
1. Lecture 1 – What is this course

Commutative algebra is the study of commutative rings, and their associated
structures. The goal of today’s lecture is to remind ourselves what that means.

We’ll never see noncommutative rings in this course, nor rings without mul-
tiplicative identities. So we will use the word ring for commutative rings with
identity. Let’s revise what that means.
Definition. A ring is a set A equipped with two binary operations. For a, b ∈ A,
we have the operations of addition, denoted a + b, and multiplication denoted ab.
These must satisfy axioms:

(1) (A,+) is an abelian group, with identity element denoted 0 ∈ A.
(2) Multiplication is associative: (ab)c = a(bc).
(3) Multiplication is commutative: ab = ba.
(4) Given a, b, c ∈ A, we have

(a+ b)c = ac+ bc.

(5) There exists an element 1 ∈ A, such that for all a ∈ A, we have
1a = a.

The algebraic rules we use to manipulate ordinary numbers mostly work arbitrary
rings, in particular, for a, b ∈ A, we have

(−a)(−b) = ab, (−a)b = −ab and 0a = 0
Example. The 0 ring has one element 0, and addition and multiplication is defined
in the only way it can be: 0 + 0 = 0 = 00.
Example. Most things we call numbers form rings: Z ⊂ Q ⊂ R ⊂ C are rings with
the standard addition and multiplication operations.
Example. The set of all functions f : R→ R forms a ring with the usual operations
of addition and multiplication of functions.

More generally, if X is a set and A a ring, the set of functions f : X → A form
a ring by defining (f + g)(x) = f(x) +A g(x) for all x ∈ X.
Example. Given a ring A, the ring of polynomials (in one variable) over A is
denoted A[x]. Its elements are formal polynomials, that is expressions like

anx
n + an−1x

n−1 + · · ·+ a0, ai ∈ A,
and the operations of addition and multiplication in A[x] are defined in a straight-
forward way (e.g. think of how you add and multiply polynomials with real coeffi-
cients, then do the same thing except using the operations on the coefficients in A
instead).
Example. More generally, given a ringA and an n ≥ 1, we can definedA[x1, . . . , xn].
This is the ring of polynomials in n variables. Its elements are expressions of the
form ∑

i1,...,in≥0
ai1i2...inx

i1
1 · · ·xinn , ai1...in ∈ A

Again the ring operations are defined in a natural way which we won’t write down.
We often write A[x, y] instead of A[x1, x2] and A[x, y, z] instead of A[x1, x2, x3].

Example. In the ring A[x, y], with chosen elements a, b, c ∈ A, say, we can compute
(1 + axy2)(b+ cxy) = 1b+ 1cx+ axy2b+ axy2cx = b+ cx+ abxy2 + acx2y2



1.1. Homomorphisms.

Definition. Let A and B be rings. A map φ : A → B is a homomorphism if it
satisfies

(1) φ(1A) = 1B
(2) For all a, a′ ∈ A, we have

φ(aa′) = φ(a)φ(a′).
(3) For all a, a′ ∈ A, we have

φ(a+ a′) = φ(a) + φ(a′)
If φ is moreover bijective, then we say φ is an isomorphism and write A ∼= B.

Example. The inclusion maps Z → Q → R → C preserve the identity element
and both binary structures, so are homomorphisms.

Example. Let a ∈ A be an element, then there is a evaluation homomorphism
φa : A[x]→ A defined by (replace x with a everywhere!)

φ(anxn + an−1x
n−1 + · · ·+ a0) = ana

n + an−1a
n−1 + · · ·+ a0

1.2. Ideals.

Definition. Let A be a ring. A subset a ⊂ A is an ideal if it satisfies two condi-
tions:

(1) a forms a subgroup of (R,+)
(2) For every x ∈ A and a ∈ a, we have xa ∈ a.

Example. In a ring A, the subsets A and {0} are ideals.

Definition. Let x ∈ A. The principal ideal generated by x, denoted (x) ⊂ A, is
defined as

{ax | a ∈ A} ⊆ A

Example. In any ring A, we have {0} = (0) and A = (1), so these are principal
ideals.

Example. The ideals of Z are all principal, so are given by (n) ⊆ Z for n ≥ 0.

1.3. Quotient rings.

Definition. If a ⊂ A is an ideal, then we may form the quotient ring A/a, whose
elements are the additive cosets of a in A, with addition and multiplication defined
by

(x+ a) + (y + a) = (x+ y) + a

and
(x+ a)(y + a) = xy + a.

The quotient homomorphism φ : A→ A/a is given by, for x ∈ A,
φ(x) = x+ a.

Example. The ring A/A has one element, A, and so is (isomorphic to) the zero
ring.

Example. Let n ≥ 1, then the ring Z/(n) is the ring of integers modulo n, and
has n elements

Z/(n) = {0 + (n), 1 + (n), . . . , n− 1 + (n)}.



Example (A purely motivational example). Let f =
∑
aijx

iyj ∈ C[x, y]. The
vanishing locus of f is the set of (a, b) ∈ C2 such that f(a, b) = 0, and a set of
points defined in this way is what is called an algebraic curve. The ring

C[x, y]/(f)
is interpreted as the ring of “algebraic functions” on the curve. In algebraic geom-
etry, we study the geometry of this curve via the algebra of its ring of functions.

Definition. Let φ : A→ B be a homomorphism. The kernel of φ is given by
kerφ = {x ∈ A | φ(x) = 0}.

Theorem. Let φ : A→ B be a homomorphism. The kernel of φ is an ideal of A.

Theorem (The fundamental homomorphism theorem). • The image of φ,
denoted φ(A) ⊂ B, is a subring of B, and we have

A/ kerφ ∼= φ(A)
• The homomorphism φ is injective if and only if kerφ = {0}.

1.4. The relation between ideals of a ring and a quotient ring. Let a ⊂ A
be an ideal in a ring, and φ : A→ A/a the quotient homomorphism.

Theorem. There is a bijective correspondence
{Ideals of A/a} ↔ {Ideals of A containing a},

given by
b ⊂ A/a 7→ φ−1(b)

and the other way by
a ⊆ b ⊂ A 7→ φ(b)

Sketch proof. First check φ−1 is well-defined, i.e. that if b ⊆ A/a is an ideal, then
φ−1(b) is an ideal containing a. Then check φ is well-defined, i.e. that if b ⊆ A is an
ideal containing a, then φ(b) is an ideal of A/a. Finally check that φ(φ−1(b)) = b
and φ−1(φ(b) = b if b contains a, so that φ and φ−1 are inverse operations. �

Definition. Let A be a ring.
• An element x ∈ A is a unit if there exists a y such that xy = 1.1
• An element 0 6= x ∈ A is a zero-divisor if there exists a y 6= 0 such that
xy = 0.
• A ring is an integral domain if it has no zero-divisors
• A ring is a field if all its non-zero elements are units

Proposition. Let x ∈ A. Then x is a unit ⇔ (x) = (1) = A.

Proof. If x is a unit, there exists a y ∈ A such that xy = 1, hence for every z ∈ A,
we have (zy)x = z(yx) = z1 = z ∈ (x), so (x) = A.

Conversely, if (x) = A, then there exists a y such that yx = 1. �

1Prove that the units of A form a group under multiplication.



Key concepts Lecture 1
• Rings
• Polynomial ring of a base ring
• Homomorphism
• Isomorphism
• Evaluation homomorphism
• Ideal
• Principal ideal
• Ideals of Z
• Quotient rings
• Integers modulo n, Zn
• Kernel of a homomorphism
• Kernels are ideals
• The fundamental homomorphism theorem
• Relation between ideals of A and of A/a
• Unit
• Zero-divisor
• Integral domain
• Field



2. Lecture 2 – Prime and maximal ideals, radicals

Theorem. Let A be a ring. The following are equivalent:
(1) A is a field.
(2) A has exactly two ideals, (0) 6= (1).
(3) Every homomorphism φ : A→ B with B 6= 0 is injective.

Proof. (1) ⇒ (2), since if I ⊂ A is an ideal with I 6= (0), there is an a 6= 0 in I.
Since A is a field, there is an element b ∈ A with ab = 1, hence 1 ∈ I. Then for
every c ∈ A, we have c = c1 ∈ I, so I = A = (1).

(2) ⇒ (3) If B 6= 0, then 1 6= 0 in B. Since φ(1) = 1, we have 1 6∈ kerφ, and so
kerφ 6= (1). Hence kerφ = (0), which means φ is injective.

(3) ⇒ (1) Omitted �

2.1. Prime and maximal ideals.
Definition. Let A be a ring, and let a ⊆ A be an ideal. We say a is a

• prime ideal if, for any a, b ∈ A \ a we have ab 6∈ a
• maximal ideal if a 6= (1), and the only ideal containing a is (1).

We write Spec(A) for the set of prime ideals of A, called the spectrum of A.
Example. In Z, the prime ideals are (0) and (p) for primes p. These are prime
since

a, b 6∈ (0)⇔ a, b 6= 0⇒ ab 6= 0⇔ ab 6∈ (0)
and

a, b 6∈ (p)⇔ p does not divide a, b⇒ p does not divide ab⇔ ab 6∈ (p)
The maximal ideals are the ideals (p), for all primes p.
Example. Let k be a field. The ideals of k[x] are all principal. An ideal (f) ⊆ k[x]
is

• prime if f is irreducible or f = 0.
• maximal if f is irreducible.

Proposition. (1) An ideal a ⊆ A is prime if and only if A/a is an integral
domain.

(2) It is maximal if and only if A/a is a field.
Proof. (1) If a is prime, then given a, b ∈ A \ a, we have ab 6∈ a. Then (a +

a)(b+ a) = ab+ a 6= 0 + a ∈ A/a. Conversely, if a is not prime, there exist
a, b ∈ A \ a such that ab ∈ a, which gives that (a + a)(b + a) = 0 in A/a,
proving A/a is not an integral domain.

(2) A/a is a field⇔ A/a has exactly two ideals⇔ There are exactly two ideals
in A containing a ⇔ a is maximal

�

Corollary. Every maximal ideal is a prime ideal.
Proof. a maximal ⇔ A/a a field ⇒ A/a an integral domain ⇔ a a prime ideal. �

Example. Let k be a field, let a1, . . . , an ∈ k and consider the homomorphism
φ : k[x1, . . . , xn]→ k given by φ(f) = f(a1, · · · , an), i.e. evaluate the polynomial f
by substituting ai for xi. This φ is surjective, and the ideal kerφ is maximal, since

k[x1, . . . , xn]/ kerφ ∼= imφ = k,



which is a field.
2.2. Existence of maximal ideals.
Theorem. Let A be a non-zero ring. There exists a maximal ideal m ⊆ A.
Corollary. If a ⊂ A is an ideal and a 6= (1), then there is a maximal ideal m
containing a.
Proof. A/a has a maximal ideal, which under the correspondence between ideals of
A and those of A/a gives a maximal ideal containing a. �

Corollary. Let f be a ring. Then f is a non-unit if and only if f is contained in
a maximal ideal.
Proof. f a non-unit ⇔ (f) 6= (1) ⇔ (f) ⊆ m for a maximal m ⇔ f ∈ m for a
maximal m. �

The proof of the theorem uses Zorn’s lemma.
Definition. A partially ordered set is a set S and a binary relation ≤ on the
elements of S such that

(1) For all x ∈ S, x ≤ x.
(2) For x, y, z ∈ S such that x ≤ y and y ≤ z, we have x ≤ z.
(3) If x ≤ y and y ≤ x, then x = y.

Remark. Given x, y in a partially ordered set S, they may be incomparable in the
sense that neither x ≤ y nor y ≤ x.
Definition. Let R be a subset of a partially ordered set (S,≤). An element x ∈ S
is an upper bound for R if for every y ∈ R we have y ≤ x.
Definition. An element x ∈ S is maximal if there is no y ∈ S with x < y
(meaning x ≤ y and y 6= x).
Definition. A subset R ⊆ S of a partially ordered set is a chain if for every
x, y ∈ R we have either x ≤ y or y ≤ x.
Example. The set of positive integers admits a partial ordering with m ≤ n if and
only if n | m. So e.g. 2 ≥ 4 ≥ 12, while 2 and 3 are incomparable. The subset
R = {2n | n ≥ 0} is a chain, since every pair of elements is comparable. This set
has a unique maximal element 1.
Theorem (Zorn’s lemma). Let S be a partially ordered set, and assume that every
chain R ⊆ S has an upper bound. Then S has a maximal element.
Proof of existence of maximal ideals. Let S be the set of ideals a ⊆ A such that
a 6= (1). We claim that every chain in S admits an upper bound. Let {ai}i∈R be a
chain of ideals in S. Define a =

⋃
i∈R ai. We then have

(1) a is a subgroup of (A,+): If a, b ∈ a, there are i, j ∈ R such that a ∈ ai
and b ∈ aj . Now as R is totally ordered, we have either ai ⊆ aj or aj ⊆ ai.
In either case, we will have that a+ b is contained in the bigger of the two
ideals, so a is closed under addition. It’s easy to check that a is closed
under additive inverses and multiplication from A, so a is an ideal.

(2) a 6= (1), since if 1 ∈ a, we must have 1 ∈ ai for some i ∈ R, contradicting
the assumption that ai ∈ S.

Thus a is an upper bound for the chain R. Since every chain of ideals has an upper
bound, Zorn’s lemma tells us that maximal ideals exist. �



2.3. Local rings.
Definition. A ring A is local if it has precisely one maximal ideal.
Example. Every field is a local ring with maximal ideal (0).
Example. Let p be a prime, and let k ≥ 1. Then the ideals of Z/(pk) correspond
to ideals of Z which contain (pk). These are given by (n), where n divides pk, and
so the ideals of Z/(pk) are the images of

(pk) ⊂ (pk−1) ⊂ · · · ⊂ (p) ⊂ Z.
The unique maximal ideal is the image of (p), so Z/(pk) is local.
Example. Let k be a field, and let A = k[x]/(x2). The ideals of A are in bijection
with the ideals of k[x] which contain (x2). Such an ideal is of the form (f) with f
dividing x2, which means that up to some scalar multiple it is either 1, x or x2. So
in k[x] there are three ideals containing (x2), namely (1), (x) and (x2). In A, if we
let x be the image of x under the quotient map, we have three ideals total

(0) = (x̄2) ⊂ (x̄) ⊂ (1) = A.

The ideal (x̄) is the unique maximal element of A, so A is local.
Proposition. In a local ring A with maximal ideal m, the set of units is A \m.
Proof. f ∈ A is a unit ⇔ f is not contained in a maximal ideal ⇔ f 6∈ m. �

2.4. Radicals.
Definition. An element a of a ring A is nilpotent if there exists an n ≥ 1 such
that xn = 0. The set of nilpotent elements of A is called the nilradical of A,
denoted N.
Proposition. The nilradical of A is an ideal.
Proof. It is easy to see that if a ∈ N, and x ∈ A, then −a ∈ N and xa ∈ N. To see
that N is closed under addition, observe that if a, b ∈ N, we have m,n ≥ 0 such
that am = bn = 0. Now compute

(a+ b)m+n =
m+n∑
i=0

(
m+ n

i

)
aibm+n−i.

If i ≥ m, then ai = 0, while if i < m, then m+ n− i ≥ n so bm+n−i = 0. Hence all
terms vanish and so a+ b ∈ N. �

Theorem. The nilradical N of A is the intersection of all prime ideals of A.
Half of the proof. Easy half: If f ∈ A is nilpotent and p is prime ideal, then fn =
0⇒ fn ∈ p⇔ f ∈ p. This gives us N ⊆ ∩p.

Hard half: If f ∈ A is contained in all prime ideals of A, then f is nilpotent. �

Example. In any integral domain, obviously f is nilpotent if and only if f = 0, so
N = (0).

In Z/(pk), we have just one prime ideal (p), so N = (p).
Definition. Let A be a ring. The Jacobson radical of A, denoted R, is the
intersection of all the maximal ideals of A.
Example. In Z, a field k, and k[x1, . . . , xn], we have R = (0), while in a local ring
A, we by definition have R = m, the unique local ideal.



Key concepts Lecture 2
• Prime ideal
• Maximal ideal
• Prime and maximal ideals in Z and k[x]
• Quotient rings of prime and maximal ideals are integral domains and fields,
respectively

• Theorem of existence of maximal ideals, statement and corollaries
• Theorem of existence of maximal ideals, main idea of proof
• Local ring
• Nilradical
• Description of nilradical via prime ideals
• Jacobson radical



Suggested problems week 1
(1) Prove that if A is a ring such that 1 = 0, then A is the 0 ring.
(2) Prove Proposition 1.1. in [AM].
(3) Use the relation between ideals in Z and Z/(n) = Zn to show that the

number of ideals in Zn equals the number of positive integers dividing n.
(4) Let k be a field, and prove that the ideal

(x, y) = {g1x+ g2y | g1, g2 ∈ k[x, y]} ⊆ k[x, y]
is not a principal ideal.

(5) Let a ⊂ Z[x] be the set of polynomials such that f ∈ a if and only if f(0)
is even. Show that a is an ideal, and that it is not a principal ideal.

(6) Prove that a ring A is an integral domain if and only if A[x] is an integral
domain.

(7) Convince yourself that for any ring A, we have an isomorphism (A[x])[y] ∼=
A[x, y]

(8) Let A be a ring. Prove that there exists some field k such that there is a
surjective homomorphism φ : A→ k.

(9) Let A be a ring. Prove that there exists a unique homomorphism φ : Z→ A.
(10) Let A be a ring, and let a ∈ A. Prove that there exists a unique homomor-

phism φ : Z[x] → A such that φ(x) = a. Use this to describe the set of all
homomorphisms φ : Z[x]→ A.

From Atiyah–Macdonald chapter 1: 1, 7, 8, 9, 10, 12, 15, 16.



3. Lecture 3 – Operations on ideals

Let A be a ring. We’ve seen two ways of constructing ideals, either as principal
ideals (f) ⊆ A for some f ∈ A, or by the general existence result giving us a
maximal ideal m ⊂ A.

There are a few natural operations we have access to in order to build more
ideals.

3.1. Addition.

Definition (Addition). Let a, b ⊆ A be ideals. The set
a + b = {a+ b | a ∈ a, b ∈ b} ⊆ A

is an ideal. Given a sequence a1, . . . , an ⊆ A, the set
a1 + · · ·+ an = {a1 + · · ·+ an | ai ∈ ai}

is an ideal. Given an collection of ideals {ai}i∈I , the sum
∑
i∈I ai has as elements

all finite sums ai1 + · · ·+ ain , where i1, . . . , in ∈ I and aij ∈ aij .

Remark. The ideal a + b is the smallest ideal containing both a and b. Similar
statements hold for the more general versions.

Example. In Z, given ideals (m) and (n), with m,n > 0, we have the ideal
(m) + (n) = {xm+ yn | x, y ∈ Z}.

We know that (m) + (n) = (k) for some integer k, and we know that (m) + (n) is
the smallest ideal containing (m) and (n). This means that k must be the biggest
number dividing both m and n, and so k = gcd(m,n).

Definition. If a1, . . . , an ∈ A, then we write
(a1, . . . , an) = (a1) + (a2) + · · ·+ (an) = {x1a1 + · · ·+ xnan | xi ∈ A}.

An ideal that can be written in this form is called finitely generated.

Example. In the ring Q[x, y], we have the ideal (x, y). This consists of all poly-
nomials f which can be written in the form

f = xg1 + yg2 gi ∈ Q[x, y].
Writing

f =
∑
i,j≥0

aijx
iyj aij ∈ Q,

we have f ∈ (x, y) if and only if a00 = 0. On the one hand, if f = xg1 + yg2, then
clearly a00 = 0. On the other, if a00 = 0, we can write

f = x(
∑
i≥1

∑
j≥0

aijx
i−1yj) + y(

∑
j≥1

a0jy
j−1) ∈ (x, y).

Lemma (A computational trick). Let a1, a2, b ∈ A. Then we have an equality of
ideals

(a1, a2) = (a1, a2 + ba1).

Proof. We clearly have a1 ∈ (a1, a2), and a2 + ba1 ∈ (a1, a2). This means that
(a1, a2 + ba1) ⊆ (a1, a2).

On the other hand, we have a1 ∈ (a1, a2 +ba1), and, since a2 = −ba1 +(a2 +ba1),
that a2 ∈ (a1, a2 + ba1). Thus (a1, a2) ⊆ (a1, a2 + ba1), and we are done. �



Example. In the ring Z, we have

(5, 7) = (5, 7− 5) = (5, 2) = (5− 2 · 2, 2) = (1, 2) = (1, 2− 2 · 1) = (1, 0) = (1).

You may recognize this as the Euclidean algorithm for finding the greatest common
divisor of two integers.

Example. In Q[x], we have

(x−2, 2x2−2) = (x−2, (2x2−2)−2x(x−2)) = (x−2, 4x−2) = (x−2, 4x−2−4(x−2)) = (x−2, 6).

Since 6 lies in the ideal, so must 1
6 6 = 1, so (x− 2, 2x2 − 2) = (1).

Definition (Intersection). Let a, b ⊆ A be ideals, then a ∩ b ⊆ A is also an ideal.
Similarly given {ai} ⊆ A, we have ∩i∈Iai is an ideal.

Remark. The ideal a ∩ b is the biggest ideal contained in a and in b.

Example. Given m,n ≥ 0, we have (m), (n) ⊆ Z, and moreover

(m) ∩ (n) = {k ∈ Z | m|k and n|k} = {k ∈ Z | lcm(m,n)|k} = (lcm(m,n)).

