1. LECTURE 1 — WHAT IS THIS COURSE

Commutative algebra is the study of commutative rings, and their associated
structures. The goal of today’s lecture is to remind ourselves what that means.

We'll never see noncommutative rings in this course, nor rings without mul-
tiplicative identities. So we will use the word ring for commutative rings with
identity. Let’s revise what that means.

Definition. A ring is a set A equipped with two binary operations. For a,b € A,
we have the operations of addition, denoted a + b, and multiplication denoted ab.
These must satisfy axioms:

(1

(2
(3
(4

) (A,+) is an abelian group, with identity element denoted 0 € A.
) Multiplication is associative: (ab)c = a(bc).

) Multiplication is commutative: ab = ba.
) Given a,b,c € A, we have

(a+b)c = ac+ be.
(5) There exists an element 1 € A, such that for all a € A, we have
la = a.

The algebraic rules we use to manipulate ordinary numbers mostly work arbitrary

rings, in particular, for a,b € A, we have
(—=a)(—=b) = ab,(—a)b = —ab and 0a =0

Example. The 0 ring has one element 0, and addition and multiplication is defined
in the only way it can be: 0+ 0 =0 = 00.
Example. Most things we call numbers form rings: Z C Q C R C C are rings with
the standard addition and multiplication operations.

Example. The set of all functions f: R — R forms a ring with the usual operations
of addition and multiplication of functions.

More generally, if X is a set and A a ring, the set of functions f: X — A form
a ring by defining (f + g)(z) = f(z) +4 g(z) for all x € X.

Example. Given a ring A, the ring of polynomials (in one variable) over A is
denoted A[x]. Its elements are formal polynomials, that is expressions like

Anx™ + ap_12" 1 4+ -+ ay, a; € A,

and the operations of addition and multiplication in A[z] are defined in a straight-
forward way (e.g. think of how you add and multiply polynomials with real coeffi-
cients, then do the same thing except using the operations on the coefficients in A
instead).
Example. More generally, given aring A and an n > 1, we can defined A[zq, ..., z,)].
This is the ring of polynomials in n variables. Its elements are expressions of the
form '
Z Qiyig. iy T, Gy, €A
01 yeeeyin 20

Again the ring operations are defined in a natural way which we won’t write down.

We often write Ax,y] instead of Alxy,xs] and Alz,y, 2] instead of Alxy, zq, 23]

Example. In the ring A[z, y], with chosen elements a, b, ¢ € A, say, we can compute

(1+ azy?®)(b + cxy) = 1b + lex + axy®b + axy’cx = b+ cx + abxy® + acx®y?



1.1. Homomorphisms.

Definition. Let A and B be rings. A map ¢: A — B is a homomorphism if it
satisfies

(1) ¢(1a) =1p
(2) For all a,a’ € A, we have
¢(aa’) = p(a)p(a’).
(3) For all a,a’ € A, we have
p(a+d’) =¢(a) + ¢(a’)
If ¢ is moreover bijective, then we say ¢ is an isomorphism and write A = B.

Example. The inclusion maps Z — Q — R — C preserve the identity element
and both binary structures, so are homomorphisms.

Example. Let a € A be an element, then there is a evaluation homomorphism
¢a: Alx] — A defined by (replace x with a everywhere!)

Alans™ + ap_12" 1+ Fag) = ana™ + an_1a" M 4+ -+ ag
1.2. Ideals.
Definition. Let A be a ring. A subset a C A is an ideal if it satisfies two condi-
tions:
(1) a forms a subgroup of (R, +)
(2) For every = € A and a € a, we have za € a.

Example. In a ring A, the subsets A and {0} are ideals.

Definition. Let x € A. The principal ideal generated by x, denoted (x) C A, is
defined as
{ax |ac A} C A

Example. In any ring A, we have {0} = (0) and A = (1), so these are principal
ideals.

Example. The ideals of Z are all principal, so are given by (n) C Z for n > 0.
1.3. Quotient rings.

Definition. If a C A is an ideal, then we may form the quotient ring A/a, whose
elements are the additive cosets of a in A, with addition and multiplication defined
by
(z+a)+(y+a)=(z+y)+a
and
(r+a)(y+a)=zy+a
The quotient homomorphism ¢: A — A/a is given by, for z € A,
o(z) = +a.
Example. The ring A/A has one element, A, and so is (isomorphic to) the zero
ring.

Example. Let n > 1, then the ring Z/(n) is the ring of integers modulo 7, and
has n elements
Z/(n) = {0+ (), 1+ (n),...,n — 1+ (m)}.



Example (A purely motivational example). Let f = Y a;;2'y’ € C[z,y]. The
vanishing locus of f is the set of (a,b) € C? such that f(a,b) = 0, and a set of
points defined in this way is what is called an algebraic curve. The ring

Clz,y]/(f)
is interpreted as the ring of “algebraic functions” on the curve. In algebraic geom-

etry, we study the geometry of this curve via the algebra of its ring of functions.

Definition. Let ¢: A — B be a homomorphism. The kernel of ¢ is given by
kergp ={x € A| ¢(z) =0}.
Theorem. Let ¢: A — B be a homomorphism. The kernel of ¢ is an ideal of A.
Theorem (The fundamental homomorphism theorem). e The image of ¢,
denoted ¢(A) C B, is a subring of B, and we have
A ker ¢ = 6(A)
e The homomorphism ¢ is injective if and only if ker ¢ = {0}.
1.4. The relation between ideals of a ring and a quotient ring. Let a C A

be an ideal in a ring, and ¢: A — A/a the quotient homomorphism.

Theorem. There is a bijective correspondence
{Ideals of A/a} <> {Ideals of A containing a},
given by
bC Alars ¢~ (b)
and the other way by
aCbcC A ¢(b)

Sketch proof. First check ¢! is well-defined, i.e. that if b C A/a is an ideal, then
¢~ 1(b) is an ideal containing a. Then check ¢ is well-defined, i.e. that if b C A is an
ideal containing a, then ¢(b) is an ideal of A/a. Finally check that ¢(¢~1(b)) = b
and ¢~1(4(b) = b if b contains a, so that ¢ and ¢! are inverse operations. O

Definition. Let A be a ring.
e An element z € A is a unit if there exists a y such that zy = 1.
e An element 0 # x € A is a zero-divisor if there exists a y # 0 such that
2y = 0.
e A ring is an integral domain if it has no zero-divisors
e A ring is a field if all its non-zero elements are units

Proposition. Let x € A. Then z is a unit < (z) = (1) = A.

Proof. If z is a unit, there exists a y € A such that zy = 1, hence for every z € A,
we have (zy)z = z(yz) = 21 =z € (x), so (z) = A.
Conversely, if (x) = A, then there exists a y such that yx = 1. O

Iprove that the units of A form a group under multiplication.
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