LECTURE 11 — MODULES ON RINGS OF FRACTIONS
Let A be a ring and let S C A be a multiplicatively closed subset.
Definition. If M is an A-module, then define an S~!A-module S™'M as the set
of equivalence classes of pairs
(m, s) meéeM,s€eS,
under the equivalence relation
(m,s) ~(n,q) if Ju e S| (gm— sn)u=0.
The module structure is
(m, s) + (n,q) = (gm + sn, sq)
and, ifac A
(a,s)(m, q) = (am, sq).
Remark. We always write m/s instead of (m, s).
Example. Take A =7, S =Z\ {0}, so that S71Z = Q.
Let M = Z, then S™'M = Q.
Let M = Z/n, then we have the following equalities in S~ M:
a/s =na/ns =0/s =0,
so ST1M = 0.
Remark. As special notational cases:

e If S = A\ p for some prime ideal p, so that S™14 = A,, we write M, for
S—1M.
o If S={1,f,f? -, so that ST'A = Ay, we write My for S™' M.

Remark. Given a homomorphism of A-modules ¢: M — N, there is an induced
homomorphism of S~ A-modules S~ 1¢: S~*M — S~IN given by

$716(m/s) = p(m)/s.
Proposition. The S~'A-module S~'M is isomorphic to M ® 4 S™'A, under the

homomorphism ¢ given by
a/s @ m— am/s

Proof. To see that ¢ is well-defined, check (which is easy) that (a/s,m) — am/s
is A-bilinear. The map ¢ is clearly surjective since for any m/s € S™!M we have
#(1/s ® m) = m/s. To see that it is injective, note that there is a well-defined
inverse
V: STIM = ST TA®4 M,
given by
Pw(m/s) =1/s @ m.

Here if m/s = n/q, we have an u € S such that u(¢gm — sn) = 0, which implies

that
1/s®@m = 1/ugs @ ugm = 1/ugs @ usn = 1/q @ n,

so v is well-defined. One checks that it is a homomorphism of S~!A-modules, and
that ¥ o ¢ and ¢ o ¢ are both the identities. g



Example. In the examples above, S~™'M = Q ®z M, so our computations recover
previous computations of these tensor products.

Proposition. If M’ — M — M" is exact, then so is S™*M' — S™'M — S~1M".
Proof. Let m/s be such that S™'¢(m/s) = 0. We must show that there exists an
m'/s’ such that S~1g(m//s') = m/s.

We have

S~Yp(m/s) = (m)/s = 0/1,

which by definition means that there is an u € S such that uip(m) = 0.

Then 9 (um) = 0, and exactness implies there is an n such that ¢(n) = um. It
follows that

S~ o(n/su) = ¢p(n)/su = um/su=m/s.

Corollary. The ring S~'A is flat as an A-module.

Proof. The operation S~!— preserves exactness, and so preserves injections, hence
the operation S~! ® 4 — preserives injections, which by definition means that S~ A
is flat. O

Example. For any integral domain A, K(A) is flat as an A-module.

Proposition (The operation M + S~'M commutes with everything). Let M be
an A-module.
o If M' is an A-submodule of M, then S™'M' is an S~'A-submodule of
S='M, and we have ST'M/S™ M’ = S=Y(M/M').
o IfM',M" C M, then ST*(M' + M") = S7*M' + S=*M", and S™1M’' N
STIM" =S~ Y(M'nM").
e If N is an A-module, then
STIM ®g-14 STIN =S (M @4 N).

Proof. Let’s only prove the last one. We use the S™'A ®4 M = S™'M to rewrite
the left hand side as
S—iM Rg-14 STINZM®,StA Qs-14 ST'A®A N
XM S TAQUN2STA@a M @4 N =S (M ®,N).
O

Remark. All of the above hold more generally for the operation M — M ®4 B
whenever B is a flat A-algebra.

6.5. Local properties. Let P be a property of module. We say (somewhat infor-
mally) that the property P is local if
P holds for M

i)

P holds for all localisations M,.

Proposition (“Being 0 is local”). Let M be an A-module. The following are
equivalent

(1) M =0



(2) M, =0 for all prime ideals p
(3) My =0 for all mazimal ideals m.
Proof. (1) = (2) = (3) are obvious.
To prove (3) = (1), assume M # 0, and for a contradiction that My, = 0 for all
maximal ideals m. Let 0 # m € M. Then
Amm(m)={z€A|am =0} C A

is an ideal, and Ann(m) # (1). Hence there is a maximal ideal m O Ann(m). Now,
since My, = 0, we have

?zO@EIuEA\myum:O,
but Ann(m) C m, so this is a contradiction. O

Proposition. Let ¢: M — N be a homomorphism of A-modules. Then the follow-
ing are equivalent:

(1) & is injective.

(2) For all prime ideals p, the map ¢p: My, — Ny is injective.

(3) For all mazimal ideals m, the map ¢p: My — Ny is injective.

Proof. The sequence 0 — ker ¢ — M — N is exact. Since localisation is exact, we
have for every prime p that

0 — (ker @), — M, & N,

is exact. But that implies (ker ¢), = ker ¢,,.

We have ¢ injective if and only if ker ¢ = 0. By the above, we have ¢, injective
if and only if (ker ¢), = 0. Combining with the previous proposition gives what we
want. O

Remark. The same result holds with “injective” replaced by “surjective” through-
out.

Proposition. Being flat is a local property.