Example. Working in Q[x, y], we have that (x)∩(y) is the ideal consisting of those
f which can be written both as xg and as yh. Writing f =

∑
aijx

iyj , aij ∈ Q, the
first condition becomes a0j = 0 for all j, while the second becomes aj0 = 0 for all
j. It follows that f ∈ (x) ∩ (y) if and only if aij = 0 whenever i or j is 0, which is
the same as saying f ∈ (xy), so (x) ∩ (y) = (xy).

Definition (Product). Given two ideals a, b, the product ideal is

ab = {
n∑
i=1

aibi | ai ∈ a, bi ∈ b},

i.e. the set of elements which are finite sums of products of elements from a and b.
Given a1, . . . , ak, the product a1 · · · ak is defined similarly

a1 · · · ak = {
n∑
i=1

ai1 · · · aik | aij ∈ aj}.

Example. Let m,n ∈ Z, then

(m)(n) = {
k∑
i=1

aibi | ai ∈ (m), bi ∈ (n)}
ai=lim

bi=jin= {
n∑
i=1

limjin | li, ji ∈ Z} = (mn).

Example. More generally, given a1, a2, . . . , an ∈ A, we have

(a1)(a2) · · · (an) = (a1a2 · · · an) ⊆ A

Remark. We always have a1 · · · an ⊆ a1 ∩ · · · ∩ an.

Example. The union of two ideals is usually not an ideal, e.g. (2) ∪ (3) is not an
ideal of Z.

There are various rules for manipulating these three operations (intersection,
addition and multiplication) of ideals, e.g. a(b+ c) = ab+ac. The set of ideals with
operations of addition and multiplication forms a semiring, i.e. a structure with all
the ring axioms except additive inverses.



3.2. Coprime ideals.
Definition. We say that two ideals a, b ∈ A are coprime if a + b = (1).
Remark. Since an ideal equals (1) if and only if it contains the element 1, we have
that a+b are coprime if and only if there exist a ∈ a and b ∈ b such that a+ b = 1.
Example. In Z, we know that (m)+(n) = (gcd(m,n)), so (m) and (n) are coprime
if and only if gcd(m,n) = 1, i.e. if the numbers m and n are coprime.
Example. We computed above that (x − 2, 2x2 − 2) = (1) in Q[x], so the ideals
(x− 2) and (2x2 − 2) in Q[x] are coprime.
Example. If f ∈ (x) + (y) ⊆ Q[x, y], then f =

∑
aijx

iyj where we must have
a00 = 0. This means that 1 6∈ (x) + (y), so (x) and (y) are not coprime.
Proposition. Let a, b ⊆ A be ideals. If a and b are coprime, then ab = a ∩ b.
Proof. If a and b are coprime, this means that we can find a ∈ a and b ∈ b such
that a+ b = 1. Now if x ∈ a ∩ b we also have

x = 1x = ax+ bx.

Since x ∈ b, we have ax ∈ ab, and since x ∈ a, we have bx ∈ ab. It follows that
x ∈ ab. �

Example. Ifm,n are coprime, then lcm(m,n) = mn, so (m)∩(n) = (lcm(m,n)) =
(mn) = (m)(n).

Recall that given rings A1, . . . , An, we have the product ring
n∏
i=1

Ai = A1 × · · · ×An,

whose elements are n-tuples (a1, . . . , an), with addition and multiplication defined
componentwise.

Given ideals a1, . . . , an ⊆ A, we have homomorphisms A→ A/ai for each i, and
we can take a product homomorphism φ : A→

∏n
i=1 A/ai given by

φ(a) = (a+ a1, a+ a2, . . . , a+ an).
Theorem (Generalised Chinese remainder theorem). Let a1, . . . , an ⊆ A. Assume
that the ai are pairwise coprime. Then the homomorphism φ : A →

∏n
i=1 A/ai is

surjective, and
kerφ = a1 ∩ · · · ∩ an = a1 · · · an,

hence we have an isomorphism

A/
∏

ai = A/ kerφ ∼= φ(A) =
∏

A/ai.

Proof assuming n = 2: φ is surjective: It’s enough to show that (1, 0), (0, 1) ∈ φ(A),
since if φ(x1) = (1, 0) and φ(x2) = (0, 1), since every element (b1 + a1, b2 + a2) is
then equal to φ(b1x1 + b2x2).

Coprimality of a1 and a2 means there are a1 ∈ a1, a2 ∈ a2 such that a1 +a2 = 1.
But now

φ(a1) = (a1 + a1, a1 + a2) = (a1 + a1, (1− a2) + a2) = (0, 1),
and similarly we get φ(a2) = (1, 0).

It is clear that φ(x) = 0 is equivalent to x ∈ a1 ∩ a2, so kerφ = a1 ∩ a2, and we
know that a1 ∩ a2 = a1a2. �



Example (Chinese remainder theorem). If k1, . . . , kn are pairwise coprime integers,
then Z/

∏
ki ∼=

∏
Z/(ki). In particular if n =

∏
pe1

1 . . . pek

k is the prime factorisation
of an integer n, we have

Z/(n) =
∏

Z/(pei
i )

Example. In the example above, we showed (x−2), (2x2−2) ⊆ Q[x] are coprime.
We therefore have
Q[x]/(x−2)(2x2−2) = Q[x]/((x−2)(2x2−2)) = Q[x]/(x−2)×Q[x]/(2x2−2) ∼= Q×Q(

√
2).



Main ideas:
• Sum of ideals
• Intersection of ideals
• Products of ideals
• The ideal (a1, . . . , an)
• Coprime ideals
• The Chinese remainder theorem



4. Lecture 4 – Further operations on ideals + modules

4.1. Ideal quotient.

Definition. Let a, b ⊆ A be ideals. The ideal quotient (a : b) ⊂ A is the set of
x ∈ A such that xb ⊆ a, i.e. the set of x such that for every b ∈ b, we have xb ∈ a.
(This is an ideal.)

Example. If a ⊆ A is an ideal, then (a : a) = (1), since x ∈ (a : a) means that
xa ∈ a for all a ∈ a. But since a is closed under multiplication from A, this holds
for all x ∈ A = (1).

Example. If a ⊆ A is an ideal and b ∈ A, then x ∈ (a : (b)) if and only if xb ∈ a.
Proof: If x ∈ (a : (b)), then since b ∈ (b), we have xb ∈ a. Conversely, suppose

xb ∈ a. The elements of (b) are all of the form yb with y ∈ A, and we then have
x(yb) = y(xb) ∈ a, so x ∈ (a : (b)).

Example. If m,n ≥ 1, then x ∈ ((m) : (n)) if and only if xn ∈ (m), so

((m) : (n)) = {x | xn ∈ (m)} = {x | m divides xn}.

This means that ((m) : (n)) = (k), we in particular have that k is the smallest
positive integer such thatm divides kn. In particular, if n dividesm, then k = m/n.

Definition. The annihilator of an ideal a ⊆ A is defined as

Ann(a) = (0 : a) = {x ∈ A | xa = 0 ∀a ∈ a}

The annihilator of an element a ∈ A is

Ann(a) = Ann((a)) = (0 : (a)) = {x ∈ A | xa = 0}.

Example. In an integral domain A, if a 6= 0, then Ann(a) = (0).
In any ring A, the set of zero-divisors is

⋃
a∈A\{0}Ann(a).

4.2. Radicals.

Definition. Let A be a ring, a ⊆ A an ideal. The radical of a is the set of
x ∈ A such that there is an n ≥ 1 such that xn ∈ a. We denote this by r(a), one
occasionally sees

√
a.

Example. The radical r((0)) is exactly the same thing as the nilradical N ⊆ A,
since xn ∈ (0) for some n ⇔ xn = 0 for some n ⇔ x ∈ N .

Proposition. The set r(a) is an ideal, and equals the intersection of the prime
ideals containing a.

The proofs are generalisations of the corresponding statements for the nilradical.
Alternatively one can use the following:

Proposition. Let N be the nilradical of A/a, and let φ : A→ A/a be the quotient
homomorphism. Then r(a) = φ−1(N).

Proof. Let x ∈ A. Then if x ∈ r(a) we have for some n ≥ 1 that

xn ∈ a⇔ φ(xn) = 0⇔ φ(x)n = 0⇒ φ(x) ∈ N.

�



Example. Let n ≥ 1 have prime factorisation n = pe1
1 · · · p

ek

k . Then m ∈ Z lies in
r((n)) if and only if there is an l ≥ 1 such that ml ∈ (n), which is if and only if ml

is divisible by n. If every pi divides m, then mmax ei is divisible by n, while if some
pi does not divide m, then no power of m is divisible by n.

Summing up, m lies in r((n)) if and only if m is divisible by each pi, which is
the same as saying m is divisible by p1 . . . pk, and we thus get

r((n)) = (p1 · · · pk).2

Example. Consider Q[x] and the ideal (xm). Then f ∈ r((xm)) is equivalent to
fn is divisible by xm for some n ≥ 1. Let

f = a0 + a1x+ · · ·+ adx
d.

Then if a0 6= 0, we have fn = an0 + x(. . .), so fn 6∈ (xm) for all n ≥ 1. If a0 = 0,
then fm = am1 x

m + xm+1(. . .), so fm ∈ (xm). Thus f ∈ r((xm)) if and only if
a0 = 0, which is if and only if f ∈ (x). We’ve shown

r((xm)) = (x).

4.3. Extension and contraction of ideals.

Definition. Let φ : A → B be a homomorphism, let a ⊆ A and b ⊆ B be ideals.
The extension of a is the smallest ideal in B containing φ(a), denoted ae. The
contraction of b is φ−1(b) ⊆ A, denoted bc.

Both of these are ideals.

Remark. The image φ(a) ⊆ B is not itself an ideal, take e.g. the homomorphism
φ : Q→ R, where φ(Q) is not an ideal in R.

Concretely, the elements of ae are all finite sums φ(a1) + · · ·+φ(an) with ai ∈ a.

Proposition. The operation of contraction sends prime ideals to prime ideals.

Proof. Let p ⊂ B be a prime ideal, and let φ : A → B be a ring homomorphism.
We must show that pc = φ−1(p) is a prime ideal. If a, a′ ∈ A \ φ−1(p), then
φ(a), φ(a′) 6∈ p, so φ(aa′) = φ(a)φ(a′) 6∈ p, which means aa′ 6∈ φ−1(p), and that
means φ−1(p) is prime. �

4.4. Modules. Informally, a module is a structure where you can add elements in
the module, and multiply module elements by the ring elements.

Definition. Let A be a ring. A module over A (or “A-module”) is an abelian
group (M,+) equipped with an operation A×M →M , denoted

(a,m) 7→ am,

satisfying
(1) 1m = m ∀m ∈M .
(2) a(bm) = (ab)m ∀a, b ∈ A,m ∈M
(3) (a+ b)m = am+ bm ∀a, b ∈ A,m ∈M
(4) a(m+ n) = am+ bn ∀a ∈ A,m+ n ∈M .

Example. For any ring A, the 0-module has one element 0, and addition and
multiplication are trivially defined.

2Look up the “abc conjecture” for a natural appearance of this operation in number theory.



Example. Let k be a field. Then a k-module is quite literally the same thing as a
k-vector space.

Example. A Z-module is the “same thing” as an abelian group, meaning any
abelian group admits a unique structure as a Z-module. To see this, let G be an
abelian group. We define a Z-module structure on G by, for n ∈ Z, g ∈ G

ng =



n︷ ︸︸ ︷
g + · · ·+ g if n > 0
0g = 0

ng =
−n︷ ︸︸ ︷

(−g) + · · ·+ (−g) if n < 0.

One can check that this is a well-defined Z-module structure. Moreover, this Z-
module structure is forced on us by the axioms: If n > 0 we must have

ng = (1 + · · ·+ 1)g = 1g + 1g + · · ·+ 1g =
n︷ ︸︸ ︷

g + · · ·+ g,

and similar considerations tell us what ng has to be for n ≤ 0.

Example. Let a ⊆ A be an ideal. Then a is an A-module in a natural way, since
given x ∈ A and a ∈ a, we have xa ∈ a, and the operation (x, a) 7→ xa satisfies the
axioms of the definition.

Example. Let φ : A→ B be a homomorphism. Then B has a natural structure of
A-module, defined by

ab = φ(a)b ∀a ∈ A, b ∈ B.
This generalises the useful fact from field theory that if φ : k → k′ is a homo-

morphism of fields, then k′ is a k-vector space.

Definition. Let M and N be A-modules. A homomorphism of A-modules from
M to N is a map φ : M → N such that

φ(m+m′) = φ(m) + φ(m′) ∀m,m′ ∈M
φ(am) = aφ(m) ∀a ∈ A,m ∈M

If φ is a bijection, we say it is an isomorphism of A-modules.

Example. For A-modulesM and N , we always have a homomorphism 0: M → N
given by

0(m) = 0 ∀m ∈M.

Example. Let k be a field, and letM and N be k-modules. Then a homomorphism
M → N is the same thing as a linear map of vector spaces. So if M and N
are finite-dimensional as vector spaces, we can choose bases and represent φ by a
(dimN)× (dimM)-matrix.

Example. A homomorphism of Z-modules is the same thing as a homomorphism of
(abelian) groups. This boils down to the fact that given a homomorphism φ : M →
N of abelian groups, the condition

φ(nx) = nφ(x)

is automatically satisfied.



Example. Let a ∈ A, and consider (a) ⊆ A as an A-module. There is a homomor-
phism of A-modules

φ : A→ (a)
given by

φ(x) = xa.

This is surjective, with kernel equal to Ann(a).

Definition. Let M and N be A-modules, and let HomA(M,N) be the set of
homomorphisms. This set has a structure of an A-module, where for φ, ψ ∈
HomA(M,N), a ∈ A and m ∈M , we have

(φ+ ψ)(m) = φ(m) + ψ(m)
(aφ)(m) = aφ(m)

Example. Let k be a field, and consider the modules km, kn. Then Homk(km, kn)
is naturally identified with the set of (n ×m)-matrices with entries in k, and the
above states that this set has a natural structure of k-module (or k-vector space).



Main concepts lecture 4:
• Ideal quotients
• Annihilator of an ideal
• Radical of an ideal
• Extension and contraction of an ideal
• A-module
• Homomorphism between A-modules



Suggested problems week 2

(*) means I suspect a problem is difficult (and you’re not likely to miss anything
important by skipping it).

(1) Let A be a ring, let a1, . . . , an ∈ A and b1, . . . , bm ∈ A. Prove that

(a1, . . . , an)(b1, . . . , bm) = (a1b1, a1b2, . . . , anbm),

where the sequence in the rightmost brackets contains every product aibj
with 1 ≤ i ≤ n and 1 ≤ j ≤ m.

(2) Let A be a ring, and let a ∈ A. Prove that A[x]/(x− a) ∼= A.
(3) Let A be a ring, let a, b ∈ A. Prove that A[x]/(x− a, b) ∼= A/(b).
(4) Let k be a field, and let f, g ∈ k[x]. Prove that if (f) and (g) are coprime

if and only if f and g have no common irreducible factor.3
(5) Let k be a field, and 0 6= f ∈ k[x]. Prove that k[x]/(f) is isomorphic to a

direct product of rings of the form k[x]/(gn), where g is irreducible.
(6) Let (a1, b1) 6= (a2, b2) ∈ C2. Prove that the ideals (x − a1, y − b1) and

(x− a2, y − b2) in C[x, y] are coprime.
(7) Show that the ideals (x− 2) and (2x2 − 2) in Z[x] are not coprime.
(8) Let a1, . . . , an, b ∈ A, and let 1 ≤ i, j ≤ n with i 6= j. Prove that

(a1, . . . , an) = (a1, . . . , aj−1, aj + bai, aj+1, . . . , an)

(9) Let a1, . . . , an ∈ A, let 1 ≤ i ≤ n, and let c ∈ A be a unit. Prove that

(a1, . . . , an) = (a1, . . . , ai−1, cai, ai+1, . . . , an).

(10) (*) Let a1, . . . , an ∈ A, and let (bij)1≤i,j≤n be an invertible matrix with
coefficients in A.4 Prove that

(a1, . . . , an) =

 n∑
j=1

b1jaj ,

n∑
j=1

b2jaj , . . . ,

n∑
j=1

bnjaj

 .

(11) (*) Let A = Z[x]/(x2 + 1), and let p be a prime. Show that the extension
(p)e of (p) along φ : Z → A is a prime if and only if −1 is a quadratic
residue modulo p, that is if and only if the equation x2 +1 admits solutions
in Z/(p). Hint: Show that A/(p)e ∼= Z/(p)[x]/(x2 + 1) and consider what
it means for this ring to be an integral domain.

(12) Let a, p ⊆ A be ideals with p prime a not contained in p. Prove that
(p : a) = p.

(13) Let G be an abelian group, and let φ : G→ G be a group homomorphism.
Prove that there is a unique structure of Z[x]-module on G such that xg =
φ(g) for all g ∈ G.

3Recall that in k[x] every ideal is principal, every polynomial can be factored into irreducible
polynomials, and h ∈ k[x] \ {0} is irreducible if and only if (h) is prime.

4This means that there exist (cij)1≤i,j≤n with cij ∈ A such that
n∑

k=1

bikckj =
n∑

k=1

cikbkj =
{

1 if i = j

0 if i 6= j
.



(14) Let G be an abelian group and n ≥ 1. Show that G admits a structure of

Z/(n)-module if and only if
n︷ ︸︸ ︷

g + · · ·+ g = 0 for all g ∈ G. Show that if this
condition holds, then the structure of Z/(n)-module on G is unique.

(15) Let A be an integral domain and 0 6= a ∈ A. Show that A and (a) are
isomorphic as A-modules.

(16) Let M be an A-module. Show that the map F : HomA(A,M)→M given
by

F (φ) = φ(1)
is an isomorphism of A-modules.



5. Lecture 5 – Direct sums, submodules and quotient modules

Let A be a ring, and recall that an A-module is an abelian group M equipped
with a multiplication map A ×M → M denoted (a,m) → am, satisfying some
axioms. Further, a map φ : M ′ →M is a homomorphism if it respects addition and
multiplication from A, meaning φ(x+ y) = φ(x) + φ(y), and φ(ax) = aφ(x).

Important special cases are Z-modules, which are the same things as abelian
groups, and k-modules for k a field, which are the same things as vector spaces
over k.

5.1. Direct sums. Given a sequence of abelian groups G1, . . . , Gn, the product set
G1 × · · · ×Gn is naturally an abelian group. This generalises directly to modules:

Definition. Let M1,M2 be A-modules. The direct sum of the M1 and M2 is the
module

M1 ⊕M2 = {(m1,m2) | m1 ∈M1,m2 ∈M2},
with

(m1,m2) + (m′1,m′2) = (m1 +m′1,m2 +m′2), a(m1,m2) = (am1, am2).

Definition. Given A-modules M1, . . . ,Mn, we have the direct sum
n⊕
i=1

Mi = M1 ⊕ · · · ⊕Mn = {(m1, . . . ,mn) | mi ∈Mi},

with addition and A-multiplication similar. If M1 = · · · = Mn = M , we may write
M⊕n instead.

Given a set of A-modules {Mi}i∈S , their direct sum is

⊕i∈SMi = {(mi)i∈S | mi ∈Mi, only finitely many mi 6= 0},

while their direct product is∏
i∈S

Mi = {(mi)i∈S | mi ∈Mi},

If S is finite, then the direct sum and direct product are the same, but in general
they differ.

Example. Let k be a field. Every vector space V over k has a basis, meaning there
is a set {vi}i∈S such that every v ∈ V can be expressed uniquely as a sum∑

i∈S
aivi ai ∈ k,

with only finitely many ai 6= 0.
Define a homomorphism

φ :
⊕
i∈S

k → V

by
φ((ai)) =

∑
i∈S

aivi.

Since {vi}i∈S is a basis for V , every v equals φ((ai)) for a unique (ai) ∈
⊕

i∈S k,
meaning φ is an isomorphism, and ⊕i∈Sk ∼= V .



Example. Consider R[x, y], and define T = R[x, y]⊕ R[x, y]. Thus elements of T
are pairs (f1, f2) with f1, f2 ∈ R[x, y]. We may think of elements of T as vector
fields on R2 with components given by polynomials.

Example. Let A be a ring, and consider A[x] as an A-module, i.e. if f = anx
n +

· · ·+ a0 ∈ A[x] and a ∈ A, we have
af = aanx

n + · · · aa1x+ aa0.

We have a homomorphism of A-modules

φ :
⊕
i∈N

A→ A[x],

Note that this is just a module isomorphism; in fact the left hand side does not
have a natural ring structure.

5.2. Submodules. If G is an abelian group, a subset G′ ⊆ G which is closed
under addition and inverses is a subgroup. We can then form the quotient group
G′′ = G/G′, whose elements are the cosets of G′ in G. This concept and most
of the theory generalises neatly from abelian groups to modules, where we defined
submodules as follows.

Definition. Let M be an A-module. A subset M ′ ⊆M is a submodule if it is a
subgroup and for all a ∈ A,m ∈M ′, we have am ∈M ′.

Example. • A submodule of A is the same thing as an ideal in A.
• A submodule of a Z-moduleM is the same thing as a subgroup ofM , since

if M ′ ⊆ M is a subgroup, n ∈ Z and m′ ∈ M ′, we automatically have
nm′ = m′ + · · · + m′ ∈ M ′ (when n is positive, similar arguments work
when n is negative).

Given M,M ′ ⊆ N , we have their sum defined as M +M ′ ⊆ N , given by
M +M ′ = {m+m′ | m ∈M,m′ ∈M}.

This generalises the notion of sum of ideals.

Example. With ring R[x, y] and T = R[x, y]⊕2, we have the submodule T ′ ⊂ T
given by

T ′ = {(fx, fy) | f ∈ R[x, y]}
Informally, this is the submodule of vector fields which point outwards from the
origin at all points. We have φ : R[x, y] → T given by φ(f) = (fx, fy), and this is
an isomorphism.

