7. LECTURE 12 — EXTENSION AND CONTRACTION OF IDEALS IN THE RING OF
FRACTIONS

Recall that for a quotient ring A/I, we have a bijection between the set of ideals
of A/I and the set of ideals of A containing I. If ¢: A — A/I, and superscripts e
and c¢ denote extension and contraction along ¢, the correspondence is given by

aCA—a®=a/ICA/I
and
aCA/T—a®=¢ (a) C A

A similar, but more complicated story, holds for the fractions rings S~ A. Recall
that given a multiplicatively closed subset S C A, we have a homomorphism ¢: A —
S71A, and we let now let superscripts ¢ and ¢ denote contraction and extension
along this homomorphism. We begin by analysing concretely what these operations
do.

Lemma. Let a C A be an ideal. Then
a
€ _ _
a® = {s |a € a}
Proof. By definition, a¢ = {> b;/s;¢(a;) | b; € A,s; € S,a; € a}, where we look

at all finite sums. The inclusion O is then clear. Conversely, a¢ is generated by
elements of the form

b ba
;¢(G) =5
with a € a. Then ba € a, which gives the inclusion C. |

Lemma. Let a C S™'A be an ideal. Then a® = {a € A|a/1 € a}.
Proof. a € a® < ¢(a) € a by definition, and ¢(a) = a/1. O
Proposition. For any ideal a C S™'A, we have a®® = a.
Proof. Using the lemmas above, we find
a/s€a=(s/l)(a/s) =a/l €a=a€a®=a/s € a”,
and
a/s €a”“=als=bl/g,bea’=b/l €a— (1/q)(b/1) =b/q=a/s € a.
O

Corollary. The operation a — a° gives an inclusion of the set of ideals of S™tA
into the set of ideals of A.

Proof. 1f a® = b¢, then a = a%® = b*® = b. 0
Corollary. Every ideal of S~ A is of the form a® for some a C A.

Example. The ideals of Z,) are all extensions of ideals from Z. Every ideal of Z
is of the form (n) for some n > 0, and we have

) =" | ke zs ¢ @)} = (/)



If n = 27q with ¢ odd, then 2//1 = n/q € (n/1), so (2//1) C (n/1), while
n/1 = (27/1)(qg/1) € (27/1), so (n/1) C (2f/1). It follows that (n/1) = (2//1).
Thus the complete set of ideals in Z s is

1)2@/1)202%1)2--
and (0).
Let’s focus now on the case of prime ideals.

Proposition. The operations of extension and contraction give a bijection between
the prime ideals of S~'A and the prime ideals p of A such that pN S = @.

Proof. Let p C S7'A be a prime ideal. Then p¢ C A is a prime ideal (Contraction
always preserves prime ideals). Moreover, p¢ N S = &, since if a € p¢ N S, then

a/lep=aja=1ep=p=(1),

contradicting primality of p.
If ¢ C A is a prime ideal with NS = &, then we claim (1) ¢° is a prime ideal,
and (2) q¢¢ =q.
For (1), if q° is not a prime ideal, we can find a/s,b/q such that a,b & q with
ab ¢
gs t’
with ¢ € q. That implies (abt — gsc)u = 0 for some u € S, but a,b,t & q,c € q and
u ¢ q makes this impossible, since q is prime.
For (2), q°¢ 2 q always holds, so we only need to prove that q¢¢ C g. An element
of q°¢ is an a € A such that
a/l="b/s
with b € q and s € S. This implies that (as — b)u = 0 for some u € S, which since
be€q, s,uéq, can only happen if a € q.
We have now shown that the operations (—)¢ and (—)¢ gives maps between the
sets
{prime ideals in A not intersecting S’}
and
{prime ideals in S~*A},
such that p© = p and q°° = g, which means that these maps are bijections. O

Corollary. Let p C A be a prime ideal. The prime ideals of A, are precisely the
ideals q°, where ¢ C p is a prime ideal.

Proof. The condition g N S\ p is equivalent to q C p. (]

Example. The prime ideals of Z3) are exactly (2)¢ = (2/1) and (0)¢ = (0/1).
Note that the bijection proposition above fails here for non-prime ideals, i.e.

(6) C (2) C Z, but (6)° = (2)° = (2/1), and there is no ideal I C Zy) such that

I1¢ = (6).

Corollary. Let f € A. The prime ideals of Ay are precisely the ideals q°, where

q C A is a prime ideal not containing f.

Proof. Since Ay = S7'A with S = {f¥},>0, the prime ideals of A are the g°

which don’t intersect S. Now f € q < f* for some k > 0 by primality of q, so this
is the set of prime ideals in A which don’t contain f. O



Example. The prime ideals of Zy are (3/1),(5/1),(7/1),(11/1),....
We can give better proofs of a few things we’ve seen before.
Corollary. The ring A, is local.
Proof. Every prime ideal ¢ C A, is contained in p®. |
Proposition. The nilradical of A is the intersection of all the prime ideals of A.

