LECTURE 10 — TENSOR PRODUCT OF ALGEBRAS

Definition. Let B and C be A-algebras. The A-module B ® 4 C is an A-algebra,
with multiplication defined by

b))t @cd)=b"®cc,

and more generally by
O biwe)D Vyad) = bt cd).
( J (2]

Remark. The unit element in the ring B®4 C is 1 ® 1.

Remark. It is not obvious that this multiplication is well-defined. One way to see
this is to observe that any time we rewrite the sums by using the relations

b (c+d)=b@c+ba,

and
ab®c=bQac,

the expression on the right hand side can also be rewritten using these relations.
The other way is to use the defining property of the tensor product, see the
textbook for details.

Example. Let A be a ring, consider B = A[z] and C = Ay|. Then, as A-modules,

we have isomorphisms
B=FP A, =4y,
i>0 i>0

or in words, B (resp. C) is the free A-module generated by 1,z,2%... (resp. by
1,y,92,...). We then find a module isomorphism

BwoaC= (@A) (@A) =P A’ oy
i>0 j=0 4,j=0
For the multiplication, we have
(xil ® yjl)(m’iz ® yjz) - (x’ilx’iz ® yjlyjz) — girtiz g yjl-‘rjz.
From this we see that there is an isomorphism of A-algebras B ®4 C' — Az, yl,
given by > a2t @yl — > azatyl.

Example. Consider C as an R-algebra. We have a natural basis 1,7 € C as an
R-module, so C = R1 & Ri. We have

CorC=RIBR)®RIGR) = (RIQIGRi®1BRI®id® R @ i).

In other words C ®g C is an R-vector space with basis 1 ® 1,1 ® 7,7 ® 1,7 ® 7. The
multiplication table is easy to write down in this basis, if x = 1® i, y = 1 ® 1,
z =1 ® i, then we have

and



6.4. Rings of fractions. Recall from a previous course (hopefully), that given any
integral domain A, we can produce a field K(A), whose elements are written a/b,
with a,b € A, the fraction field of A.

Example. We have K(Z) = Q and, if k is a field, K(k[z]) = k(z), the field of
rational functions.
Formally, the field K (A) is constructed as follows
(1) Consider all pairs (a,b) € A x A with b # 0.
(2) Declare that (a,b) ~ (a’,d) if
ab' —ba' =0
(3) Check that this is an equivalence relation.

(4) Let k(A) be the set of equivalence classes of pairs (a,b) € A x A.
(5) Define addition and multiplication, check all’s well defined and gives a field.

Example. It is essential that A is an integral domain, otherwise ~ is not an
equivalence relation. E.g. in Z/(4), we find
(2,2) ~(1,1) 2:-1-1-2=0
and
(2,2) ~(0,2) 2:-2-0-2=0
but
(1,1) £(0,2) 2:-1—-1-0=2=#0.

We may think of the construction as follows: Given an integral domain A, we
build a “smallest” ring K(A) from A such that every non-zero element in A has an
inverse.

Generalised question: Given a ring A, and S C A, construct a new ring S~ A
where elements of s have inverses.

Note that, if s1,s9 € S, and s; and s has inverses, then also s1s, must have
an inverse. The element 1 € A already has an inverse, so we can always add it in
to S. We will therefore assume S is multiplicatively closed, meaning 1 € S and
$1,89 €5 = 5180 € S.

Definition. Given a ring A and a multiplicatively closed subset S C A, define the
ring of fractions of A with respect to S as follows.

e The set S™1A are equivalence classes of pairs
(a,s) a€ A seSs,
under the equivalence relation that
(a,5) ~ (b, 1)
if and only if there exists a u € S such that
(at — sb)u = 0.
e Addition and multiplication is defined by
(a,s) + (b,t) = (at + bs, st)
(a,s)(b,t) = (ab, st).

Remark. The proof that this is a ring is almost exactly the same as the construc-
tion of the fraction field of an integral domain.



Remark. We will always write a/s instead of (a, s). The formulas for addition and
multiplication of these fractions are the same as the usual ones. The only thing
that is harder is the new criterion for when two fractions are equal, i.e.

g=l¥)<:>(at—bs)u=0forsomeu65.

Remark. The unit element in S~ 4 is 1/1, and the zero element is 0/1.
Remark. There is a ring homomorphism ¢: A — S~ A defined by ¢(a) = ¢.

Proposition. Let iy: A — B be a ring homomorphism such that every s € S, we
have 1(s) is a unit in B. Then there exists a unique homomorphism p: S™1A — B
such that ¢ = po ¢.

Proof. Uniqueness: Let a € A. We must have
pla/1) = p(¢(a)) = ¥(a).
Let s € S. We must have
p(1/s) = p((s/1)™1) = p(e(s) 1) = (p(8(5))) ™" = () ™"
Then

pa/s) = pla/1)p(1/s) = P(a)p(s)~".
Existence: Define p(a/s) = 1 (a)t(s)™!, and check that this is well-defined. O

Example. Let A be an integral domain, and let S = A\ {0}. Then S™1A = K(A).
To see this, observe that the equivalence relation

(a,8) ~ (b,t) & (as — bt)u = 0 for some u € S
used in the construction of S™'A, and
(a,8) ~ (bt) ©as—bt=0

used in the construction of K(A), are in fact the same ones, since A is an integral
domain.

Example. Let A be a ring S C A multiplicatively closed, and assume that 0 € S.
Then we have, for all a,b € A, s,t € S, that

a b
st
since
(ta — bs)0 = 0.

Thus S~'A has one element and is the zero ring.
In particular, the homomorphism ¢: A — S~!A is not necessarily injective.

Example. Let f € A, and let S = {f" | n >0} C A. We then write Ay = S~ !4,
the ring A with f inverted.

Example. Let p C A be a prime ideal. Let S = A\ p. Then S is multiplicatively
closed, and we write A, = S~ A.

Proposition. The ring Ay is local, with mazimal ideal

m={a/s|a€ps¢gp}



Proof. Recall a ring A is local if and only if its non-units form an ideal, and the set
of non-units are then the maximal ideal of the ring.
One checks the set above m is an ideal. It does not contain 1/1, since

1/1=a/s= (s —a)u=0 for some u ¢ p,

If a € pand s € p, then (s —a) € p, and so (s — a)u ¢ p, and in particular
(s — a)u # 0. Therefore the elements of m are non-units.
Assume next that a/s € m. Then a € p, so a/s has inverse s/a, and hence a/s is

a unit. Thus m is precisely the set of non-units in A4, so A, is local with maximal
ideal m. |

Example. Let p = (p) C Z for some prime number p. Then
Zpy = {m/n | p does not divide n},
and the maximal ideal is
m = {pm/n | p does not divide n}.
Example. Take p = () C R[z]. Then
Rlz]@) ={f/g 19 ¢ (z)},

the local ring from the lecture on Nakayama’s lemma.