Let’s take T ′′ = {(g, 0) | g ∈ R[x, y]} ⊂ T , this is again a submodule, the
horizontal vector fields.

We have
T ′ + T ′′ = {(fx+ g, fy) | f, g ∈ R[x, y]} = {(h, fy) | h, f ∈ R[x, y]},

vector fields which are horizontal along the x-axis.

5.3. Quotients. If M ′ is a submodule of M , then the group M/M ′ has a natural
structure of A-module such that M → M/M ′ is a homomorphism of A-modules.
Concretely, we define the A-multiplication on M ′ by

a(m+M ′) = am+M ′

In particular, for any ideal a, the quotient ring A/a is an A-module.



5.4. Kernels, images and cokernels.

Definition. Let φ : M → N be a homomorphism of A-modules. We have
• The kernel of φ,

kerφ ⊆M,

a submodule of M .
• The image of φ,

imφ = {φ(m) | m ∈M} ⊆ N,
a submodule of N .

• The cokernel of φ,
cokφ = N/ imM.

Example. Let a1, . . . , an ∈ A, and define

φ :
n⊕
i=1

A→ A

by

φ(x1, . . . , xn) =
n∑
i=1

xiai.

Then
im(φ) = {x1a1 + x2a2 + · · ·+ xnan | xi ∈ A} = (a1, . . . , an) ⊆ A.

The following statements are “well known” for abelian groups, and the content
of this proposition is that the natural isomorphisms respect the module structures
as well.

Proposition (“Module isomorphism theorems”). • Let φM → N be a ho-
momorphism of modules. We have

imM ∼= M/ kerφ.
• Let M ′′ ⊆ M ′ ⊆ M be A-modules and submodules. There is an isomor-
phism

M/M ′′ ∼= (M/M ′)/(M ′′/M ′)
• Let M,N be submodules of P . We then have

(M +N)/N ∼= M/(M ∩N)

Definition. A module M is finitely generated if either of the following two
equivalent conditions hold:

• There exists m1, . . . ,mn ∈M such that every m ∈M is of the form x1m1 +
· · ·+ xnmn, with xi ∈ A.

• There exists a surjective homomorphism φ :
⊕n

i=1 A→M .

Example. • An abelian group is finitely generated as a group if and only if
it is finitely generated as a Z-module.

So every finitely generated Z-module is isomorphic to one of the form
Z⊕ Z⊕ · · ·Z⊕ Z/(pe1

1 )⊕ · · · ⊕ Z/(pen
n ),

while Q is not a finitely generated Z-module.
• If k is a field, then a finitely generated k-module is the same thing as a
finite-dimensional k-vector space.



• An ideal a ⊆ A is finitely generated as an A-module if and only if it is
finitely generated as an ideal, i.e. it is of the form (a1, . . . , an).



Main ideas:
• Direct sums and products of modules
• Submodules
• Sums and intersections of modules
• “The module isomorphism theorems”
• Kernels, images and cokernels
• The “module isomorphism theorems”



6. Lecture 6 – Nakayama’s lemma & exact sequences

Recall the definitions of local ring and finitely generated module.

Example. Recall R(x), the field of real rational functions, which is the ring of
expressions f/g with f, g ∈ R[x] and g 6= 0 (up to some equivalence relation). Let
A ⊂ R(x) be the subring of those elements which can be written as

f

g
f ∈ R[x], g ∈ R[x] \ (x).

So e.g.
x2

x+ 1 ,
x3 − 2x
5x+ 4 ,

x3 − x
x2 − x

= x2 − 1
x− 1 ∈ A

since x+ 1, 5x+ 4, x− 1 6∈ (x), while e.g. 1
x 6∈ A. Equivalently, A is the ring of the

real rational functions which can be evaluated at 0, since we get a well-defined real
number f(0)/g(0) if and only if f/g ∈ A.

Claim: The ring A is local, with maximal ideal

m = {f/g ∈ A | f(0)/g(0) = 0} = {f/g | f ∈ (x), g ∈ R[x] \ (x)}.

The homomorphism A→ R given by f/g 7→ f(0)/g(0) is surjective, with kernel m,
so m is a maximal ideal, and A/m ∼= R.5

Let’s now recall that given an ideal a and an A-module M , the submodule
aM ⊂M is the module containing all sums

a1m1 + · · ·+ anmn, ai ∈ a,mi ∈M.

Lemma (Nakayama’s lemma, local version). 6 Let A be a local ring with maximal
ideal m, and let M be a finitely generated module. If mM = M , then M = 0.

Definition. Let T = (bij)1≤i,j≤n be an (n × n)-matrix with entries in A, and let
Tij be the (n×n)-matrix obtained by deleting row i and column j. The adjugate
of T is the matrix adj(T ) = (cij)1≤i,j≤n, where

cij = (−1)i+j det(Tji).

Example. The adjugate of
(
a b
c d

)
is
(
d −c
−b a

)
.

Theorem. We have T adj(T ) = adj(T )T = det(T )In, where In is the (n × n)
identity matrix.

Proof of Nakayama’s lemma. Let M be a module, generated by m1, . . . ,mn ∈ M ,
meaning M = {a1m1 + · · · + anmn | ai ∈ A}. We know that mM = M , which
means that for every mi, we have mi ∈ mM , which means we can write

mi =
n∑
j=1

bijmj ,

5To see that A is local, note that if f/g 6∈ m, then f(0)/g(0) 6= 0, so g/f ∈ A, and so f/g is a
unit. Since all non-units are contained in m, this means m is the unique maximal ideal.

6The textbook states a more general version where A is not necessarily local, where m is
replaced with the Jacobson radical of A.



with bij ∈ m. Letting T = In − (bij), we then get that

T

m1
· · ·
mn

 = 0,

and so

adj(T )T

m1
· · ·
mn

 = 0,

which since adj(T )T = det(T )In gives det(T )mi = 0 for all i. But looking at the
cofactor expansion of det(T ) shows that

det(T ) = 1 +X,

where all the terms of X are divisible by bij , which implies that X ∈ m. Hence
det(T ) is a unit, and so det(T )mi = 0 implies mi = 0. Thus all the mi = 0, and so
M = 0. �

Corollary. Let A be a local ring, and let φ : M → N be a homomorphism of
modules, such that φ̃ : M/mM → N/mN is surjective. Then φ is surjective.

Proof. The trick is to reinterpret “φ is surjective” as cokφ = N/φ(M) = 0. Assume
that φ̃ is surjective. That means N = φ(M) + mN (after some thought). We get

m(N/φ(M)) = (mN + φ(M)/φ(M)) = N/φ(M),

Since N is finitely generated, so is N/φ(M). We can then apply Nakayama’s lemma
to N/φ(M), and get N/φ(M) = 0. �

Example. Work in A ⊂ R(x) from before. Consider the matrix

B =
(

1+x2

1−x2
x2

1−x3

x4

2−5x
1+x
1−x

)
which gives a homomorphism of A-modules φ : A⊕2 → A⊕2 by

φ(f, g) = B

(
f
g

)
.

The associated homomorphism of φ̃ : A⊕2/mA⊕2 → A⊕2/mA⊕2 can be identified
with the linear map R2 → R2 obtained by setting x = 0 in the above matrix. That
map is clearly surjective, hence φ is.

6.1. Exact sequences and additivity. Given φ : M → N a homomorphism, we
know about kerφ ⊂M , imφ ⊂ N , cokφ = N/ imφ.

Definition. A sequence of morphismsM1
φ1→M2 → · · · →Mn−1

φn−1→ Mn is exact
at Mi, 2 ≤ i ≤ n− 1, if we have

imφi = kerφi+1.

It is exact A sequence of the form

0→M ′ →M →M ′′ → 0

is called short exact.



Example. If Mi = 0, then we have imφi = 0, so kerφi+1, and exactness at
Mi+1 means simply that kerφi+1 = 0, i.e. that φi+1 is surjective. We also have
kerφi−1 = Mi−1, so exactness at Mi−1 means that imφi−2 = Mi−1, i.e. that
imφi−2 is surjective.

Example. Let M ′ ⊆M be a submodule. Then the sequence

0→M ′ →M →M/M ′ → 0

is exact, since (1) M ′ → M is injective, (2) M → M/M ′ is surjective, and (3)
ker(M →M/M ′) = im(M ′ →M).

“Up to isomorphism”, every short exact sequence is of this form, meaning if

0→M1 →M →M2 → 0

is short exact, them M1 is isomorphic to some submodule M ′ ⊂ M , and M2 is
isomorphic to M/M ′.

Example. The sequence 0→ Z φ→ Z→ Z/(n)→ 0 is exact, where φ(k) = nk.

Example. The sequence 0 → Z/(2) → Z/(4) → Z/(2) → 0 is exact, where Z/(2)
is the inclusion 1 7→ 2.

Example. Let V be the R-vector space of all smooth vector fields on R3, and let
W be the R-vector space of all functions on R3. The sequence

0→ R a7→f(x)=a→ W
∇→ V

∇×→ V
∇·→W → 0

is exact.

Example. For any modules M and N , the sequence

0→M →M ⊕N → N → 0

is exact, where M →M ⊕N is the map m 7→ (m, 0) and M ⊕N → N is the map
(m,n)→ n.

We can break up exact sequences into short ones, as follows: If Mi−1 → Mi →
Mi+1 is an exact sequence, we can take 0 → im(φi−1) → Mi → im(φi) → 0 as a
short exact sequence. This motivates the following definition

Definition. A function from some set of modules to an abelian group G is called
additive if for all short exact sequences

0→M ′ →M →M ′′ → 0

we have ν(M) = ν(M ′) + ν(M ′′).

Example. If M ′,M,M ′′ are finite-dimensional vector spaces, then dim(−) is ad-
ditive, since we can extend a basis for M ′ to a basis for M , and the new elements
give a basis for M ′′ after projection.

Example. If M ′,M,M ′′ are finite abelian groups, then ν(M) = |M |, the number
of elements of M , is an additive function to the group Q>0 with the operation
of multiplication, since Lagrange’s theorem says that for subgroups M ′ ⊂ M we
always have

|M | = |M ′||M/M ′|.



Theorem. Let 0 → M1 → M2 → · · · → Mn → 0 be an exact sequence, and let ν
be an additive function. Then ∑

(−1)iν(Mi) = 0

Proof. We have ν(Mi) = ν(imφi) + ν im(φi−1). Inserting this in
∑

(−1)iν(Mi)
everything cancels to give 0. �

Example. In an exact sequence of vector spaces 0 → V1 → V2 → · · · → Vn → 0,
we have

∑
(−1)i dimVi = 0.

Example. Given an exact sequence
0→M1 → · · · →Mn → 0

of finite Z-modules, we have
n∏
i=1
|Mi|(−1)i

= 1.

Definition. A diagram of modules and homomorphisms between them is called
commutative if the composed maps between any two modules agree.

Example. The diagram
M M ′

N N ′

f

i g

h

is commutative if g ◦ f = h ◦ i.

Lemma (The snake lemma). Given modules and homomorphisms that fit into the
following commutative diagram

0 M ′ M M ′′ 0

0 N ′ N N ′′ 0,

φ′ φ φ′′

we get an exact sequence of modules
0→ kerφ′ → kerφ→ kerφ′′ → cokφ′ → cokφ→ cokφ′′ → 0



Suggested problems week 3

(1) Let A be a ring and A[[x]] be the ring of power series with coefficients in A.
Think of A[[x]] as an A-module via the homomorphism Prove that

∏
i∈NA

(2) Let M1, . . . ,Mn and N be A-modules. Prove that Hom(M1 ⊕ · ⊕Mn, N)
is isomorphic as an A-module to Hom(M1, N)⊕ · · · ⊕Hom(Mn, N).

(3) Let {Mi}i∈S and N be A-modules. Prove that

Hom(
⊕
i∈S

Mi, N) ∼=
∏
i∈S

Hom(Mi, N)

and
Hom(N,

∏
i∈S

Mi) ∼=
∏
i∈S

Hom(N,Mi)

as A-modules.
(4) Let A be a ring, let M = A⊕A, and let φ : M →M be the homomorphism

given by φ(x, y) = (0, x). Prove that the sequence

· · · φ→M
φ→M

φ→M
φ→ · · ·

is exact.
(5) Let k be a field, let n ≥ 3

0→ V1 → · · · → Vn → 0
be an exact sequence of finite-dimensional vector spaces. Prove that the ho-
momorphism Vn−2 → Vn−1 is surjective if and only if

∑n−1
i=1 (−1)i dimVi =

0.
(6) Let A ⊂ R(x) be the ring of rational functions defined at 0 as in the lecture

notes, with maximal ideal m ⊂ A. Thinking of R(x) as an A-module, prove
that R(x) = mR(x). Why does this not contradict Nakayama’s lemma?

(7) Let A be a local ring with maximal ideal m, let φ : N →M be a homomor-
phism of A-modules with M finitely generated. Use the diagram

0 mN N N/mN 0

0 mM M M/mM 0,

φ ,

to show that if N/mN →M/mM is an isomorphism, then mM ⊆ φ(mN).



Suggested exercises week 4

From Atiyah–Macdonald Chapter 2: Problems 1, 2, 4, 5, 8, 9, 12.
(1) Let M and N be vector spaces over k, with e1, . . . , em a basis for M and

f1, . . . fn a basis for N . Prove that M ⊗k N has a basis given by
e1 ⊗ f1, . . . , em ⊗ fn.

Hint: Use the “distributive law” (Prop. 2.14 (iii)) of ⊕ and ⊗.
(2) Show that Q⊗Z Z = Q and Q⊗Z Z/(n) = 0.
(3) An inclusion of A-modules

i : N ′ → N

is called a split inclusion if there exists a homomorphism p : N → N ′ such
that p ◦ i = 1N ′ . Prove that if M is an A-module and an inclusion i as
above is split, then the homomorphism

i⊗ 1M : N ′ ⊗AM → N ⊗AM
is injective.

(4) Prove that if N is a free A-module and i : N ′ → N is injective, then i is a
split inclusion.

(5) Let k be a field. Prove that every injective map of k-modules is a split
inclusion, and use this to show (as we saw in the lecture) that every k-
module is flat.

(6) Let A be an integral domain, and let k(A) be its fraction field. Prove that
if 0 6= I ⊆ A is an ideal, then A/I ⊗A k(A) ∼= 0.

(7) Let A be an integral domain. Prove that A/I is a flat A-module if and only
if I = 0 or I = A. Hint: Consider the injection of A-modules A→ k(A).

(8) Show that the A-module M ⊕ N is flat if and only if both M and N are
flat.



Lecture 9 – Exactness of the tensor product and algebras

Let A be a ring, let M and N be A-modules. Recall we then have a module
M ⊗A N,

the tensor product of M and N over A, which has the property that for an
A-module P , we have

Hom(M ⊗A N,P )↔ {A− bilinear maps M ×N → P}.
Elements of M ⊗A N are of the form

n∑
i=1

xi ⊗ yi, xi ∈M,yi ∈ N.

These satisfy relations, for all x, x′ ∈M,y, y′ ∈ N, a ∈ A, that
(x+ x′)⊗ y = x⊗ y + x′ ⊗ y
x⊗ (y + y′) = x⊗ y + x⊗ y′

ax⊗ y = x⊗ ay

Two expressions
∑
xi ⊗ yi and

∑
x′i ⊗ y′i are equal if and only if one of them can

be rewritten into the other by using these relations.
Recall also that if I is an ideal in A and M is an A-module, then

A/I ⊗AM ∼= M/IM,

where the isomorphism is given by
(a+ I)⊗m 7→ am+ IM

As a special case of I = (0), we get A⊗AM ∼= M .

6.2. Flat A-modules.

Proposition. If M is an A-module and
N ′ → N → N ′′ → 0

is an exact sequence of A-modules, then the induced sequence
N ′ ⊗M → N ⊗M → N ′′ ⊗M → 0

is exact.

In categorical language, this proposition says that the functor of modules N 7→
M ⊗A N is right exact.

Example. Consider the Z-module Z/(2), and the exact sequence
0→ Z→ Z→ Z/(2)→ 0.

We have Z⊗Z Z/(2) ∼= Z/(2), and Z/(2)⊗ Z/2 ∼= Z/2. The sequence
Z⊗ Z/(2)→ Z⊗ Z/(2)→ Z/(2)⊗ Z/(2)→ 0

then becomes, after replacing each tensor product with its isomorphic module

Z/(2) 0→ Z/(2)→ Z/(2)→ 0.
In particular, since the leftmost map is not injective, the sequence

0→ Z/(2) 0→ Z/(2)→ Z/(2)→ 0



is not exact.
To be even more concrete, note that the element 1⊗ 1 ∈ Z⊗Z/(2) is mapped to

2⊗ 1 = 1⊗ 2 = 1⊗ 0 = 0⊗ 0 = 0,
and so lies in the kernel of Z⊗ Z/2→ Z⊗ Z/2.

Definition. An A-module M is flat if for all injective homomorphisms N ′ → N ,
the induced homomorphism M ⊗N ′ →M ⊗N is injective.

Remark. Equivalently, M is flat if for every short exact sequence
0→ N ′ → N → N ′′ → 0,

the sequence
0→ N ′ ⊗M → N ⊗M → N ′′ ⊗M → 0

is exact.

Example. The previous example shows that Z/(2) is not flat as a Z-module.

Example. For any ring A, and A-module N , we have that A⊗N ∼= N . If N ′ → N
is injective, then clearly A⊗N ′ → A⊗N is injective, so A is flat as an A-module.

Example. Given a collection of modules {Mi}i∈S and a moduleN , we have natural
isomorphism

(⊕i∈SMi)⊗N ∼= ⊕i∈SMi ⊗N.
Now if N ′ → N is injective and all the Mi are flat, then the morphism

⊕i∈SMi ⊗N ′ → ⊕i∈SMi ⊗N
is injective. This means ⊕i∈SMi is also flat.

Example. If k is a field, then every k-module M is isomorphic to
⊕

i∈S k, which
we know is flat. In other words, every k-module is flat.

Example. The Z-module Q is flat, but we won’t show this quite yet.

6.3. Algebras.

Definition. A pair (B,φ) of a ring B and a ring homomorphism φ : A → B is
called an A-algebra.

If (B,φ) and (C,ψ) are A-algebras, then a ring homomorphism χ : B → C is a
homomorphism of A-algebras if χ ◦ φ = ψ.

We usually omit the homomorphism φ : A→ B from the notation, and just say
“B is an A-algebra”.

Example. For any ring A, the polynomial ring A[x1, . . . , xn] is naturally an A-
algebra, as are all its quotients A[x1, . . . , xn]/I.

Example. For any ring A, there is a unique ring homomorphism φ : Z→ A given
by φ(n) = n1A, so every ring is a Z-algebra in precisely one way.

Definition. Let B be an A-algebra. We say B is a
• finite A-algebra if B is finitely generated as an A-module, i.e. if there exist
finitely many elements b1, . . . , bn ∈ B such that every element of B can be
written as

n∑
i=1

aibi ai ∈ A, bi ∈ B



• finite type A-algebra if there exist a finite set of elements b1, . . . , bn ∈ B
such that every element in B can be written on the form∑

ij≥0
ai1,...,inb

i1
1 · · · binn

Remark. An A-algebra B is of finite type if and only if it is isomorphic as an
A-algebra to

A[x1, . . . , xn]/I
for some ideal I ⊆ A[x1, . . . , xn].

Proof: IfB is isomorphic as anA-algebra toA[x1, · · · , xn]/I via φ : A[x1, . . . , xn]/I,
then we also have a surjection of A-algebras

ψ : A[x1, . . . , xn]→ A[x1, . . . , xn]/I → B.

Taking bi = ψ(xi), we have that every element b ∈ B can be written

b = ψ(
∑

ai1,...,inx
i1
1 · · ·xinn ) =

∑
ai1,...,inb

i1
1 · · · binn ,

proving that B is finitely generated.
Conversely, if B is generated by b1, . . . , bn, then there is a surjective A-algebra

homomorphism φ : A[x1, . . . , xn]→ B given by

φ

∑
ij≥0

ai1,...,inx
i1
1 · · ·xinn

 =
∑
ij≥0

ai1,...,inb
i1
1 · · · binn

Remark. A finite A-algebra is finite type, but not vice versa, e.g. A[x] is not a
finite A-algebra.



Lecture 10 – Tensor product of algebras

Definition. Let B and C be A-algebras. The A-module B ⊗A C is an A-algebra,
with multiplication defined by

(b⊗ c)(b′ ⊗ c′) = bb′ ⊗ cc′,

and more generally by

(
∑
i

bi ⊗ ci)(
∑
j

b′j ⊗ c′j) =
∑
i,j

bib
′
j ⊗ cic′j .

Remark. The unit element in the ring B ⊗A C is 1⊗ 1.

Remark. It is not obvious that this multiplication is well-defined. One way to see
this is to observe that any time we rewrite the sums by using the relations

b⊗ (c+ c′) = b⊗ c+ b⊗ c′,

and
ab⊗ c = b⊗ ac,

the expression on the right hand side can also be rewritten using these relations.
The other way is to use the defining property of the tensor product, see the

textbook for details.

Example. Let A be a ring, consider B = A[x] and C = A[y]. Then, as A-modules,
we have isomorphisms

B =
⊕
i≥0

Axi, C =
⊕
i≥0

Ayi,

or in words, B (resp. C) is the free A-module generated by 1, x, x2 . . . (resp. by
1, y, y2, . . .). We then find a module isomorphism

B ⊗A C ∼= (
⊕
i≥0

Axi)⊗ (
⊕
j≥0

Ayj) =
⊕
i,j≥0

Axi ⊗ yj .

