, N/mN).

(b) Prove that r(B,N) ≥ r(B(0), N(0)).

(c) Find a pair (B,N) such that r(B,N) 6= r(B(0), N(0)).1

Solutions:

(a) If m1, . . . ,mn ∈ N , generate N as a B-module, then their
images generate N/mN as a B/m-module. This shows r(B,N) ≥
r(B/m, N/mN). For the reverse inequality, Nakayama’s lemma tells
us that if the images of m1, . . . ,mn generate N/mN , then m1, . . . ,mn

generate N .

(b) If every element of N can be written as

n =
n∑
i=1

bini,

1Hint: You can find an example for any B with m 6= 0, e.g. B = Z(2).
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then an element
n

s

can be written as
n

s
=

n∑
i=1

bi
s
ni.

(c) Let B be a local integral domain which is not a field, e.g. B = Z(2).
Let m ⊂ B be the maximal ideal and let N = B/m. Then r(B,N) = 1.
We claim that N(0) = 0, and show this as follows. Every element of
N has the form b+ m for some b ∈ B. Every element of N(0) has the
form (b+m)/s for some b ∈ B ans s ∈ B \ {0}. Now take f ∈ m \ {0},
and compute

b+ m

s
= f(b+ m)

fs
= fb+ m

fs
= 0
fs

= 0.

Since N(0) = 0, we have r(B(0), N(0)) = 0.
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