Proof. If f is nilpotent, then it must lie in every prime ideal. The hard part is to
see that if f lies in every prime ideal, then f is nilpotent. Consider the ring Ay. A
ring without prime ideals must be the zero ring, and S~!A4 is the zero ring if and
only if 0 € S, which is if and only if f is nilpotent. O



GEOMETRIC INTERLUDE

Let k be an algebraically closed field, and for concreteness we may as well take
k = C. We are interested in the ring k[z1,...,z,], and want to know what its
maximal ideals are. There is a very natural source of such maximal ideals: Let
(at,...,ap) € k™, and let

Blar,an)t k@1, 2] = K
be given by

¢(a1,...,a,n)(f) = f(alv sy an)'
This homomorphism is surjective onto k, so k = im ¢ = k[z1,...,x,]/ ker ¢, which
means that ker ¢ is maximal. It’s easy to check that ker ¢ = (z1 —a1,..., 2, —ay).

We will see later the following theorem:

Theorem (Nullstellensatz (special case)). The mazimal ideals of the ring k[z1, ..., xy]
are precisely the ideals

(JJ]_ — a1, T2 —A2,...,Tp — an)»
where (a1,az,...,a,) € k™.

We are in principle interested in subsets of k" defined as the zero sets of poly-
nomials f1, fa,..., fm € k[z1,...,2,]. We write

V(fisooos fm) ={(ar, .. an) € K" | fiar, ... an) =+ = frlay, ..., an) = 0}.
A set V C k™ which can be expressed in this form is called algebraic.

Example. The set {(a1,a2) | a? + a3 = 1} C k? is an algebraic subset (which if
k =R is of course a circle).

Lemma. Let f € k[xy,...,2,]. Then f(ai,...,a,) =0 if and only if f € (x1 —
A1y ey Ty — Ap)-

Proof. f(a;) =0 f €kerg,) & f € (xi —a;). O
Lemma. Given fi,..., fn € k[z1,..., 2], we have that (a1, ...,an) SV (f1,..., fn)
if and only if (f1,...,fn) C (x1 —a1,...,Tp — an).

Proof. By definition, we have V(f1,..., ) =V (f1)NV(f2) N---V(fn)- O
Corollary. The set V(f1,..., fn) are in natural bijection with the mazimal ideals

of the ring klxy, ..., xn]/(f1,. -+, fn)-
Proof. The maximal ideals of the quotient ring are in bijection with the maximal
ideals of k[x1, ..., 2y] containing (f1, ..., fn), which is in bijection with V'(f1,..., fn).
O
Example. To find the maximal ideals of the ring A = k[x,y]/(2? + y% — 1, ), we
simply solve the set of equation

24y’ —1=0

x =0,

giVing ($y) = (071) and ($7y) = (07_
ideals. Letting = z + (22 +y? — 1),¥
ideals of A are

1). This means that A has two maximal
=y+ (22 +9y? - 1,2) € A, the maximal

(#,5— 1) and (7,5 + 1).



Motivated by this, for any ideal I C k[zq,...,z,], we define V(I) C k™ to be
the subset (a1, ...,ay) such that I C (1 —as,...,T, — ay,). Sets of the form V(1)
are called algebraic subsets of k™.

Proposition. The operation I — V(I) satisfies the following properties
() ICI=V(J)CV(I).

(2) V(0) = k"
(3) v() =
(4) V(I+J) V(HNnVv({J).
(B) VIJ)=vV{InJ)=V{I)uV(J).
(6) V(x(1)) = V().
Proof. (1), (2) and (3) are obvious.
(4): A maximal ideal (z1 — a1,...,2, — a,) contains I and J if and only if it

contains I + .J.

(5): From IJ C InJ and (1) follows V(IJ) 2 V(I NJ). If a maximal ideal
contains I or J, then it contains I N J, which gives V(INJ) D V(I)NV(J). If a
maximal ideal m contains I, J, then it contains either I or J, since otherwise we
can find f € I\ m, g € J\ m, from which we get fg € IJ\ m, since m is prime. It
follows that V(I) NV (J) D V(1J).

(6): From (1) and I C v(I) we get V(¢(I)) C V(I). If a maximal ideal m
contains I, then it also contains v([), since f* € I = f* € m = f € m. Hence
V(D)) 2 V(D). O

Let now V =V (I) C k™ be an algebraic subset. We say that V is irreducible if
there is no way to write V(I) as the union of two strictly smaller algebraic subsets.

Example. For every maximal m, we have V' (m), so points are irreducible.

Proposition. If p C k[z1,...,x,] is a prime ideal, then V(p) is an irreducible
subset.

Moreover, every irreducible algebraic subset of k™ is of the form V(p) for some
prime ideal p.

Proof. These claims rely on the Nullstellensatz, which we don’t know yet, so we
won’t prove this. [l

Example. For every irreducible f € k[zy,...,z,], the set
V(f) = {(alr'-'7an) | f(alr’-wan) = 0}
is irreducible, since (f) is a prime ideal.
Example. The fact that zy € k[z,y] is not irreducible is equivalent to (zy) not

being a prime ideal, which is equivalent to V (xy) not being irreducible. Concretely,
V(zy) = V(z) UV (y) shows that V(zy) is not irreducible.