For the multiplication, we have

(xi1 ⊗ yj1)(xi2 ⊗ yj2) = (xi1xi2 ⊗ yj1yj2) = xi1+i2 ⊗ yj1+j2 .

From this we see that there is an isomorphism of A-algebras B ⊗A C → A[x, y],
given by

∑
aijx

i ⊗ yj 7→
∑
aijx

iyj .

Example. Consider C as an R-algebra. We have a natural basis 1, i ∈ C as an
R-module, so C ∼= R1⊕ Ri. We have

C⊗R C = (R1⊕ Ri)⊗ (R1⊕ Ri) = (R1⊗ 1⊕ Ri⊗ 1⊕ R1⊗ i⊕ Ri⊗ i).

In other words C⊗R C is an R-vector space with basis 1⊗ 1, 1⊗ i, i⊗ 1, i⊗ i. The
multiplication table is easy to write down in this basis, if x = 1 ⊗ i, y = i ⊗ 1,
z = i⊗ i, then we have

x2 = y2 = z2 = −1
and

xy = z, yz = −x, zx = −y.



6.4. Rings of fractions. Recall from a previous course (hopefully), that given any
integral domain A, we can produce a field K(A), whose elements are written a/b,
with a, b ∈ A, the fraction field of A.

Example. We have K(Z) = Q and, if k is a field, K(k[x]) = k(x), the field of
rational functions.

Formally, the field K(A) is constructed as follows
(1) Consider all pairs (a, b) ∈ A×A with b 6= 0.
(2) Declare that (a, b) ' (a′, b′) if

ab′ − ba′ = 0
(3) Check that this is an equivalence relation.
(4) Let k(A) be the set of equivalence classes of pairs (a, b) ∈ A×A.
(5) Define addition and multiplication, check all’s well defined and gives a field.

Example. It is essential that A is an integral domain, otherwise ∼ is not an
equivalence relation. E.g. in Z/(4), we find

(2, 2) ∼ (1, 1) 2 · 1− 1 · 2 = 0
and

(2, 2) ∼ (0, 2) 2 · 2− 0 · 2 = 0
but

(1, 1) 6∼ (0, 2) 2 · 1− 1 · 0 = 2 6= 0.

We may think of the construction as follows: Given an integral domain A, we
build a “smallest” ring K(A) from A such that every non-zero element in A has an
inverse.

Generalised question: Given a ring A, and S ⊆ A, construct a new ring S−1A
where elements of s have inverses.

Note that, if s1, s2 ∈ S, and s1 and s2 has inverses, then also s1s2 must have
an inverse. The element 1 ∈ A already has an inverse, so we can always add it in
to S. We will therefore assume S is multiplicatively closed, meaning 1 ∈ S and
s1, s2 ∈ S ⇒ s1s2 ∈ S.

Definition. Given a ring A and a multiplicatively closed subset S ⊆ A, define the
ring of fractions of A with respect to S as follows.

• The set S−1A are equivalence classes of pairs
(a, s) a ∈ A, s ∈ S,

under the equivalence relation that
(a, s) ∼ (b, t)

if and only if there exists a u ∈ S such that
(at− sb)u = 0.

• Addition and multiplication is defined by
(a, s) + (b, t) = (at+ bs, st)

(a, s)(b, t) = (ab, st).

Remark. The proof that this is a ring is almost exactly the same as the construc-
tion of the fraction field of an integral domain.



Remark. We will always write a/s instead of (a, s). The formulas for addition and
multiplication of these fractions are the same as the usual ones. The only thing
that is harder is the new criterion for when two fractions are equal, i.e.

a

s
= b

t
⇔ (at− bs)u = 0 for some u ∈ S.

Remark. The unit element in S−1A is 1/1, and the zero element is 0/1.

Remark. There is a ring homomorphism φ : A→ S−1A defined by φ(a) = a
1 .

Proposition. Let ψ : A → B be a ring homomorphism such that every s ∈ S, we
have ψ(s) is a unit in B. Then there exists a unique homomorphism ρ : S−1A→ B
such that ψ = ρ ◦ φ.

Proof. Uniqueness: Let a ∈ A. We must have

ρ(a/1) = ρ(φ(a)) = ψ(a).

Let s ∈ S. We must have

ρ(1/s) = ρ((s/1)−1) = ρ(φ(s)−1) = (ρ(φ(s)))−1 = ψ(s)−1.

Then
ρ(a/s) = ρ(a/1)ρ(1/s) = ψ(a)ψ(s)−1.

Existence: Define ρ(a/s) = ψ(a)ψ(s)−1, and check that this is well-defined. �

Example. Let A be an integral domain, and let S = A\{0}. Then S−1A = K(A).
To see this, observe that the equivalence relation

(a, s) ∼ (b, t)⇔ (as− bt)u = 0 for some u ∈ S

used in the construction of S−1A, and

(a, s) ∼ (b, t)⇔ as− bt = 0

used in the construction of K(A), are in fact the same ones, since A is an integral
domain.

Example. Let A be a ring S ⊆ A multiplicatively closed, and assume that 0 ∈ S.
Then we have, for all a, b ∈ A, s, t ∈ S, that

a

s
= b

t
,

since
(ta− bs)0 = 0.

Thus S−1A has one element and is the zero ring.
In particular, the homomorphism φ : A→ S−1A is not necessarily injective.

Example. Let f ∈ A, and let S = {fn | n ≥ 0} ⊆ A. We then write Af = S−1A,
the ring A with f inverted.

Example. Let p ⊂ A be a prime ideal. Let S = A \ p. Then S is multiplicatively
closed, and we write Ap = S−1A.

Proposition. The ring Ap is local, with maximal ideal

m = {a/s | a ∈ p, s 6∈ p}.



Proof. Recall a ring A is local if and only if its non-units form an ideal, and the set
of non-units are then the maximal ideal of the ring.

One checks the set above m is an ideal. It does not contain 1/1, since
1/1 = a/s⇒ (s− a)u = 0 for some u 6∈ p,

If a ∈ p and s 6∈ p, then (s − a) 6∈ p, and so (s − a)u 6∈ p, and in particular
(s− a)u 6= 0. Therefore the elements of m are non-units.

Assume next that a/s 6∈ m. Then a 6∈ p, so a/s has inverse s/a, and hence a/s is
a unit. Thus m is precisely the set of non-units in Ap, so Ap is local with maximal
ideal m. �

Example. Let p = (p) ⊆ Z for some prime number p. Then
Z(p) = {m/n | p does not divide n},

and the maximal ideal is
m = {pm/n | p does not divide n}.

Example. Take p = (x) ⊂ R[x]. Then
R[x](x) = {f/g | g 6∈ (x)},

the local ring from the lecture on Nakayama’s lemma.



Suggested exercises week 5

(1) Let B be an A-algebra, and let I ⊂ B be an ideal. Prove that if B is a
finite A-algebra, then so is B/I.

(2) Let B be an A-algebra, and let I ⊂ B be an ideal. Prove that if B is a
finite type A-algebra, then so is B/I.

(3) Let A be a ring, and let I ⊆ A an ideal. Prove that if A/I is a flat A-module,
then I = I2. Hint: Consider the inclusion of A-modules I → A.

(4) Prove that Q⊗Z Q is isomorphic to Q as a ring.
(5) Let B be an A-algebra. Prove that

A[x]⊗A B ∼= B[x]
(6) Let A be a ring and I, J ⊆ A ideals. Prove that we have an isomorphism

of A-algebras
A/I ⊗A/J → A/(I + J).

(7) Let A be a ring, let B and C be A-algebras, with A-algebra structure given
by

ψB : A→ B and ψC : A→ C.

Let φB : B → B⊗AC and φC : C → B⊗AC be given by φB(b) = b⊗1 and
φC(c) = 1 ⊗ c. Verify that the following diagram of ring homomorphisms
is commutative.

A B

C B ⊗A C,

ψB

ψC φB

φC

that is, that φB ◦ φB = φC ◦ ψC .
(8) (*) With notation as above, let D be a ring, and let ρB : B → D and

ρC : C → D be ring homomorphisms such that ρB ◦ ψB = ρC ◦ ψC . Prove
that there is a unique ring homomorphism

ρ : B ⊗A C → D

such that ρB = ρ ◦ φB and ρC = ρ ◦ φC .
In diagrams: Prove that the commutative diagram of ring homomor-

phisms
A B

C B ⊗A C

D

ψB

ψC

ρB

φB

ρC

φC

can be extended uniquely to a commutative diagram

A B

C B ⊗A C

D

ψB

ψC

ρB

φB

ρC

φC

ρ



(9) Let S ⊆ A be a multiplicatively closed subset. Show that the kernel of the
homomorphism φ : A→ S−1A is the set⋃

s∈S
Ann(s) ⊆ A

(10) Let A be a ring and f ∈ A. Prove that A[x]/(fx− 1) ∼= Af .
(11) Let A be a ring and let S ⊆ A be a multiplicatively closed subset. Prove

that if S−1A = 0, then 0 ∈ S.



Lecture 11 – Modules on rings of fractions

Let A be a ring and let S ⊆ A be a multiplicatively closed subset.

Definition. If M is an A-module, then define an S−1A-module S−1M as the set
of equivalence classes of pairs

(m, s) m ∈M, s ∈ S,

under the equivalence relation

(m, s) ∼ (n, q) if ∃u ∈ S | (qm− sn)u = 0.

The module structure is

(m, s) + (n, q) = (qm+ sn, sq)

and, if a ∈ A
(a, s)(m, q) = (am, sq).

Remark. We always write m/s instead of (m, s).

Example. Take A = Z, S = Z \ {0}, so that S−1Z = Q.
Let M = Z, then S−1M = Q.
Let M = Z/n, then we have the following equalities in S−1M :

a/s = na/ns = 0/s = 0,

so S−1M = 0.

Remark. As special notational cases:
• If S = A \ p for some prime ideal p, so that S−1A = Ap, we write Mp for
S−1M .
• If S = {1, f, f2, · · · , so that S−1A = Af , we write Mf for S−1M .

Remark. Given a homomorphism of A-modules φ : M → N , there is an induced
homomorphism of S−1A-modules S−1φ : S−1M → S−1N given by

S−1φ(m/s) = φ(m)/s.

Proposition. The S−1A-module S−1M is isomorphic to M ⊗A S−1A, under the
homomorphism φ given by

a/s⊗m 7→ am/s

Proof. To see that φ is well-defined, check (which is easy) that (a/s,m) 7→ am/s
is A-bilinear. The map φ is clearly surjective since for any m/s ∈ S−1M we have
φ(1/s ⊗ m) = m/s. To see that it is injective, note that there is a well-defined
inverse

ψ : S−1M → S−1A⊗AM,

given by
ψ(m/s) = 1/s⊗m.

Here if m/s = n/q, we have an u ∈ S such that u(qm − sn) = 0, which implies
that

1/s⊗m = 1/uqs⊗ uqm = 1/uqs⊗ usn = 1/q ⊗ n,
so ψ is well-defined. One checks that it is a homomorphism of S−1A-modules, and
that ψ ◦ φ and φ ◦ ψ are both the identities. �



Example. In the examples above, S−1M = Q⊗ZM , so our computations recover
previous computations of these tensor products.

Proposition. If M ′ →M →M ′′ is exact, then so is S−1M ′ → S−1M → S−1M ′′.

Proof. Let m/s be such that S−1ψ(m/s) = 0. We must show that there exists an
m′/s′ such that S−1φ(m′/s′) = m/s.

We have
S−1ψ(m/s) = ψ(m)/s = 0/1,

which by definition means that there is an u ∈ S such that uψ(m) = 0.
Then ψ(um) = 0, and exactness implies there is an n such that φ(n) = um. It

follows that
S−1φ(n/su) = φ(n)/su = um/su = m/s.

�

Corollary. The ring S−1A is flat as an A-module.

Proof. The operation S−1− preserves exactness, and so preserves injections, hence
the operation S−1⊗A− preserives injections, which by definition means that S−1A
is flat. �

Example. For any integral domain A, K(A) is flat as an A-module.

Proposition (The operation M 7→ S−1M commutes with everything). Let M be
an A-module.

• If M ′ is an A-submodule of M , then S−1M ′ is an S−1A-submodule of
S−1M , and we have S−1M/S−1M ′ ∼= S−1(M/M ′).

• If M ′,M ′′ ⊂ M , then S−1(M ′ + M ′′) = S−1M ′ + S−1M ′′, and S−1M ′ ∩
S−1M ′′ = S−1(M ′ ∩M ′′).

• If N is an A-module, then
S−1M ⊗S−1A S

−1N ∼= S−1(M ⊗A N).

Proof. Let’s only prove the last one. We use the S−1A⊗AM = S−1M to rewrite
the left hand side as
S−1M ⊗S−1A S

−1N ∼= M ⊗A S−1A⊗S−1A S
−1A⊗A N

∼= M ⊗A S−1A⊗A N ∼= S−1A⊗AM ⊗A N ∼= S−1(M ⊗A N).
�

Remark. All of the above hold more generally for the operation M 7→ M ⊗A B
whenever B is a flat A-algebra.

6.5. Local properties. Let P be a property of module. We say (somewhat infor-
mally) that the property P is local if

P holds for M
m

P holds for all localisations Mp.

Proposition (“Being 0 is local”). Let M be an A-module. The following are
equivalent

(1) M = 0



(2) Mp = 0 for all prime ideals p
(3) Mm = 0 for all maximal ideals m.

Proof. (1)⇒ (2)⇒ (3) are obvious.
To prove (3)⇒ (1), assume M 6= 0, and for a contradiction that Mm = 0 for all

maximal ideals m. Let 0 6= m ∈M . Then
Ann(m) = {x ∈ A | xm = 0} ⊂ A

is an ideal, and Ann(m) 6= (1). Hence there is a maximal ideal m ⊇ Ann(m). Now,
since Mm = 0, we have

m

1 = 0⇔ ∃u ∈ A \m | um = 0,

but Ann(m) ⊆ m, so this is a contradiction. �

Proposition. Let φ : M → N be a homomorphism of A-modules. Then the follow-
ing are equivalent:

(1) φ is injective.
(2) For all prime ideals p, the map φp : Mp → Np is injective.
(3) For all maximal ideals m, the map φp : Mm → Nm is injective.

Proof. The sequence 0→ kerφ→M → N is exact. Since localisation is exact, we
have for every prime p that

0→ (kerφ)p →Mp
φp→ Np

is exact. But that implies (kerφ)p ∼= kerφp.
We have φ injective if and only if kerφ = 0. By the above, we have φp injective

if and only if (kerφ)p = 0. Combining with the previous proposition gives what we
want. �

Remark. The same result holds with “injective” replaced by “surjective” through-
out.

Proposition. Being flat is a local property.



7. Lecture 12 – Extension and contraction of ideals in the ring of
fractions

Recall that for a quotient ring A/I, we have a bijection between the set of ideals
of A/I and the set of ideals of A containing I. If φ : A → A/I, and superscripts e
and c denote extension and contraction along φ, the correspondence is given by

a ⊆ A 7→ ae = a/I ⊆ A/I

and
a ⊆ A/I 7→ ac = φ−1(a) ⊆ A.

A similar, but more complicated story, holds for the fractions rings S−1A. Recall
that given a multiplicatively closed subset S ⊆ A, we have a homomorphism φ : A→
S−1A, and we let now let superscripts c and e denote contraction and extension
along this homomorphism. We begin by analysing concretely what these operations
do.

Lemma. Let a ⊂ A be an ideal. Then

ae = {a
s
| a ∈ a}

Proof. By definition, ae = {
∑
bi/siφ(ai) | bi ∈ A, si ∈ S, ai ∈ a}, where we look

at all finite sums. The inclusion ⊇ is then clear. Conversely, ae is generated by
elements of the form

b

s
φ(a) = ba

s
,

with a ∈ a. Then ba ∈ a, which gives the inclusion ⊆. �

Lemma. Let a ⊆ S−1A be an ideal. Then ac = {a ∈ A | a/1 ∈ a}.

Proof. a ∈ ac ⇔ φ(a) ∈ a by definition, and φ(a) = a/1. �

Proposition. For any ideal a ⊂ S−1A, we have ace = a.

Proof. Using the lemmas above, we find

a/s ∈ a⇒ (s/1)(a/s) = a/1 ∈ a⇒ a ∈ ac ⇒ a/s ∈ ace,

and

a/s ∈ ace ⇒ a/s = b/q, b ∈ ac ⇒ b/1 ∈ a→ (1/q)(b/1) = b/q = a/s ∈ a.

�

Corollary. The operation a → ac gives an inclusion of the set of ideals of S−1A
into the set of ideals of A.

Proof. If ac = bc, then a = ace = bce = b. �

Corollary. Every ideal of S−1A is of the form ae for some a ⊆ A.

Example. The ideals of Z(2) are all extensions of ideals from Z. Every ideal of Z
is of the form (n) for some n ≥ 0, and we have

(n)e = {nk
s
| k ∈ Z, s 6∈ (2)} = (n/1)



If n = 2fq with q odd, then 2f/1 = n/q ∈ (n/1), so (2f/1) ⊆ (n/1), while
n/1 = (2f/1)(q/1) ∈ (2f/1), so (n/1) ⊆ (2f/1). It follows that (n/1) = (2f/1).
Thus the complete set of ideals in Z(2) is

(1) ) (2/1) ) (22/1) ) · · ·
and (0).

Let’s focus now on the case of prime ideals.

Proposition. The operations of extension and contraction give a bijection between
the prime ideals of S−1A and the prime ideals p of A such that p ∩ S = ∅.

Proof. Let p ⊂ S−1A be a prime ideal. Then pc ⊂ A is a prime ideal (Contraction
always preserves prime ideals). Moreover, pc ∩ S = ∅, since if a ∈ pc ∩ S, then

a/1 ∈ p⇒ a/a = 1 ∈ p⇒ p = (1),
contradicting primality of p.

If q ⊂ A is a prime ideal with q ∩ S = ∅, then we claim (1) qe is a prime ideal,
and (2) qec = q.

For (1), if qe is not a prime ideal, we can find a/s, b/q such that a, b 6∈ q with
ab

qs
= c

t
,

with c ∈ q. That implies (abt− qsc)u = 0 for some u ∈ S, but a, b, t 6∈ q, c ∈ q and
u 6∈ q makes this impossible, since q is prime.

For (2), qec ⊇ q always holds, so we only need to prove that qec ⊆ q. An element
of qec is an a ∈ A such that

a/1 = b/s

with b ∈ q and s ∈ S. This implies that (as− b)u = 0 for some u ∈ S, which since
b ∈ q, s, u 6∈ q, can only happen if a ∈ q.

We have now shown that the operations (−)e and (−)c gives maps between the
sets

{prime ideals in A not intersecting S}
and

{prime ideals in S−1A},
such that pec = p and qce = q, which means that these maps are bijections. �

Corollary. Let p ⊆ A be a prime ideal. The prime ideals of Ap are precisely the
ideals qe, where q ⊆ p is a prime ideal.

Proof. The condition q ∩ S \ p is equivalent to q ⊆ p. �

Example. The prime ideals of Z(2) are exactly (2)e = (2/1) and (0)e = (0/1).
Note that the bijection proposition above fails here for non-prime ideals, i.e.

(6) ⊂ (2) ⊂ Z, but (6)e = (2)e = (2/1), and there is no ideal I ⊆ Z(2) such that
Ic = (6).

Corollary. Let f ∈ A. The prime ideals of Af are precisely the ideals qe, where
q ⊂ A is a prime ideal not containing f .

Proof. Since Af = S−1A with S = {fk}k≥0, the prime ideals of Af are the qc

which don’t intersect S. Now f ∈ q⇔ fk for some k ≥ 0 by primality of q, so this
is the set of prime ideals in A which don’t contain f . �



Example. The prime ideals of Z2 are (3/1), (5/1), (7/1), (11/1), . . ..

We can give better proofs of a few things we’ve seen before.

Corollary. The ring Ap is local.

Proof. Every prime ideal q ⊂ Ap is contained in pe. �

Proposition. The nilradical of A is the intersection of all the prime ideals of A.

Proof. If f is nilpotent, then it must lie in every prime ideal. The hard part is to
see that if f lies in every prime ideal, then f is nilpotent. Consider the ring Af . A
ring without prime ideals must be the zero ring, and S−1A is the zero ring if and
only if 0 ∈ S, which is if and only if f is nilpotent. �



Geometric interlude

Let k be an algebraically closed field, and for concreteness we may as well take
k = C. We are interested in the ring k[x1, . . . , xn], and want to know what its
maximal ideals are. There is a very natural source of such maximal ideals: Let
(a1, . . . , an) ∈ kn, and let

φ(a1,...,an) : k[x1, . . . , xn]→ k

be given by
φ(a1,...,an)(f) = f(a1, . . . , an).

This homomorphism is surjective onto k, so k = imφ = k[x1, . . . , xn]/ kerφ, which
means that kerφ is maximal. It’s easy to check that kerφ = (x1− a1, . . . , xn− an).

We will see later the following theorem:

Theorem (Nullstellensatz (special case)). The maximal ideals of the ring k[x1, . . . , xn]
are precisely the ideals

(x1 − a1, x2 − a2, . . . , xn − an),
where (a1, a2, . . . , an) ∈ kn.

We are in principle interested in subsets of kn defined as the zero sets of poly-
nomials f1, f2, . . . , fm ∈ k[x1, . . . , xn]. We write
V (f1, . . . , fm) = {(a1, . . . , an) ∈ kn | f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0}.

A set V ⊆ kn which can be expressed in this form is called algebraic.

Example. The set {(a1, a2) | a2
1 + a2

2 = 1} ⊆ k2 is an algebraic subset (which if
k = R is of course a circle).

Lemma. Let f ∈ k[x1, . . . , xn]. Then f(a1, . . . , an) = 0 if and only if f ∈ (x1 −
a1, . . . , xn − an).

Proof. f(ai) = 0⇔ f ∈ kerφ(ai) ⇔ f ∈ (xi − ai). �

Lemma. Given f1, . . . , fn ∈ k[x1, . . . , xn], we have that (a1, . . . , an) ⊆ V (f1, . . . , fn)
if and only if (f1, . . . , fn) ⊆ (x1 − a1, . . . , xn − an).

Proof. By definition, we have V (f1, . . . , fn) = V (f1) ∩ V (f2) ∩ · · ·V (fn). �

Corollary. The set V (f1, . . . , fn) are in natural bijection with the maximal ideals
of the ring k[x1, . . . , xn]/(f1, . . . , fn).

Proof. The maximal ideals of the quotient ring are in bijection with the maximal
ideals of k[x1, . . . , xn] containing (f1, . . . , fn), which is in bijection with V (f1, . . . , fn).

�

Example. To find the maximal ideals of the ring A = k[x, y]/(x2 + y2 − 1, x), we
simply solve the set of equation

x2 + y2 − 1 = 0
x = 0,

giving (x, y) = (0, 1) and (x, y) = (0,−1). This means that A has two maximal
ideals. Letting x̄ = x + (x2 + y2 − 1), ȳ = y + (x2 + y2 − 1, x) ∈ A, the maximal
ideals of A are

(x̄, ȳ − 1) and (x̄, ȳ + 1).



Motivated by this, for any ideal I ⊆ k[x1, . . . , xn], we define V (I) ⊆ kn to be
the subset (a1, . . . , an) such that I ⊆ (x1 − a1, . . . , xn − an). Sets of the form V (I)
are called algebraic subsets of kn.

Proposition. The operation I 7→ V (I) satisfies the following properties
(1) I ⊆ J ⇒ V (J) ⊆ V (I).
(2) V (0) = kn

(3) V (1) = ∅.
(4) V (I + J) = V (I) ∩ V (J).
(5) V (IJ) = V (I ∩ J) = V (I) ∪ V (J).
(6) V (r(I)) = V (I).

Proof. (1), (2) and (3) are obvious.
(4): A maximal ideal (x1 − a1, . . . , xn − an) contains I and J if and only if it

contains I + J .
(5): From IJ ⊆ I ∩ J and (1) follows V (IJ) ⊇ V (I ∩ J). If a maximal ideal

contains I or J , then it contains I ∩ J , which gives V (I ∩ J) ⊇ V (I) ∩ V (J). If a
maximal ideal m contains I, J , then it contains either I or J , since otherwise we
can find f ∈ I \m, g ∈ J \m, from which we get fg ∈ IJ \m, since m is prime. It
follows that V (I) ∩ V (J) ⊇ V (IJ).

(6): From (1) and I ⊆ r(I) we get V (r(I)) ⊆ V (I). If a maximal ideal m
contains I, then it also contains r(I), since fn ∈ I ⇒ fn ∈ m ⇒ f ∈ m. Hence
V (r(I)) ⊇ V (I). �

Let now V = V (I) ⊆ kn be an algebraic subset. We say that V is irreducible if
there is no way to write V (I) as the union of two strictly smaller algebraic subsets.

Example. For every maximal m, we have V (m), so points are irreducible.

Proposition. If p ⊂ k[x1, . . . , xn] is a prime ideal, then V (p) is an irreducible
subset.

Moreover, every irreducible algebraic subset of kn is of the form V (p) for some
prime ideal p.

Proof. These claims rely on the Nullstellensatz, which we don’t know yet, so we
won’t prove this. �

Example. For every irreducible f ∈ k[x1, . . . , xn], the set
V (f) = {(a1, . . . , an) | f(a1, . . . , an) = 0}

is irreducible, since (f) is a prime ideal.

Example. The fact that xy ∈ k[x, y] is not irreducible is equivalent to (xy) not
being a prime ideal, which is equivalent to V (xy) not being irreducible. Concretely,
V (xy) = V (x) ∪ V (y) shows that V (xy) is not irreducible.



Suggested problems week 6

(1) Let a ⊆ A be an ideal, and let p be a prime ideal such that a is not contained
in p. Prove that (A/a)p = 0 and that ap ∼= Ap as Ap-modules.

(2) An A-module is torsion free if the map φa : M →M given by φa(m) = am
is injective for all a 6= 0. Prove that the property of being torsion free is
local.

(3) Show that “being finitely generated” is not a local property of A-modules,
i.e. give an example of a ring A and a module M such that all localisations
Mp are finitely generated Ap-modules, but M is not a finitely generated
A-module.

(4) Prove that the operation M 7→ S−1M does not commute with infinite
intersections of submodules. More precisely, give an example of a ring A, a
multiplicatively closed subset S ⊆ A, an A-module M , and an infinite set
of submodules {Mi}i∈T of M such that⋂

i∈T
S−1Mi 6= S−1(

⋂
i∈T

Mi).



Lecture 13 – Primary ideals

Some rings, such as Z and k[x1, . . . , xn] where k is a field, are unique factorisa-
tion domains, meaning every element x can be factored uniquely (up to reordering
and multiplication by units) as a product

x = p1p2 · · · pk

with pi irreducible ring elements.
For most rings A, this is not the case:

Example. • In Z[i
√

5] = Z[x]/(x2+5), we have 6 = 2·3 = (1+i
√

5)(1−
√

5),
where 2, 3, 1 + i

√
5 and 1− i

√
5 are all irreducible.

• Let k be a field. In the ring A = k[x, y]/(y2 − x3 + x), we have

y2 = y · y = x(x− 1)(x+ 1),

and y, x, (x− 1), (x+ 1) are all irreducible.

The best we can hope for in general is some kind of factorisation of ideals. A
reasonable way to formalise this turns out to be that of factoring into primary
ideals.

Definition. An ideal a ⊆ A is primary if a 6= (1), and fg ∈ a implies either f ∈ a
or gn ∈ a for some n ≥ 1.

Remark. An equivalent formulation is: An ideal a is primary if A/a 6= 0, and
every 0-divisor in A/a is nilpotent.

Example. Every prime ideal is primary.

Example. In Z, the primary ideals are (0) and (pi) for p a prime.

Example. If a ring A has unique factorisation, then (xn) is primary for any irre-
ducible x. Here fg ∈ (xn) is equivalent to “xn divides fg”. If x divides g, then
gn ∈ (xn), and if not, we must have that xn divides f .

Proposition. If a is primary, then
√
a is prime.

Proof. Assume fg ∈
√
a. Then there’s some n such that fngn ∈ a, so that either

fn ∈ a, or there’s some m such that (gn)m ∈ a. In either case one of f and g must
lie in

√
a, so

√
a is prime. �

We say that a is p-primary if
√
a = p.

Remark. Let a = (xy, y2). Then
√
a = (y), which is prime, but a is not primary,

since yx ∈ a, but x 6∈
√
a. So being primary is a stronger condition than having

prime radical.

Proposition. If m ⊂ A is maximal, and
√
a = m, then a is primary.

Proof. The ring A/a has the property that the nilradical
√

(0) = m/a is a maximal
ideal. Since the nilradical is the intersection of all prime ideals, we must have that
m/a is the unique prime ideal of A/a. Every element outside of m/a is then a unit,
so every 0-divisor lies in m/a =

√
(0), which means a is primary. �



Definition. A primary decomposition of an ideal a ⊆ A is an expression

a =
n⋂
i=1

qi

with the qi primary. It is said to be minimal if the √qi are distinct, and if there is
no i such that

qi ⊆ q1 ∩ q2 ∩ · · · qi−1 ∩ qi+1 ∩ · · · ∩ qn.

Remark. A nonminimal primary decomposition easily gives a minimal one. If√
qi = √qj , just replace qi and qj by qi∩qj , which is primary by the lemma below.
If

qi ⊆ q1 ∩ q2 ∩ · · · qi−1 ∩ qi+1 ∩ · · · ∩ qn,

just remove qi.

Lemma. If q, q′ are p-primary, then so is q ∩ q′.

There are two natural questions to ask of these primary decompositions
(1) Do they exist, i.e. does every ideal have such a decomposition?
(2) Are they unique?

The answers are
(1) No in general, but for “Noetherian rings”, then yes. In particular the answer

is yes for all rings of the form k[x1, . . . , xn]/I and Z[x1, . . . , xn]/I. We’ll
prove this later.

(2) No in general, but certain aspects are preserved.

Example. In the ring Z[i
√

5], one can check that (6) is written as an intersection

(6) = (2) ∩ (3, 1− i
√

5) ∩ (3, 1 + i
√

5)

The ideal (2) is (2, 1− i
√

5)-primary, and (3, 1± i
√

5) are prime ideals. The ideals
involved are coprime, so we also have

(6) = (2)(3, 1− i
√

5)(3, 1 + i
√

5).

This decomposition is (we’ll see) unique.

Example. The ideal (xy) ⊆ k[x, y] admits a minimal primary decomposition
(xy) = (x) ∩ (y), which is also unique.

Example. Let’s compute a primary decomposition of (xy, y2) ⊂ k[x, y]. Firstly,
note that (xy, y2) is not primary, since yx ∈ (xy, y2), but y 6∈ (xy, y2) and no power
of x lies in (xy, y2).

A reasonable candidate for one primary ideal is (y), which is a prime ideal, and
clearly (xy, y2) ⊆ (y). A second possible ideal is (x2, xy, y2) = (x, y)2. This is
(x, y)-primary since (x, y) is maximal.

Now to see
(xy, y2) = (y) ∩ (x2, xy, y2),

note that
(xy, y2) = {

∑
aijx

iyj | ai0 = 0 and a01 = 0}
while

(y) = {
∑

aijx
iyj | ai0 = 0}



and
(x2, xy, y2) = {

∑
aijx

iyj | a00 = a10 = a01 = 0}.
This is a minimal primary decomposition since (y) 6= (x, y) and neither of the

ideals (y) and (x2, xy, y2) are contained in the other.
In this case, the primary decomposition is not unique, in particular we can also

write
(xy, y2) = (y) ∩ (y2, xy, xn)

for any n ≥ 1, or
(xy, y2) = (y) ∩ (y2, x+ ay)

for any a ∈ k.

Recall (a : x) = {y ∈ A | yx ∈ a}.

Theorem (Uniqueness 1). Let a be a decomposable ideal, with minimal decompo-
sition

a =
n⋂
i=1

qi.

The prime ideals √qi are precisely the prime ideals which can be written as
√

(a : x).

Corollary. Every minimal primary decomposition of a gives the same set of prime
ideals.

Definition. The ideals of the form √qi are the prime ideals associated with a.



Suggested problems week 7

From Atiyah–Macdonald chapter 4, problems 2 (assume a is decomposable), 4,
5.

(1) Let A = Z[x]/(x2 + 5).
(a) Let p be a prime. Show that the ideal (p) ⊆ A is a prime ideal if and

only if the congruence equation t2 + 5 ≡ 0 (mod p) has no solutions.
(b) Prove that (2) is a primary ideal in A.
(c) Prove that (3) = (3, x− 1)∩ (3, x+ 1) is a minimal primary decompo-

sition of (3).
(d) Compute the primary decomposition of (6) as given in the lecture

notes.
(2) An integral domain has dimension 1 if it is not a field and every non-zero

prime ideal is maximal.
(a) Prove that Z and k[x] have dimension 1.
(b) For the rest of the problem, let A be an integral domain of dimension

1. Prove that an ideal a ⊆ A is primary if and only if
√
a is prime.

(c) Let q, q′ be non-zero primary ideals with different radicals. Prove that
q and q′ are coprime.

(d) Prove that if a ⊆ A admits a primary decomposition, then it admits a
product decomposition

a = q1 · · · qn,
with each qi primary.

(e) With a as above, prove that every prime associated with a is minimal.
(3) (*) Let A = k[x, y]/(y2−x3+x). We want to prove that y, x, x−1, x+1 ∈ A

are irreducible, to show that A does not have unique factorisation.
(a) Prove that every f ∈ A can be expressed uniquely as

f = g0 + yg1 gi ∈ k[x].
(b) Prove that the map φ : A→ k[x] defined by

φ(g0 + yg1) = g2
0 − (x3 − x)g2

1

is multiplicative, that is
φ(ff ′) = φ(f)φ(f ′)

for all f, f ′ ∈ A.
(c) Prove that for any g0, g1 ∈ k[x], we have

deg φ(g0 + yg1) 6= 1.
(d) Prove that if deg(g0 + yg1) = 0, then g0 + yg1 is a unit in A.
(e) Prove that if y = ff ′, then either f or f ′ is a unit.
(f) Prove the same thing for x, x− 1 and x+ 1 instead of y.



Lecture 14 – Primary ideals II

Recall (a : x) = {y ∈ A | yx ∈ a}.

Theorem (Uniqueness 1). Let a be a decomposable ideal, with minimal decompo-
sition

a =
n⋂
i=1

qi.

The prime ideals √qi are precisely the prime ideals which can be written as
√

(a : x).

Corollary. Every minimal primary decomposition of a gives the same set of prime
ideals.

Definition. The ideals of the form √qi are the prime ideals associated with a.

Proof of Uniqueness theorem. The proof requires two reasonably simple lemmas.

Lemma (AM, Prop. 1.11). If p is a prime ideal, and a1, a2, . . . , an ⊂ A are prime
ideals such that

p ⊆ a1 ∩ · · · ∩ an,

then ai ⊆ p for some i. If moreover
p = a1 ∩ · · · ∩ an,

then p = ai for some i.

To motivate the second one, note that if

a =
n⋂
i=1

qi,

then √
(a : x) =

√
(∩qi : x) =

√
∩(qi : x) =

n⋂
i=1

√
(qi : x),

so we need to analyse (qi : x).

Lemma. Let q be a p-primary ideal. Then√
(q : x) =

{
p if x /∈ q

(1) if x ∈ q

Proof. If x ∈ q, then (q : x) = (1).
If x 6∈ q and y ∈ (q : x), then xy ∈ q. Since q is primary, this implies that yn ∈ q

for some n, so y ∈ p. Conversely, if x 6∈ q and y ∈ p, then for some n ≥ 1 we have

yn ∈ q⇒ xyn ∈ q⇒ yn ∈ (q : x)⇒ y ∈
√

(q : x).
�

Now to prove the Uniquness theorem, assume that a = ∩qi is a minimal primary
decomposition and that pi = √qi. Now assume that p =

√
a : x) is a prime ideal –

we must show that p = pi for some i. We have, using Lemma 2, that

p =
n⋂
i=1

√
(qi : x) = pi1 ∩ pi2 ∩ · · · ∩ pik ,



where the set {i1, . . . , ik} is the set of i for which x 6∈ qi. Using Lemma 1, then
p = pij for some j.

We must also show that for every prime ideal pi, we can find an x ∈ A such that
pi =

√
(a : x). Taking x ∈ qj for all j 6= i but x 6∈ qi (which is possible since the

decomposition is minimal), we get that
√

(a : x) = pi. �

Example. The ideal (xy, y2) ⊂ k[x, y] can be given minimal primary decomposi-
tions

(xy, y2) = (x2, xy, y2) ∩ (y) = (xn, xy, y2) ∩ (y).
The associated primes are

√
(x2, xy, y2) = (x, y) and

√
(y) = (y), and for each

n ≥ 1 we have that
√

(xn, xy, y2) = (x, y).

Definition. The set of prime ideals associated with a is partially ordered with
respect to inclusion, i.e. p ≤ p′ if p ⊆ p′.

The minimal elements of this set are called the isolated or minimal prime
ideals associated with a, while the other ones are called embedded.

Example. In the decomposition (y2, xy) = (x2, xy, y2) ∩ (y), the we have (y) (
(x, y), so (y) is an isolated prime ideal, while (x, y) is embedded.

Proposition. The isolated prime ideals of a are exactly the prime ideals minimal
over a, i.e. the prime ideals p such that there is no prime ideal p′ with a ⊆ p′ ( p.

Proof. Let r1, . . . , rk be the prime ideals which are minimal over a, let p1, . . . , pn
be the prime ideals associated with a, ordered in such a way that pi is isolated for
i = 1, . . . ,m and embedded for i = m+ 1, . . . , n. The claim to be shown is

{r1, . . . , rk} = {p1, . . . , pm}.

We first show the inclusion⊆: Let p = rj ⊇ a be a minimal prime ideal containing
a, and assume a = ∩qi is a minimal primary decomposition. We have

a ⊆ p⇒
√
a = ∩

√
qi = ∩pi ⊆ p.

This implies by the lemma above that for some i, pi ⊆ p. But p being minimal over
a then implies that pi = p. Hence every prime ideal minimal over a is an isolated
prime ideal for a.

Now for the inclusion ⊇, let pi be an isolated prime ideal of a. Assume for a
contradiction that pi is not minimal over a, then there will be some minimal prime
ideal p′ such that a ⊆ p′ ( pi (this requires a Zorn’s lemma argument). But by
the above we know p′ is associated with a, so then pi is not isolated, giving a
contradiction. �

Example. In our decompositions of (y2, xy) ⊂ k[x, y], we will always have two
components, of which one is (y) and the other could be (x2, xy, xn) for any n. Our
uniqueness statement from today says that at least

√
(y) = (y) and

√
(x2, xy, yn) =

(x, y) will be the same for any primary decomposition.

Theorem. Assume A admits a primary decomposition of (0), and let p1, · · · , pn
be the associated prime ideals of (0). Then

{x ∈ A | x is a 0-divisor} =
n⋃
i=1

pi



Proof. Let

(0) =
n⋂
i=1

qi

be a minimal primary decomposition, with pi = √qi.
Assume y 6∈ pi for any i, and that xy = 0. Then qi being primary implies that

x ∈ qi, and since this holds for all i, we have x ∈ ∩qi = (0), so x = 0. This means
y is not a 0-divisor, proving the ⊆ inclusion of the theorem.

For the inclusion ⊇, assume y ∈ pi for some i. There is some x ∈ A such that√
Ann(x) =

√
((0) : x) = pi.

This means there is some n such that yn ∈ Ann(x), which means there is some n
such that ynx = 0. Taking n0 to be the minimal such n, we have yn0−1x 6= 0, and
y(yn0−1x) = yn0x = 0, which means y is a 0-divisor. �

Example. In the ring A = k[x, y]/(xy, y2), the ideal (0) has a primary decompo-
sition

(0) = (x2, x̄ȳ, ȳ2) ∩ (ȳ),
with x̄ and ȳ the images of x and y in A. The associated primes ideals of (0) are
(x̄, ȳ) and (ȳ), and so the set of 0-divisors in A is

(x̄, ȳ) ∪ (ȳ) = (x̄, ȳ) ⊂ A.

Theorem (Uniqueness 2). Let a be an ideal with primary decomposition
n⋂
i=1

qi,

with associated prime ideals pi = √qi, and assume that p1, . . . , pm are the minimal
prime ideals.

Then for each i with 1 ≤ i ≤ m, we have

qi = aec,

where extension and contraction are along the homomorphism A→ Api
.

In particular, these qi are the same in any minimal primary decomposition.

Example. In the case of (xy, y2) and all its primary decompositions (xn, xy, y2)∩
(y), the primary ideal (y) is uniquely determined by (xy, y2).

Example. The ideal (xy) = (x)∩ (y) ⊂ k[x, y] can have no other minimal primary
decomposition, since both (x) and (y) are minimal over (xy).

Proof. The idea of the proof is the following simple lemma.

Lemma. Let p ⊂ A be a prime ideal, and assume that q is a primary ideal. We
consider the extension and contraction of ideals with respect to A→ Ap.

• If √q 6⊆ p, then qe = (1), and qec = (1).
• If √q ⊆ p, then qec = q.

Now let pj be a minimal prime of a, and consider extension and contraction with
respect to A→ Apj . Since pj is minimal, we have for all i 6= j that √qi = pi 6⊆ pj ,
so qeci = (1), while qecj = qj .



Recall from the lecture on modules of fractions that localisation (the operation
a 7→ ae) preserves finite intersections of ideals, as does contraction.

aec =
n⋂
i=1

qi
ec = (1) ∩ (1) ∩ · · · ∩ qj ∩ (1) ∩ · · · ∩ (1).

�



Lecture 15 – Integral dependence

Recall that given a field extension k ⊆ k′, we say that an element α ∈ k′ is
algebraic over k if there is a some polynomial f ∈ k[x] such that f(α) = 0.

We now generalise this concept, but in a stronger form, to general rings.

Definition. Let A ⊆ B be rings, and let b ∈ B. We say b is integral over A if we
can find a polynomial

f = xn + an−1x
n−1 + · · ·+ a1x+ a0, ai ∈ A,

such that f(b) = 0.

Remark. It is crucial in this definition that the coefficient of xn is 1.

Example. Consider Z ⊂ Q. Then b ∈ Q is integral over Z ⇔ x ∈ Z.
⇐: If b ∈ Z, then take f = x− b, so b is integral over Z.
⇒: Let b = p/q, and assume that gcd(p, q) = 1. If

xn + cn−1x
n−1 + · · ·+ c0 = 0,

then we get
pn + cn−1p

n−1q + · · ·+ c0q
n = 0.

Since q divides all the other terms, q divides pn, and since gcd(q, p) = 1 this can
only happen if q = 1. Hence p/q ∈ Z.

Example. Let k be a field, and consider k[x] ⊆ k(x). Then similarly f ∈ k(x) is
integral over k[x] if and only if f ∈ k[x]. The proof is exactly the same as in the
previous example: In k[x] we have unique factorisation into irreducibles, so we can
write f = p/q with p, q ∈ k[x] having no common factor, and the rest of the proof
goes through.

Example. Given A ⊆ B, every element a ∈ A is integral over A, by taking the
polynomial x− a.

Definition. Given A ⊆ B and b ∈ B, we let A[b] ⊆ B be the smallest subring of
B containing A and b. Explicitly

A[b] = {
k∑
i=1

aib
i | ai ∈ A} ⊆ B.

More generally, given b1, . . . , bn ∈ B, we let

A[b1, . . . , bn] = {
∑

ai1···inb
i1
1 · · · binn | ai ∈ A} ⊆ B.

Theorem. Let A ⊂ B, and let b ∈ B. The following are equivalent:
(1) b is integral over A.
(2) A[b] is a finitely generated A-module.
(3) There is a ring C with A[b] ⊆ C ⊆ B such that C is a finitely generated

A-module.

Proof. (1) ⇒ (2): The ring A[b] is generated by the infinite set 1, b, b2, · · · . If b is
integral, we can write

bk = −(ak−1b
k−1 + · · ·+ a0),

and therefore
bk+m = (ak−1b

k+m−1 + · · ·+ a0b
m)



So we can always express bk+m in terms of bi for i < k + m. This gives that
1, b, . . . , bk−1 generate A[b].

(2)⇒ (3): Obvious, take C = A[b].
(3)⇒ (1): We need the following

Lemma (Ch. 2, Lemma 2.4). 7 Let M be a finitely generated A-module, gener-
ated by k elements, and let φ : M → M be a homomorphism. Then we can find
a0, · · · , ak−1 ∈ A such that

φk + ak−1φ
k−1 + · · ·+ a0 = 0 ∈ HomA(M,M).

where φi =
i︷ ︸︸ ︷

φ ◦ · · · ◦ φ.

Take now M = C, φ : C → C given by φ(c) = bc. The lemma ensures that we
can find ai ∈ A such that

φk + ak−1φ
k−1 + · · ·+ a0 = 0 ∈ HomA(C,C).

Inserting 1 ∈ C on both sides gives
bk + ak−1b

k−1 + · · ·+ a0 = 0,
so b is integral over A. �

Example. Consider Z ⊆ Q again, and take for instance 1
2 ∈ Q. In this case 1

2 is
not integral over Z, and equivalently the ring

Z[1/2] = Z2 ⊆ Q
is not a finite Z-module.

Proposition. Assume b1, b2 ∈ B are integral over A. Then A[b1, b2] is a finitely
generated A-module.

Proof. Consider the chain of rings
A ⊆ A[b1] ⊆ A[b1, b2] ⊆ B

Then b2 is integral over A ⇒ b2 is integral over A[b1], so A[b1, b2] = A[b1][b2]
is a finitely generated A[b1]-module. If it is generated by c1, . . . , ck and A[b1] is
generated as an A-module by d1, . . . , dl, one checks that A[b1, b2] is generated as
an A-module by {cidj}:

x ∈ A[b1, b2]⇒ x =
k∑
i=1

fici, fi ∈ A[bi]

=
k∑
i=1

l∑
j=1

aijcidj .

7It is perhaps useful to think of this lemma as a version of the Cayley–Hamilton theorem. If A
is an (n×n) matrix with coefficients in a field k, then recall its characteristic polynomial is given
by

det(xIn −A) = xn + an−1xn−1 + · · ·+ a0 ∈ k[x],
where for instance an−1 = −tr(A) and a0 = (−1)n det(A). The Cayley–Hamilton theorem says
that we have an equality of (n× n)-matrices

An + an−1An−1 + · · ·+ a0 = 0.



�

Corollary. Let A ⊆ B. The set of elements of B which are integral over A forms
a subring of B.

Proof. We must show that given b1, b2 ∈ B integral over A, then also b1 ± b2 and
b1b2 are integral over A. But b1 and b2 being integral over A implies A[b1, b2] is
a finitely generated A-module, and we have b1 ± b2, b1b2 ∈ A[b1, b2]. These then
satisfy condition (3) of the theorem above, so are integral. �

Definition. Given A ⊆ B, we call the ring
C = {b ∈ B | b integral over A}

the integral closure of A in B. If A is equal to its integral closure, we say it is
integrally closed in B.

Proposition. The integral closure C of A in B is itself integrally closed in B.

Proof. Assume b ∈ B is integral over C, then we can write
bn + cn−1b

n−1 + · · ·+ c0 = 0, ci ∈ C.
We have that b is integral over A[c0, · · · , cn−1], so A[c0, · · · , cn−1, b] is a finitely
generated A[c0, · · · , cn−1]-module. The ring A[c0, · · · , cn−1] is itself a finitely gen-
erated A-module, since the ci are integral over A. Then A[c0, · · · , cn−1, b] is a
finitely generated A-module. Therefore b is integral over A, so b ∈ C. �

Example. The ring Z is integrally closed in Q.

Example. The integral closure of Z in C is called the ring of algebraic integers,
i.e. a complex number z is an algebraic integer if we can find integers a0, · · · , an−1
such that

zn + an−1z
n−1 + · · ·+ a0.

The most important special case is the following. Given an integral domain A,
it is contained in its field of fractions K. We say A is integrally closed if it is
integrally closed in K.

Example. The ring Z, and more generally every unique factorisation domain, is
integrally closed.

Example. The ring Z[
√

5] is not integrally closed (which means that it does not
have unique factorisation). The fraction field

K = {a+ b
√

5
c+ d

√
5
| a, b, c, d ∈ Z} = Q(

√
5) ⊂ R,

and in particular we have the golden ratio ϕ = 1+
√

5
2 ∈ K. But we have

ϕ2 − ϕ− 1 = 0,
so ϕ is integral over Z, hence over Z[

√
5]. One checks that ϕ 6∈ Z[

√
5].

Example. Consider the ring k[x2, x3] ⊆ k[x]. Concretely, we have

k[x2, x3] = {
n∑
i=0

aix
i | ai ∈ k, a1 = 0}.



Let K be the fraction field of k[x2, x3]. We have an element a = x3/x2 ∈ K, and
moreover

a2 = x4/x2 = x2/1,
so a is a zero of the polynomial t2−x2. This shows that a is integral over k[x2, x3].
One can also check that a 6∈ k[x2, x3], so k[x2, x3] is not integrally closed.



(1) Let k be a field. Show that the inclusion homomorphism φ : k[x2, x3]→ k[x]
extends to an isomorphism between the fraction fields of the two rings.

(2) With respect to the chain of rings k[x2, x3] ⊂ k[x] ⊂ k(x) from the previous
problem, show that k[x] is the integral closure of k[x2, x3] in k(x).



Lecture 16 – More on integral dependence + chain conditions

Recall the notions of integral dependence and integral closure from last week.
We round out the section on integral dependence with the claim that for an integral
domain A, being integrally closed is a local property.

Theorem. Let A be an integral domain. Then the following are equivalent:
(1) A is integrally closed.
(2) Ap is integrally closed for all prime ideals p ⊂ A.
(3) Am is integrally closed for all maximal ideals m ⊂ A.

The proof goes via understanding how integrality behaves with respect to taking
fraction rings more generally.

Proposition. Let A ⊆ B be rings, and let C ⊆ B be the integral closure of A in B.
Let S ⊆ A be a multiplicatively closed subset. Then S−1C ⊆ S−1B is the integral
closure of S−1A in S−1B.

Proof. Let D ⊆ S−1B be the integral closure of S−1A in S−1B. We want D =
S−1C.
D ⊆ S−1C: If b/s ∈ D, then b/s is integral over S−1A, and so we can find

ai ∈ A, si ∈ S, such that

(b/s)n + (an−1/sn−1)(b/s)n−1 + · · ·+ a0

s0
= 0.

Multiplying by (ssn−1 · · · s0)n gives us a relation
(bsn−1 · · · s0)n + dn−1(bsn−1 · · · s0)n−1 + · · ·+ d0bsn−1 · · · s0

1 = 0,

in S−1A. This means that there is some t ∈ S such that the relation
t((bsn−1 · · · s0)n + dn−1(bsn−1 · · · s0)n−1 + · · ·+ d0bsn−1 · · · s0) = 0

holds in A. Multiplying by tn−1 we get that bsn−1 · · · s0t is integral over A, and so
bsn−1 · · · s0t ∈ C, which implies that b/s ∈ S−1C.
S−1C ⊆ D: Given c ∈ C and s ∈ S, we have a relation

cn + an−1c
n−1 + · · ·+ a0 = 0 ai ∈ A,

which implies that ( c
s

)n
+ san−1

( c
s

)n−1
+ · · ·+ sna0 = 0,

hence c
s is integral over S−1A. It follows that S−1C ⊆ D. �

Corollary. If A is an integral domain and C is the integral closure of A in the
fraction field K, then for any prime ideal p ⊂ A, we have that Cp ⊂ K is the
integral closure of Ap in K.

Proof of theorem. LetK be the fraction field of A, and let C be the integral closure.
If A = C, then also Ap = Cp, so we get (1)⇒ (2).

(2)⇒ (3) is obvious since maximal ideals are prime.
To get (3)⇒ (1), we know that being surjective is a local property. The inclusion

map φ : A → C is an A-module homomorphism. By assumption (3), all Am are
integrally closed, which means φm : Am → Cm is surjective. Since being surjective is
a local property, it follows that φ is surjective, and hence A is integrally closed. �



Example. Recall that k[x2, x3] ⊂ k[x] is an integral domain which is not integrally
closed. The fraction field of A is identified with k(x), so we have

k[x2, x3] ⊂ k[x] ⊆ k(x),
Now x ∈ k(x)\k[x2, x3] is integral over k[x2, x3], since x is a zero of the polynomial

t2 − x2 ∈ k[x2, x3][t].
Since x is integral over k[x2, x3], it is also integral over all the bigger rings

k[x2, x3]p ⊆ k(x) for various primes p. Letting m = (x2, x3), one can check that
x 6∈ k[x2, x3]m, and therefore k[x2, x3]m is not integrally closed.

Chain conditions

Our theory so far has mostly been developed for arbitrary rings. The motivation
for the field of commutative algebra, both historically and in practice, is mostly
drawn from number theory and algebraic geometry, where the rings which appear
are “reasonably small”. In order to develop the theory further, we now begin intro-
ducing these smallness conditions. The elegant formulation of these conditions is
in terms of chains of subobjects.

Lemma. Let (S,≥) be a partially ordered set. The following two conditions are
equivalent:

• Every sequence s1 ≤ s2 ≤ s3 ≤ · · · stabilises, that is there is some N such
that si = sN for all i ≥ N .

• Every nonempty subset T ⊆ S contains a maximal element of T .

Recall an element t ∈ T is maximal if there is no t′ ∈ T with t′ > t.

Proof. (1) ⇒ (2): Suppose T ⊆ S contains no maximal element. This means that
for every t ∈ T , we can choose an f(t) ∈ T with f(t) > t. Take now the sequence

s1 = t, s2 = f(t), s3 = f(f(t)), · · ·
which does not stabilise, so contradicts (1).

(2) ⇒ (1): Given a sequence s1 ≤ s2 ≤ · · · , let T = {si}∞i=1. By (2) there is
a maximal element, say sN , and since si ≥ sN for i ≥ N , we have si = sN for
i ≥ N . �

Definition. Let A be a ring and let M be an A-module, and let S be the set of
submodules of M .

• We say M is Noetherian if the set S, partially ordered by M ′ ≤ M ′′ if
M ′ ⊆M ′′, satisfies either condition above.

• We say M is Artinian if the set S, partially ordered by M ′ ≤ M ′′ if
M ′ ⊇M ′′, satisfies either condition above.

In concrete terms, M is Noetherian if it satisfies the ascending chain condi-
tion: Every sequence

M1 ⊆M2 ⊆M3 ⊇ · · ·
of submodules stabilises, or equivalently, every set T of submodules has a maximal
element.

The moduleM is Artinian if it satisfies the descending chain condition, every
sequence of submodules

M1 ⊇M2 ⊇M3 ⊇ · · ·



stabilises. Equivalently, every set T of submodules has a minimal element.

Definition. A ring A is called Noetherian (resp. Artinian) if it is Noetherian
(resp. Artinian) as an A-module.

Example. The ring Z is Noetherian, but not Artinian. A submodule of Z is an
ideal (n). An ascending chain looks like

(n1) ⊆ (n2) ⊆ (n3) ⊆ · · · .
The containment (ni) ⊆ (ni+1) implies that ni+1 divides ni, so ni+1 ≤ ni. The
sequence must then clearly stabilise.

The ring Z is not Artinian, since
(2) ) (4) ) (8) ) · · ·

does not stabilise.

Example. Let k be a field, and let M be a k-module (vector space). Then M is
Noetherian if and only if M is Artinian if and only if M has finite dimension.

Example. The ring C(R) of smooth functions on R is neither Artinian nor Noe-
therian, since

(1) ) (x) ) (x2) · · · ,
and

(sin(x)) ( (sin(x/2)) ( (sin(x/4)) ( (sin(x/8)) ( · · · .
This example is mainly to show that the rings appearing outside of algebra typically
satisfy none of the smallness conditions we want.

Proposition. Let M be an A-module. Then M is Noetherian if and only if every
submodule of M is finitely generated.

Proof. Assume that M is Noetherian, and let M ′ ⊆M be a submodule. Let
T = {N ⊆M ′ |M ′′ a finitely generated submodule of M ′}.

By the Noetherian hypothesis, there is a maximal element Nmax ∈ T . Assume for
a contradiction that Nmax 6= M ′. Then there is an m ∈M ′ \Nmax, so

Nmax ( N = Nmax +Am ⊆M ′,
and N is still finitely generated, so N ∈ T . This contradicts the maximality of
Nmax, so we have our contradiciton, and Nmax = M ′, which means M ′ is finitely
generated.

Assume that every submodule M ′ ⊆M is finitely generated. Let
M1 ⊆M2 ⊆M3 ⊆ · · ·

be a chain of submodules, and let

M ′ =
∞⋃
i=1

Mi ⊆M.

Then M ′ is by assumption finitely generated, say by m1, . . . ,mn. We must then
havemi ∈Mki for certain ki, and taking k = max(k1, . . . , kn), we havem1, . . . ,mn ∈
Mk. But then Mk = M ′, and the chain stabilises at Mk. �



8. Lecture 17 – Chain conditions II

Theorem. Let
0→M ′

i→M
p→M ′′ → 0

be a short exact sequence of A-modules. Then
M Noetherian⇔M ′ and M ′′ Noetherian.

and
M Artinian ⇔M ′ and M ′′ Artinian.

Proof. We only do the statement for te Noetherian condition, the Artinian case is
exactly the same.
⇒: If

M ′1 ⊆M ′2 ⊆ · · ·
is a chain of submodules of M ′, then

i(M ′1) ⊆ i(M ′2) ⊆ · · · .
is a chain of submodules of M . Since M is Noetherian, the latter stabilises, so the
first one must as well.

If
M ′1 ⊆M ′2 ⊆ · · ·

is a chain of submodules of M ′′, then
p−1(M ′1) ⊆ p−1(M ′2) ⊆ · · · .

is a chain of submodules of M . Since M is Noetherian, the latter stabilises, so the
first one must as well.
⇐: If

M1 ⊆M2 ⊆ · · ·
is a chain of submodules, then we get chains

i−1(M1) ⊆ i−1(M2) ⊆ · · ·
and

p(M1) ⊆ p(M2) ⊆ · · · .
Both of these stabilise, so for some N we have that for all i ≥ N , then

i−1(Mi) = i−1(Mi+1)
and

p(Mi) = p(Mi+1).
Claim: It follows that Mi = Mi+1. It is not hard to prove this directly,8 but for
fun we can use the snake lemma on this:

0 i−1(Mi) Mi p(Mi) 0

0 i−1(Mi+1) Mi+1 p(Mi+1) 0.

f ′

i

f

p

f ′′

i p

8If m ∈ Mi+1, then p(m) ∈ p(Mi+1) = p(Mi), so there is some m′ ∈ Mi+1 such that
p(m) = p(m′). But then p(m−m′) = 0, so there is some m′′ ∈M ′i+1 such that i(m′′) = m−m′.
Since i−1Mi+1 = i−1Mi, we have that m′′ ∈M ′i , and therefore m = m′ + i(m′′) ∈Mi.



The snake lemma gives an exact sequence

0→ ker f ′ → ker f → ker f ′′ → cok f ′ → cok f → cok f ′′ → 0,

and since cok f ′ = cok f ′′ = 0, we get that cok f = 0, so f is surjective. We’ve
shown that the sequence Mi stabilises. �

Corollary. If M1, . . . ,Mn are Noetherian (resp. Artinian) A-modules, then so is
n⊕
i=1

Mi.

Proof. Inductively prove that ⊕ji=1Mi is Noetherian, using the exact sequence

0→Mj+1 →
j+1⊕
i=1

Mi →
j⊕
i=1

Mi → 0.

�

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let M be a finitely
generated A-module. Then M is Noetherian (resp. Artinian).

Proof. A is Noetherian ⇒ An is Noetherian. There is some surjective homomor-
phism φ : An →M , and the short exact sequence

0→ kerφ→ An →M → 0

shows that M is Noetherian. �

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let a ⊆ A be an
ideal. Then A is Noetherian (resp. Artinian).

Proof. The ring A/a has structure as an A/a-module and an A-module. A set
M ⊂ A/a is an A/a-submodule if and only if it is an A-submodule, since

a(x+ a) ∈M ∀a ∈ A, x+ a ∈M

is the same condition as

(a+ a)(x+ a) ∀a+ a ∈ A/a, x+ a ∈M.

Since A/a is a Noetherian A-module, it is then also a Noetherian A/a-module,
i.e. Noetherian as a ring. �

Composition series

Definition. A module M is simple if it has no proper nontrivial submodules.

Example. If A is a ring with a maximal ideal m ⊂ A, then A/m is a simple A-
module: If 0 ⊆M ⊆ A/m is a chain of modules, and p : A→ A/m is the projection,
then

p−1(0) = m ⊆ p−1(M) ⊆ p−1(A/m) = A

is a chain of submodules (ideals) of A. Since m is maximal, then either p−1(M) = m
or p−1(M) = A, which implies M = 0 or M = A/m.

Remark. One can show that every simple A-module is isomorphic to one of the
form A/m.



Definition. A composition series of a module M is a finite chain

M = M0 )M1 ) · · · (Mn−1 )Mn = 0,

which is maximal, that is it cannot be extended to a longer chain by inserting

Mi )M ′ (Mi+1.

Equivalently, maximality means that Mi/Mi+1 is simple for each i. The length of
a composition series is n, the number of pieces Mi/Mi+1 appearing.

Example. Let p be a prime, k ≥ 1, and consider the Z-module Z/(pk). This has
a composition series of length k, given by

Z/(pk) ) (p)/(pk) ) (p2)/(pk) ) · · · ) (pk)/(pk) = 0.

The quotients are ((pi)/(pk))/(pi+1)/(pk) ∼= (pi)/(pi+1) ∼= Z/p, so are simple.

Example. Let p and q be primes, and consider the module Z/(pq). This has two
compositions series

Z/(pq) ) (p)/(pq) ) (pq)/(pq) = 0
and

Z/(pq) ) (q)/(pq) ) (pq)/(pq) = 0

Proposition. Let M be a module with a composition series of length n. Then
every composition series has length n, and every chain

M = M0 )M1 ) · · · )Mk = 0

can be extended to a composition series by adding finitely many modules M ′ with
Mi )M ′ )Mi+1.

Proof. Let l(N) be the function on modules defined as the minimal length of a
composition series of N (+∞ if N has no composition series).

Lemma. If N (M , then l(N) < l(M).

Proof. Let
M = M0 )M1 ) · · · )Ml(M) = 0

be a composition series of minimal length. We claim

N = M0 ∩N ⊇M1 ∩N ⊇ · · · ⊇Ml(M) ∩N = 0

contains a composition series of N , in the sense that we can find

0 = j0 < j1 < · · · < jk ≤ l(M)

such that
N = Mj0 ∩N )Mj1 ∩N ) · · · )Mjk

∩N = 0
is a composition series. For every i, we have a homomorphism

φ : Mi ∩N ↪→Mi →Mi/Mi+1,

with
kerφ = Mi+1 ∩N.

and with
imφ = Mi/Mi+1 or imφ = 0,



since Mi/Mi+1 is simple. Hence

(Mi ∩N)/(Mi+1 ∩N) = (Mi ∩N)/ kerφ ∼= imφ

{
Mi/Mi+1( Case 1)
0 Case 2.

In Case 1, we have
N ∩Mi = N ∩Mi+1

and in Case 2,
(N ∩Mi)/(N ∩Mi+1)

is simple. Taking the sequence
N ∩M0 ) N ∩Mj1 ) N ∩Mj2 ) · · · ) N ∩Mjk

= 0,
where 0 = j0 < j1 < · · · < jk ≤ l(m) are the indices such thatN∩Mjk

6= N∩Mjk−1,
we have produced a composition series of N of length k ≤ l(M), proving l(N) ≤
l(M).

Now as N (M , we have
N = N ∩M0 6= M0 = M,

while
0 = N ∩Ml(M) = Ml(M) = 0.

Let i > 0 be the smallest number such that N ∩Mi = Mi. Then we have
Mi−1 ) N ∩Mi−1 ⊇ N ∩Mi = Mi,

which shows that N ∩Mi−1 = N ∩Mi, so i is not in the set {jl}kl=1 Hence k =
l(N) < l(M). �

Now if M has a chain of length n, we have
l(M) = l(M0) > l(M1) > · · · > l(Mn) = 0,

so l(M) ≥ n. But by definition l(M) ≤ n, so l(M) = n.
If

M = M0 ) · · · )Mn = 0
is a chain of length n < l(M), then by definition of l(M) it cannot be a composition
series, so we can extend it. �



Suggested problems

(1) Prove that every simple A-module is isomorphic A/m for some maximal
ideal m in the following steps.
(a) Show that ifM 6= 0 is a simple A-module, then for every m ∈M \{0},

we have that
{am | a ∈ A} = M.

(b) Show that M is isomorphic to A/a for some ideal a ⊆ A.
(c) Show that the module A/a is simple if and only if a is maximal.



Lecture 18 – Finite length modules, Noetherian rings

Recall a composition series for a module M is a chain
M = M0 )M1 ) · · · )Mn = 0,

such that every quotient Mi/Mi+1 is simple, that is admits only 0 and Mi/Mi+1
as submodules.

We stated and almost proved
Proposition. IfM admits a composition series of length n, then every composition
series of M has length n, and every chain

M = M0 )M1 ) · · · )Mk = 0
satisfies

(1) k ≤ n,
(2) if k < n, then the chain can be extended to a composition series by adding

modules.
Definition. The length of a module M , denoted l(M), is the length of any com-
position series of M , and ∞ if M admits no composition series.
Remark. Worth knowing, but not something we will prove or focus on, is the
Jordan–Hölder theorem. This says that given two composition seriesMi andM ′i
of a module M , the isomorphism classes of modules appearing in {Mi/Mi+1}l(M)

i=1
and {M ′i/M ′i+1}

l(M)
i=1 are the same. A given isomorphism class appears the same

number of times in each of the two sets.
Example. Given distinct primes p and q, the two composition series for Z/(pq)
are

Z/(pq) ) (p)/(pq) ) 0
and

Z/(pq) ) (q)/(pq) ) 0.
We have

(Z/(pq))/((p)/(pq)) ∼= Z/p, ((p)/(pq))/0 ∼= Z/q
and

(Z/(pq))/((q)/(pq)) ∼= Z/q, ((q)/(pq))/0 ∼= Z/p.
Proposition. Let M be a module. Then M has finite length ⇔ M is Noetherian
and Artinian.
Proof. ⇒: Any increasing sequence has at most l(M) distinct terms, similarly for
a decreasing sequence.
⇐: Define a descending chain as follows: LetM0 = M , and letM1 be a maximal

submodule ofM not equal toM . This exists becauseM is Noetherian. Inductively
define Mi+1 as a maximal submodule of Mi among those not equal to Mi. The
sequence M0 ) M1 ) M2 ) · · · cannot be extended indefinitely, since M is Ar-
tinian, hence we eventually have Mn = 0. Then Mi defines a composition series for
M . �

Proposition. Given a short exact sequence of modules

0→M ′
i→M →

p

M ′′ → 0,
we have l(M) = l(M ′) + l(M ′′).



Proof. The case where one of l(M), l(M ′) or l(M ′′) is ∞ can be handled by the
previous proposition and the fact that M is Noetherian (resp. Artinian) if and only
if M ′ and M ′′ are.

Hence we can assume that M ′, M and M ′′ are all of finite length. Take a
composition seriesM ′i forM ′ andM ′′j forM ′′. These induce the following sequence
of submodules of M :

M = p−1(M ′′0 ) ) p−1(M ′′1 ) ) · · · p−1(M ′′l(M ′′)) = p−1(0) = i(M ′)
= i(M ′0) ) i(M ′1) ) · · · i(M ′l(M ′)) = 0.

Since
p−1(M ′′i )/p−1(M ′′i+1) ∼= M ′′i /M

′′
i+1

and
i(M ′i)/i(M ′i+1) ∼= M ′i/M

′
i+1

this gives a composition series of length l(M ′) + l(M ′′) for M . �

Noetherian rings

Recall a ring A is Noetherian if either of the following equivalent conditions hold
(1) Every ascending chain of ideals stabilises.
(2) Every set of ideals has a maximal element.
(3) Every set of ideals is finitely generated.
We have shown that the class of Noetherian rings is closed under quotients, i.e. if

A is Noetherian and a ⊆ A is an ideal, then so is A/a.

Proposition. Let A be a ring, and let S ⊆ A be a multiplicative closed subset. The
if A is Noetherian, so is S−1A.

Proof. Every ideal in S−1A is of the form ae, where a ⊆ A is an ideal and extension
is along A→ S−1A. Since A is Noetherian, we can write a = (a1, . . . , an), and then
ae = (a1/1, · · · , an/1). Hence every ideal of S−1A is finitely generated. �

Theorem (Hilbert’s basis theorem). Let A be a Noetherian ring. Then A[x] is
Noetherian.

Proof. For any ideal a ⊆ A[x], define

an = {an ∈ A | anxn + an−1x
n−1 + · · ·+ a0 ∈ a}.

In words, an is the set of leading terms of degree n polynomials in a.
Easy claim 1: an ⊆ A is an ideal.
Easy claim 2: an ⊆ an+1 for every n.
Since A is Noetherian, there is an N such that an = a∞, for all n ≥ N , i.e. we

have
a0 ⊆ a1 ⊆ · · · ⊆ aN = aN+1 ⊆ · · · .

Now for each i = 0, . . . , N , we can find a finite set of generators ai,j ∈ A for ai, so
that e.g.

(ai,1, . . . , ai,ki
) = ai

For each i, j, the fact that ai,j ∈ ai means there is an fi,j ∈ a such that

fi,j = ai,jx
i + lower order terms.



Main claim: We have a = (fi,j)i,j . Let g ∈ a, we need to show g ∈ (fi,j)i,j .
Arguing by induction on deg g, starting from deg g = −∞ where g = 0. There are
two cases:

• deg g < N : Writing
g = aix

i + lower order terms,
we have ai ∈ ai. We can then write

ai =
ki∑
j=1

ciai,j , ci ∈ A.

Considering

g′ = g −
ki∑
j=1

cifi,j = (ai −
∑

ciai,j)xi + lower order terms,

we have deg g′ < deg g, and clearly g′ ∈ a. By induction on degree g′ ∈
(fi,j), so g ∈ (fi,j).
• If deg g ≥ N , take instead

g′ = g −
rN∑
j=1

cifN,jx
deg g−N ,

and conclude similarly.
�

Example. Consider the case of a field k. Then for any ideal a ⊆ k[x], we have
ai = (0) or ai = (1). We thus get

0 = a0 = a1 = · · · = aN−1 ( aN = (1) = aN+1 = · · · .
In this case the proof above says: Take a generator aN,1 aN . Choose an fN,1 ∈ aN
such that

fN,1 = aN,1x
N + lower order terms.

Then a = (fN,1).

Corollary. If A is a Noetherian ring, then so is A[x1, . . . , xn].

Proof. A Noetherian ⇒ A[x1] Noetherian ⇒ A[x1, x2] ∼= A[x1][x2] Noetherian and
so on. �

Corollary. If A is Noetherian and B is an A-algebra of finite type, then B is
Noetherian.

Proof. B is of finite type if it is isormorphic (as A-algebra) to A[x1, . . . , xn]/a. Now
A Noetherian ⇒ A[x1, . . . , xn] Noetherian ⇒ A[x1, . . . , xn]/a Noetherian. �



9. Lecture 19 – Hilbert’s nullstellensatz and primary decomposition
in Noetherian rings

Recall that a field extension k ⊆ k′ is finite if k′ is a finite-dimensional k-vector
space.

Proposition (Zariski’s lemma). Let k be a field, and let A be a finitely generated
k-algebra. If A is a field, then A is a finite field extension of k.

Remark. Clearly, if A is a finite field extension of k, then it is finitely generated
as a k-algebra, since then A has a k-basis a1, . . . , an which generates A as a module
over k. These must therefore also generate A as a k-algebra.

Example. The field extension k ⊂ k(x) is not finite, so the lemma says in this case
that k(x) is not a finitely generated k-algebra.

Corollary (Weak nullstellensatz). Let m ⊆ k[x1, . . . , xn] be a maximal ideal. Then
k[x1, . . . , xn]/m is a finite field extension of k.

If k is algebraically closed, then k[x1, . . . , xn]/m ∼= k, and m has the form

m = (x− a1, x− a2, . . . , x− an)

for some a1, . . . , an ∈ k.

Proof. The ring k[x1, . . . , xn]/m is a field, so Zariski’s lemma applies.
If k is algebraically closed, then it has no non-trivial finite field extension, so we

must get k[x1, . . . , xn]/m ∼= k. The homomorphism

φ : k[x1, . . . , xn]→ k[x1, . . . , xn]/m→ k

has
(x1 − φ(x1), . . . , xn − φ(xn)) ⊆ kerφ = m.

It’s easy to see that the ideal on the left hand side is maximal, so we have an
equality. �

Proof of Zariski’s lemma, cheap version. Assume that k is uncountable, (e.g. k =
C,R, not k = Q,Q). Let A be a k-algebra generated by a1, . . . , an ∈ A, and assume
that A is a field.

We claim that each of the ai are algebraic. If ai is not algebraic over k, so that
f(ai) 6= 0 for all 0 6= f ∈ k[x], we have an inclusion of fields

k ⊆ k(x) x 7→ai→ A.

Now A is generated as a k-module by the elements ai11 a
i2
2 · · · ainn , of which there are

countably many, so that A has countable dimension as a k-module.
Claim: The dimension of k(x) as a k-module is greater than or equal to the

cardinality of k.

Proof. For each α ∈ k, we have an element (x−α)−1 ∈ k(x). These are all linearly
independent. Suppose we have a linear relation

n∑
i=1

βi(x− αi)−1 = 0



between some of them with αi distinct. Multiplying by f
∏n
i=1(x − αi) gives a

relation between polynomials

0 =
n∑
i=1

βi
f

(x− αi)
∈ k[x].

Evaluating this polynomial in αi proves 0 = βi, so the elements (x − αi)−1 are
linearly independent. �

Now since k(x) ∼= k(ai) ⊆ A, we have a relation between the dimensions
|k| ≤ dim k(x) = dim k(ai) ≤ dimA = |Z|,

contradicting our assumption that k was uncountable. �

Primary decompositions in Noetherian rings

Theorem (Lasker–Noether theorem). Let A be a Noetherian ring, and let a ⊆ A
be an ideal. Then a admits a primary decomposition, i.e. we can write

a = ∩ni=1qi

with qi primary ideals.

We prove this in two steps. We say an ideal is irreducible if it cannot be written
as a finite intersection of strictly bigger ideals. The first step is

Lemma. Let A be a Noetherian ring, and let a ⊆ A be an ideal. Then we can write
a as a finite intersection of irreducible ideals.

Proof. Assume there is an ideal which is not an intersection of finitely many irre-
ducible ideals. Since A is Noetherian we can take a maximal such ideal, call it a.
The ideal a is not itself irreducible, hence we can write a = b∩ c with a ( b, c. But
now since a is maximal, we can write b and c as finite intersections of irreducible
ideals, so the same holds for a, a contradiction. �

Lemma. Let A be a Noetherian ring, and let a be irreducible. Then a is primary.

Proof. Passing to A/a, we may assume that a = (0), and we want to show that (0)
is primary.

We will assume that (0) is not primary, and then show that it is not irreducible.
Since (0) is not primary, there exist x, y ∈ A such that xy = 0, but x 6= 0 and y is
not nilpotent. Consider then the sequence of ideals in A given by

Ann(y) ⊆ Ann(y2) ⊆ · · · .
Since A is Noetherian, this stabilises, so there is an N such that for n ≥ N , we
have Ann(yn) = Ann(yN ). Consider now the ideals (yN ) and Ann(yN ). Since y
is not nilpotent, we have (yN ) 6= (0). And since x ∈ Ann(y) ⊆ Ann(yN ), we have
Ann(yN ) 6= (0).

Main claim: (yN ) ∩ Ann(yN ) = (0), which contradicts (0) being irreducible.
Proof of claim: An element in the intersection has the form ayN for some a ∈ A.
It further satisfies

ayNyN = ay2N = 0.
But then a ∈ Ann(y2N ) = Ann(yN ), so ayN = 0. �

Corollary. Let A be a Noetherian ring, and let a ⊆ A be an ideal.



• There is a primary decomposition of a.
• The set of prime ideals of the form

√
(a : x) with x ∈ A is finite, and

contains all the minimal prime ideals containing a.
• If a =

√
a, then

a = ∩ni=1pi,

where pi are the minimal prime ideals containing a.
• The set of 0-divisors in A is the union of the (finitely many) minimal prime
ideals in A.



Suggested problems

(1) Let k be a field, let f ∈ k[x] be such that f =
∏n
i=1 gi, where the gi are

irreducible. Prove that k[x]/(f) has finite length n.
(2) (*) Let a ⊆ Z[x] be an ideal, and let 0 6= f ∈ a have minimal degree.

Examine the proof of the Hilbert basis theorem and use this to prove that
if coefficient of the leading term of f is n = pe1

1 · · · p
ek

k , then a is generated
by at most

∑k
i=1 ei elements.

(3) (*) Here is a less constructive proof of the Hilbert basis theorem.
(a) Let A be a ring, let a ⊆ A[x] be an ideal, and let ai ⊆ A be as in the

proof of the Hilbert basis theorem. Prove that if a ⊆ a′ and ai = a′i
for all i, then a = a′.

(b) Let (S,≥) be a partially ordered set satisfying the ascending chain
condition, and let {si,j}i,j≥0 be such that si,j ≤ si+1,j and si,j ≤ si,j+1
for all i, j ≥ 0. Prove that there is a J such that si,j = si,j+1 for all
i ≥ 0 and all j ≥ J .

(c) Combine the previous two points and show that if A is a Noeterian
ring, then every increasing chain of ideals a0 ⊆ a1 ⊆ · · · in A[x] must
stabilise.



Lecture 20 – Artinian rings

Recall a ring A is Artinian if every sequence of ideals

a1 ⊇ a2 ⊇ · · ·

of A stabilises.

Example. Let k be a field, and let A be a k-algebra which is finite-dimensional as
a k-module. Then A is both Artinian and Noetherian as a k-module, since every
chain of k-submodules has at most dimk A distinct k-modules.

Moreover, since every chain of ideals

a1 ⊇ a2 ⊇ · · ·

is a chain of A-submodules of A, these are also k-submodules of A, so A is Artinian
and Noetherian as a ring.

Take for instance f = xn + an−1x
n−1 + · · ·+ a0 ∈ k[x]. Then A = k[x]/(f) has

a basis as a k-module given by

1 + (f), x+ (f), · · · , xn−1 + (f),

so dimk A = n, and A is Artinian and Noetherian.

Example. Let A = k[x, y]/(xm, yn). Then A has a k-basis given by xiyj+(xm, yn),
with 0 ≤ i ≤ m, 0 ≤ j ≤ n, and so A is Artinian and Noetherian.

Example. For any n ≥ 1, the ring Z/n is Artinian and Noetherian.

Lemma. Let A be an Artinian ring. Then A has finitely many maximal ideals.

Proof. Suppose not, then we can find an infinite sequence m1,m2, . . . of distinct
maximal ideals. The descending sequence

A ⊇ m1 ⊇ m1 ∩m2 ⊇ · · ·

must stabilise, so for some N we must have
N⋂
i=1

mi =
N+1⋂
i=1

mi,

which means

mN+1 ⊇
N⋂
i=1

mi.

But this implies mi ⊆ mN+1, which is impossible since these are maximal and
distinct. �

Lemma. In an Artinian ring, every prime ideal is maximal.

Proof. If A is Artinian and p ⊂ A is prime, then also A/p is Artinian, and moreover
an integral domain. For any x ∈ A/p, we have a descending chain

1 ⊇ (x) ⊇ (x2) · · · ,

which must stabilise, so (xN ) = (xN+1) for some N . This implies xN = yxN+1,
and since A/p is an integral domain, we can cancel to get xy = 1. Hence x is a
unit, and since this holds for all x, A/p is a field, so p is maximal. �



Definition. Let A be a ring. Its dimension (or Krull dimension) is the maxi-
mum length n of a chain of prime ideals in A

p0 ) p1 ) · · · ) pn.

Example. A field k has one prime ideal, so dim k = 0.

Example. In Z, the chains of maximal length look like (p) ) (0), so dimZ = 1.
Similarly dim k[x] = 1, since a maximal length chain looks like (f) ) (0) with f

irreducible.

Example. We have shown that every Artinian ring has dimension 0.

Proposition. Every Artinian ring is Noetherian.

Proof. We don’t prove this; the main steps are as follows.
(1) Let m1, . . . ,mn ⊂ A be the maximal ideals of A. For some e ≥ 0, we have

me1 · · ·men = (0).

(2) In the chain

A ⊇ m1 ⊇ · · · ⊇ me1 ⊇ me1m2 · · · ⊇ me1m
e
2 · · ·men = (0),

the quotients

mi11 · · ·minn /m
i1
1 · · ·m

ij+1
j · · ·minn

are all Artinian A-modules, since A is Artinian.
(3) The quotients are ArtinianA-modules, hence ArtinianA/mj-modules, hence

finite dimensional A/mj-modules, hence Noetherian A/mj-modules, hence
Noetherian A-modules.

(4) A is a Noetherian A-module, i.e. Noetherian as a ring.
�

Proposition. If A is Noetherian and every prime ideal is maximal, then A is
Artinian.

Proof. We assume for a contradiction that A is not Artinian, and consider the set
of ideals a ⊂ A such that A/a is not Artinian. Since A is Noetherian, we can take
a maximal ideal a in this set, and obtain B = A/a, with the property that

• B is Noetherian, but not Artinian.
• Every prime ideal of B is maximal
• If (0) 6= b ⊆ B is an ideal, then B/b is Artinian.

Claim: B is an integral domain.

Proof. If xy = 0 in B with x, y 6= 0, then we get a short exact sequence of B-modules

0→ B/Ann(x) ·x→ B → B/(x)→ 0.

The outer two modules are Artinian, by our assumptions, and so B must be, which
is a contradiction. �

Now since B is an integral domain and every prime ideal is maximal, it follows
that B is a field, which contradicts our assumption that B is not Artinian. �

Summing up, we have shown



Theorem. Let A be a ring. Then A is Artinian if and only if it is Noetherian and
of dimension 0.

Proposition. Every Artinian ring A is isomorphic to a product of Artinian local
rings.

More precisely, if e ≥ 1 is such that me1 · · ·men = 0, then

A ∼=
n∏
i=1

A/mei .

Proof. The ideal mei is not contained in mj for j 6= i. It follows that mei +mej = (1)
when j 6= i, and that A/mei is local.

By the Chinese remainder theorem, the natural homomorphism

φ : A→
n∏
i=1

A/mei ,

is surjective, and kerφ = me1 · · ·men = (0), so it is an isomorphism. �

Theorem. Every Artinian ring is isomorphic to a product of Artinian local rings.

Corollary. A finite type k-algebra A is Artinian if and only if it is a finite k-algebra
(i.e. finite-dimensional as a k-module).

Proof. We have seen the implication ⇐.
Since A is Artinian, it is also Noetherian, and we therefore have a composition

series
A = a0 ) a1 ) · · · ) an = 0,

where each quotient ai/ai+1 is a simple A-module. We know that simple A-modules
are isomorphic A/m for some maximal ideal m. By the Nullstellensatz, a module
of the form A/m has finite dimension as a k-module. The short exact sequences

0→ ai+1 → ai → ai/ai+1 → 0
together with additivity of dimension show that

dimk A =
n−1∑
i=0

dimk ai/ai+1,

and in particular is finite. �



Lecture 21 – Discrete valuation rings

Recall from last time the notion of dimension of a ring A, the maximal length
of any chain of prime ideals

p0 ( · · · ( pn.

Proposition. An integral domain A has dimension 1 if and only it is not a field,
and every non-zero prime ideal is maximal.

Proof. If A has dimension 1, there must be a chain
p0 ( p1

of prime ideals, which implies that A is not a field. Assume for a contradiction that
there is a prime ideal p 6= (0) which is not maximal. Then we can find a maximal
m containing p, and so find the chain

(0) ( p ( m,

contradicting dimA = 1.
Conversely, if A is not a field, there is a maximal ideal m 6= (0), and so we have

at least one chain
(0) ( m.

On the other hand, there can be no chain
(0) ( p ( m,

so dimA = 1. �

Proposition. Let A be a Noetherian integral domain of dimension 1. Then every
ideal a can be written as a product of primary ideals.

Proof. If a = (0), then a is prime and so primary.
Otherwise, the Lasker–Noether theorem asserts that we can write

a = q1 ∩ · · · ∩ qn,

where the qi are primary and have distinct radicals √qi. These are all maximal,
and we have that √

qi + qj ⊇
√
qi +√qj = (1),

hence 1 ∈ qi + qj , and these are pairwise coprime. Thus we can replace the inter-
section by a product and find

a = q1 · · · qn.
�

Discrete valuation rings

Definition. Let K be a field. A discrete valuation on K is a surjective function
v : K \ {0} → Z ∪ {∞} satisfying three properties

(1) For all x, y ∈ K, we have v(xy) = v(x) + v(y).
(2) For all x, y ∈ K, we have v(x+ y) ≥ min(v(x), v(y)).
(3) v(x) =∞⇔ x = 0.

Example. The field Q admits an valuation vp, defined as follows. Every ratio-
nal number x admits a prime factorisation x = pape1

1 · · · pen
n , where the primes

p, p1, · · · pn are distinct and a, e1, · · · , en ∈ Z. We define vp(x) = a.
E.g. v2(2) = 1, v2(3/2) = −1.



Example. Let k be a field. The field k(x) admits a valuation defined by the “order
of vanishing at 0”. Every element of k(x) can be written as xn fg , where f and g are
polynomials such that f(0), g(0) 6= 0, and n ∈ Z. We define v(xn fg ) = n.

Definition. Let A be an integral domain, with fraction field K. We say that A is
a discrete valuation ring (or DVR), if there exists some valuation v on K such
that for x ∈ K we have

x ∈ A⇔ v(x) ≥ 0.

Remark. If v is a valuation on a field K, then the set {x ∈ K | v(x) ≥ 0} is easily
seen to be a subring of K. In other words, every field equipped with a valuation
contains a DVR determined by the valuation.

Example. For the valuation vp on Q, the associated discrete valuation ring con-
sists of fractions of the form pamn where a ≥ 0 and p divides neither m nor n.
Equivalently, setting m′ = pam, we see that it consists of all fractions m′/n such
that p does not divide n, which is precisely the ring Z(p) ⊂ Q.

Example. For the valuation v(xnf/g) = n, the associated DVR is k[x](x) ⊂ k(x).

Example. Let k be a field, and let k((x)) be the ring of formal Laurent series,
i.e. whose elements are formal sums ∑

i≥n

aix
i,

where n ∈ Z (so finitely many terms aixi with i < 0 are allowed). One can check
that this is a field. Setting v(f) = i, where i is the smallest integer such that ai 6= 0,
we get a discrete valuation on k((x)), with associated DVR the ring of formal power
series k[[x]] ⊂ k((x)).

Discrete valuation rings have excellent properties.

Theorem. Let A be a discrete valuation ring with fraction field K and discrete
valuation v. Then

(1) The ring A is local, with maximal ideal

m = {x ∈ A | v(x) > 0}.

(2) For any element x ∈ A such that v(x) = 1, we have m = (x).
(3) With x as in the previous point, every ideal in A is either (0) or equal to

(xk) for some k ≥ 0.
(4) A has dimension 1.
(5) A is integrally closed.

Proof. (1) Let x ∈ A, and consider x−1 ∈ K. The element x is a unit in A if
and only if x−1 ∈ A, which is if and only if v(x−1) = −v(x) ≥ 0. But we
know that v(x) ≥ 0, so x is a unit if and only if v(x) = 0. Thus the set of
non-units is precisely the set described in the proposition, which it’s easy
to see is an ideal.

(2) If x, y ∈ A and v(y) ≥ v(x), then v(xy−1) ≥ 0, so xy−1 ∈ A, which means
that y ∈ (x). Since a discrete valuation is by definition surjective, there
exists at least one such x. In particular, m = (x) for any element x ∈ A
with v(x) = 1.



(3) Let a be an ideal, and let x ∈ a be such that v(x) is minimal. Then for
any y ∈ a, we have v(y) ≥ v(x), so as above we find y ∈ (x). Thus a ⊆ (x).
Since obviously (x) ⊆ a, we have a = (x).

(4) By the previous two points, we have that the ideals of A are (1), (x), (x2), · · ·
and (0). It is easy to see that (x) and (0) are the only prime ideals of A,
so A has dimension 1.

(5) Let x ∈ K, and assume that x is integral over A. We must show that x ∈ A.
Since x is integral over A, we can find a relation.

xn + an−1x
n−1 + · · ·+ a0 = 0, ai ∈ A

so
xn = −an−1x

n−1 − · · · − a0.

If v(x) = d, we then get
v(xn) = nv(x) = nd = v(−an−1x

n−1 − · · · − a0)
≥ min

i
(v(−aixi))

Thus there exists an i ≤ n− 1 such that
nd = v(xd) ≥ v(−aixi) = v(−ai) + v(xi) ≥ id,

This gives (n− i)d ≥ 0, and so d ≥ 0. Hence x ∈ A.
�

In fact, most of these properties characterise DVRs (among Noetherian local
domains of dimension 1).

Proposition. Let A be a Noetherian, local integral domain of dimension 1. The
following are equivalent:

(1) A is a DVR.
(2) A is integrally closed.
(3) m is principal.
(4) m/m2 is a 1-dimensional A/m-module.
(5) Every non-zero ideal of A is a power of m.
(6) There exists an x ∈ A such that every ideal in A is of the form (xk).

Proof. We have already seen that (1) implies all the other conditions.
Let us just do a few of the easier other implications.
(4) ⇒ (3): If m/m2 is 1-dimensional, there is some x ∈ m such that x + m2

generates m/m2. But m is finitely generated, since A is Noetherian, and then
Nakayama’s lemma says that x generates m.

(3) ⇒ (6): There is an x such that m = (x), so that every non-unit in A is of
the form ax for some a ∈ A. Assume for a contradiction that a is an ideal which is
not of the form (xk), and let it be maximal among ideals with this property (there
is such a maximal one since A is Noetherian). We have

a = (y1, . . . , yn) = (a1x, · · · , anx) = (a1, · · · , an)(x).
Now a = (a1, . . . , an)(x) ⊆ (a1, . . . , an). If a = (a1, . . . , an), we have a = (x)a,
which by Nakayama’s lemma implies a = (0).

Otherwise a ( (a1, . . . , an), which by the maximality property of a implies that
(a1, . . . , an) = (xk) for some k. But then a = (x)(xk) = (xk+1), contradicting the
defining property of a.



(6) ⇒ (1): For every y 6= 0, we have
√

(y) = m = (x). It then follows that
y ∈ (xk) for some k, and we take a minimal such. Then define v(y) = k, and
extend this multiplicatively to the fraction field of A. �

Example. Consider the domain A = k[x2, x3] ⊂ k[x], and consider the maximal
ideal m = (x2, x3) ⊂ A. Then m2 = (x4, x5, x6), and we find that m/m2 is spanned
by x2 + m2, x3 + m2, so is 2-dimensional as a k-module.

The ring Am has local ideal mm, and the quotient is given by
mm/(mm)2 = (m/m2)m ∼= m/m2,

so is 2-dimensional as an A/m-module.
It follows that Am is not a DVR.



Suggested problems

(1) Let A be a ring such that every ideal is principal. Prove that dimA ≤ 1.
(2) Let v be a discrete valuation on a field K. Prove that if x, y ∈ K are such

that v(x) < v(y), then v(x+ y) = v(x).
(3) Let v be a discrete valuation on a field K. Prove that if x ∈ K is such that

xn = 1 for some n ≥ 1, then v(x) = 0.
(4) Let A be an integral domain. Let v : A→ Z∪ {∞} be a function such that

v(x) =∞⇔ x = 0.
and such that for all x, y ∈ A we have

v(xy) = v(x) + v(y)
and

v(x) + v(y) ≥ min(v(x), v(y)).
Assume further that the elements {v(x) | x ∈ A} ⊂ Z generate Z as a
group. Prove that v can be extended uniquely to give a discrete valuation
on the fraction field of A.

(5) Let k be a field. Prove that there is a unique discrete valuation v on k(x)
such that

v(f) = −n
if f ∈ k[x] is a polynomial of degree n. Describe the associated discrete
valuation ring and find a generator of its maximal ideal.

(6) Let k be a field. Prove that there exists a discrete valuation v on k(x, y)
such that

v(
∑

ai,jx
iyj) = n,

where n = min{i+ j | ai,j 6= 0}. Describe the associated discrete valuation
ring and find a generator of its maximal ideal.



Lecture 22 – Graded rings and Hilbert polynomials

Definition. A graded ring is a ring A together with subgroups Ai ⊆ A for each
i ≥ 0 such that

A =
∞⊕
i=0

Ai,

and such that for every i, j ≥ 0, we have
a ∈ Ai, b ∈ Aj ⇒ ab ∈ Ai+j .

Remark. The condition that A =
⊕∞

i=0 Ai is equivalent to requiring that for every
a ∈ A, we can write

a =
∞∑
i=0

ai ai ∈ Ai

in a unique way (with only finitely many ai 6= 0).

Example. For any ring A, the ring A[x] is graded, by setting
A[x]i = {axi | a ∈ A} ⊂ A[x]

More generally, the ring A[x1, . . . , xn] is graded by setting
f ∈ A[x1, . . . , xn]i

if and only if f is a sum of terms of the form axi1 · · ·xinn with
∑
ik = i.

Definition. If A is a graded ring and a ∈ Ai, we say that a is homogeneous of
degree i.

Remark. A given ring A may be considered as a graded ring in different ways,
e.g. for k[x, y], we can for instance define a grading by saying xiyj is homogeneous
of degree i+ j, or we can say it is homogeneous of degree i.

Remark. Since A0A0 ⊆ A0 and more generally A0Ai ⊆ Ai for every i, we have
that A0 ⊆ A is a subring, so A is an A0-algebra, and every Ai is naturally an
A0-module.

Example. If f ∈ A is a homogeneous element, then B = A/(f) is also a graded
ring, with graded pieces

Bi = Ai/(f) ∩Ai.
It is an easy exercise to check that this defines a valid grading of B, but note that
it is necessary that f is homogeneous.

More generally, if f1, . . . , fn ∈ A are homogeneous, the ring A/(f1, . . . , fn) in-
herits a grading from A.

Assumption: We will for the rest of these lectures assume of our graded ring
A that A0 = k is a field, and that A is generated as a k-algebra by homogeneous
elements x1, . . . , xn of degree 1. In particular, this implies that we have

A ∼= k[x1, . . . , xn]/a,
for some ideal a = (f1, . . . , fk), where fi ∈ k[x1, . . . , xn] are homogeneous elements.
The grading of elements in A is inherited from that in k[x1, . . . , xn], i.e. in A we
have that

axi11 · · ·xinn + a

is homogeneous of degree
∑
ik.



Definition. Let A be a graded ring as above. The Hilbert function of A is the
function HA : N→ N given by HA(i) = dimk(Ai).

Example. Consider k[x]. We have k[x]n = {axn | a ∈ k} for all n, so Hk[x](n) = 1
for all n.

Example. For k[x1, . . . , xn], we have that a basis for k[x1, . . . , xn]d as a k-module
is given by elements

xi11 · · ·xinn
with i1 + · · ·+ in = n. One can compute the number of such to be(

n+ d− 1
n− 1

)
= (n+ d− 1)(n+ d− 2) · · · (d)

(n− 1)! ,

which gives Hk[x1,...,xn](d) =
(
n+d−1
n−1

)
= dn−1

(n−1)! + lower order terms in d.

Example. Let f ∈ k[x1, . . . , xn]i, and let A = k[x1, . . . , xn]/(f). We have a short
exact sequence

0→ k[x1, . . . , xn] ·f→ k[x1, . . . , xn]→ A→ 0,

which gives short exact sequences

0→ k[x1, . . . , xn]d−i
·f→ k[x1, . . . , xn]d → Ad → 0,

and so
dimAd = dim k[x1, . . . , xn]d − dim k[x1, . . . , xn]d−i.

In particular

HA(d) =
{(

n+d−1
n−1

)
if d < i(

n+d
n

)
−
(
n+d−i−1
n−1

)
if d ≥ i.

Note in particular that for d ≥ i, we have HA(d) is a polynomial in d, of the form

idn−1

(n− 2)! + lower order terms

Proposition. Let A be a graded ring as above. There exists a rational polynomial
g and an integer N such that, for n ≥ N , we have HA(n) = f(n).

Lemma. Let F : N → N be a function. Assume that there is an N ≥ 0 and a
rational polynomial g such that

F (n+ 1)− F (n) = g(n)

for all n ≥ N . Then there exists a polynomial f , with deg f = deg g + 1, such that
F (n) = f(n) for all n ≥ N .

Proof. Let Vd be the space of degree d rational polynomials. We have a Q-linear
map φ : Vd → Vd−1 given by f(x) 7→ f(x + 1) − f(x). The kernel of φ is the set
of constant polynomials, and since dimVd = dimVd−1 + 1, the map φ is surjective.
We can therefore find an f ∈ Vd such that φ(f) = g, and by adjusting the constant
term of f , we can ensure that f(N) = F (N). By induction on n, starting from N ,
we then find that f(n) = F (n) for all n ≥ N . �



Proof of proposition. The proof is by induction on the number of generators of A as
a k-algebra. Assume A is generated by elements x1, . . . , xn, homogeneous of degree
1. If x1 is not a 0-divisor, we have a short exact sequence

0→ A
·x1→ A→ A/(x1)→ 0,

which gives, for each i, a short exact sequence
0→ Ai

·x1→ Ai+1 → (A/(x1))i+1 → 0.
We thus have

HA(i+ 1) = HA(i) +HA/(x1)(i+ 1)
or equivalently

HA(i+ 1)−HA(i) = HA/(x1)(i+ 1).
Since A/(x1) is generated by the elements x2, · · · , xn, the induction hypothesis
shows that HA/(x1) is eventually a polynomial, and our lemma shows that the same
is then true of HA.

If x1 is a 0-divisor, the short exact sequence
0→ A/Ann(x1) ·x1→ A→ A/(x1)→ 0

let’s us reduce the claim from A to A/(x1) (handled by induction) and A/Ann(x1)
(where x1 is not a 0-divisor, so handled above). �

Definition. We call the polynomial which computes the Hilbert function for large
integers the Hilbert polynomial.



Lecture 23 – The associated graded ring of a local ring, and the
dimension theorem

Definition. Let A be a ring, and let a ⊆ A be an ideal. We define the graded ring
Ga(A) as the group

A/a⊕ a/a2 ⊕ a2/a3 ⊕ · · · .
We have

(1) A grading given by Ga(A)i = ai/ai+1.
(2) Given homogeneous elements x + ai ∈ Ga(A)i and y + aj ∈ Ga(A)j , their

product is

(x+ ai)(y + aj) = xy + ai+j−1 ∈ Ga(A)i+j .

(3) Given general elements x =
∑
i xi, y =

∑
j yj ∈ Ga(A), with xi and yj ,

homogeneous, we have

xy =
∑
i,j

xiyj .

Definition. Let A be a local ring, and let m ⊂ A be the maximal ideal. Define the
associated graded ring of A by

G(A) = Gm(A) =
∞⊕
i=0

mi/mi+1,

with the above graded ring structure.

Remark. Note that G(A)0 = A/m is a field, which we will denote by k.
Assume that A is Noetherian. Then m is finitely generated, say m = (y1, . . . , yn).

Let xi = yi + m2 ∈ m/m2. Every element of G(A)1 can be written as
n∑
i=1

aiyi + m2 =
n∑
i=1

(ai + m)(yi + m) =
n∑
i+1

(ai + m)xi,

so in other words the xi generate G(A)1 as a k-module.
More generally, for j ≥ 1, the ideal mj is generated by elements ye1

1 · · · yen
n , with∑

ei = j. It follows that G(A)j is generated as a k-module by elements xe1
1 · · ·xen

n

with
∑
ei = j.

Finally this implies that G(A) is generated as a k-module by the elements
xe1

1 · · ·xen
n , where ei ≥ 0. This is the same as saying that G(A) is generated as

a k-algebra by the xi.
In other words, the ring G(A) satisfies our good assumptions from last lecture,

namely that G(A)0 is a field and that G(A) is generated by finitely many elements
x1, . . . , xn ∈ G(A)1, so our definitions and results about the Hilbert polynomial
apply to G(A).

Example. If A is a field, then m = 0, so mk/mk+1 = 0 for k ≥ 1. We thus get
G(k) = G(k)0 = k.

Example. Let A be a DVR, e.g. A = Z(p) or A = k[x](x). Then there exists an
x ∈ m such that mi = (xi) for all k. We also have that

mi = (xi) ) (xi+1) = mi+1.



Thus we have an isomorphism of k-modules
G(A) = A/m⊕m/m2 ⊕ · · · ∼= k ⊕ k ⊕ k · · · ,

We define a k-algebra homomorphism
φ : k[y]→ G(A)

by setting φ(y) = x+ m2 ∈ G(A)1, which implies more generally that

φ(
∑

ait
i) =

∑
(aixi + (x)i+1).

Since G(A) is generated as a k-algebra by x+ m2, this map is surjective.
We thus have G(A) ∼= k[y]/ kerφ = k[y]/(f) for some f ∈ k[y]. But if f 6= 0, we

have dimk k[y]/(f) = deg f , and dimkG(A) =∞, so in fact f = 0, andG(A) ∼= k[y].

Example. The ring Z/(pk) is local, with maximal ideal (p). The associated graded
ring is

Z/(p)⊕ (p)/(p2)⊕ (p2)/(p3)⊕ · · · ⊕ (pk−1)/(pk).
Each group (pi)/(pi+1) is isomorphic to Z/p via a 7→ api + (pi+1), so we get

G(A) ∼= Z/(p)⊕ Z/(p)⊕ · · · ⊕ Z/(p).
A similar computation to the previous example shows G(A) ∼= (Z/p)[y]/(yk+1).

Example. If A is a graded ring with our assumptions, then m =
⊕

i≥1 Ai is a
maximal ideal, with A/m = A0. We get a local ring Am, and we have G(Am) ∼= A.
The isomorphism from A to G(Am) sends x ∈ Ai to x/1 + mi+1 ∈ G(Am)i.

Proposition. Let A be a Noetherian local ring. There is an N ≥ 0 and a rational
polynomial χA such that if n ≥ N , we have

l(A/mn) = χA(n).

Proof. Using the short exact sequences
0→ mi+1 → mi → A/mi → 0,

and the additivity of the length function, we find that
l(A/mi)− l(A/mi−1) = l(mi−1/mi).

Now
l(mi−1/mi) = dimk(mi−1/mi) = HG(A)(i− 1),

which is a polynomial for sufficiently large i. Hence by our difference lemma from
last lecture, the function i 7→ l(A/mi) is a polynomial for large i (of degree one
greater than HG(A)(i)). �

Definition. For a Noetherian local ring A, the above polynomial χ is called the
characteristic polynomial, or the Hilbert–Samuel polynomial.

Example. If A is an Artinian local ring, then mn = 0 for some sufficiently large
n. This implies that the characteristic polynomial is constant, equal to l(A).

Example. If A is a DVR, then χA(n) = n.

Theorem (The dimension theorem). Let A be a Noetherian local ring. Then A
has finite dimension, and the following three numbers are equal:

(1) dimA
(2) degχm(A)(n).



(3) The minimal number of generators for an m-primary ideal q.
Remark. Let q = (x1, . . . , xn) ⊂ A. Then q is m-primary if and only if either of
the following hold:

• √q = m
• q is contained in no other primes than m
• A/q is of dimension 0.

Thus the integer in point 3 is the minimal n such that we can find x1, . . . , xn ∈ m
with dimA/(x1, . . . , xn) = 0.
Corollary. Let A be a Noetherian local ring. Then dimA ≤ dimk m/m

2.
Proof. Let N = dimk m/m

2, and let x1 + m2, . . . , xN + m2 ∈ m/m2 be a basis for
m/m2. Then by Nakayama’s lemma, we have m = (x1, . . . , xN ), so (3) = (1) implies
dimA ≤ N . �

Corollary. Let k be a field. Then dim k[x1, . . . , xn] = n.
Proof. We’ll assume k is algebraically closed for simplicity. We have dim k[x1, . . . , xn] =
max dim k[x1, . . . , xn]m, where the maximum is taken over all maximal ideals m. By
the Nullstellensatz, we know that m = (x1 − a1, . . . , xn − an) with ai ∈ k, and so

mm = ((x1 − a1)/1, · · · , (xn − an)/1) ⊂ k[x1, . . . , xn]m.
Hence dim k[x1, . . . , xn]m ≤ n by the previous corollary. But (0) ( (x1) ( (x1, x2) (
· · · ( (x1, . . . , xn) ( k[x1, . . . , xn] is a chain of prime ideals, so also dim k[x1, . . . , xn] ≥
n. �

Corollary (Krull’s principal ideal theorem). Let A be a Noetherian ring, let x ∈ A,
and let p ⊂ A be a prime ideal which is minimal among those containing x. Then
dimAp ≤ 1.
Proof. We have that Ap is Noetherian and local, and moreover there is no prime
ideal containing (x/1) besides the maximal ideal pp. Thus (x/1) generates a pp-
primary ideal, so dimAp ≤ 1. �

Corollary. Let A be a Noetherian local ring, and let x ∈ m be a non-zero-divisor.
Then dimA/(x) = dimA− 1.
Proof. We estimate dimA/(x) in two ways. First, a maximal chain of prime ideals
in A/(x) corresponds (by contraction along A→ A/(x)) to a chain of prime ideals

p0 ( · · · ( pdimA/(x) = m,

where x ∈ p0, and p0 is minimal among prime ideals containing x. Since x is not a
0-divisor, it is not contained in any minimal prime ideal of A, so p0 is not minimal.
Hence there exists a prime ideal p ( p0, which implies dimA ≥ dimA/(x) + 1.

On the other hand, by Krull’s principal ideal theorem, since dimAp0 ≤ 1, there
can not be a longer chain of prime ideals contained in p0, so dimA ≤ dimA/(x) +
1. �

Example. Let B = k[x2, x3], let m = (x2, x3) and let A = Bm, with maximal ideal
mm. Then

mim/m
i+1
m
∼= mi/mi+1 ∼= (x2i, x2i+1)/(x2i+2, x2i+3) ∼= k2

as k-modules. It follows that dimG(A)i = 2 for i ≥ 1 and dimG(A)0 = 1, and so
χA(i) = 2i+ 1.



Suggested problems

(1) Let A be a graded ring and let f ∈ Ad. Prove that B = A/(f) becomes a
graded ring by setting Bi = Ai/((f) ∩Ai).

(2) Let A be a graded ring such that A0 is a field, which is generated as an A0-
algebra by finitely many elements x1, . . . , xn ∈ A1. Prove that m = ⊕d≥1Ad
is a maximal ideal of A, and that

m = (x1, . . . , xn).
(3) With the notation from the previous problem, show that for each k ≥ 0,

we have
m =

⊕
d≥k

Ad.

(4) With notation from the previous two problems, show that we have an iso-
morphism of graded rings

A ∼= G(Am).
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