Lecture 13 - Primary ideals

Some rings, such as \mathbb{Z} and $k[x_1, \ldots, x_n]$ where k is a field, are **unique factorisation domains**, meaning every element x can be factored uniquely (up to reordering and multiplication by units) as a product

$$x = p_1 p_2 \cdots p_k$$

with p_i irreducible ring elements.

For most rings A, this is not the case:

Example. • In $\mathbb{Z}[i\sqrt{5}] = \mathbb{Z}[x]/(x^2+5)$, we have $6 = 2 \cdot 3 = (1+i\sqrt{5})(1-\sqrt{5})$, where $2, 3, 1+i\sqrt{5}$ and $1-i\sqrt{5}$ are all irreducible.

• Let k be a field. In the ring $A = k[x,y]/(y^2 - x^3 + x)$, we have

$$y^2 = y \cdot y = x(x-1)(x+1),$$

and y, x, (x - 1), (x + 1) are all irreducible.

The best we can hope for in general is some kind of factorisation of *ideals*. A reasonable way to formalise this turns out to be that of factoring into **primary ideals**.

Definition. An ideal $\mathfrak{a} \subseteq A$ is primary if $\mathfrak{a} \neq (1)$, and $fg \in \mathfrak{a}$ implies either $f \in \mathfrak{a}$ or $g^n \in \mathfrak{a}$ for some $n \geq 1$.

Remark. An equivalent formulation is: An ideal \mathfrak{a} is primary if $A/\mathfrak{a} \neq 0$, and every 0-divisor in A/\mathfrak{a} is nilpotent.

Example. Every prime ideal is primary.

Example. In \mathbb{Z} , the primary ideals are (0) and (p^i) for p a prime.

Example. If a ring A has unique factorisation, then (x^n) is primary for any irreducible x. Here $fg \in (x^n)$ is equivalent to " x^n divides fg". If x divides g, then $g^n \in (x^n)$, and if not, we must have that x^n divides f.

Proposition. If \mathfrak{a} is primary, then $\sqrt{\mathfrak{a}}$ is prime.

Proof. Assume $fg \in \sqrt{\mathfrak{a}}$. Then there's some n such that $f^ng^n \in \mathfrak{a}$, so that either $f^n \in \mathfrak{a}$, or there's some m such that $(g^n)^m \in \mathfrak{a}$. In either case one of f and g must lie in $\sqrt{\mathfrak{a}}$, so $\sqrt{\mathfrak{a}}$ is prime.

We say that \mathfrak{a} is \mathfrak{p} -primary if $\sqrt{\mathfrak{a}} = \mathfrak{p}$.

Remark. Let $\mathfrak{a} = (xy, y^2)$. Then $\sqrt{\mathfrak{a}} = (y)$, which is prime, but \mathfrak{a} is not primary, since $yx \in \mathfrak{a}$, but $x \notin \sqrt{\mathfrak{a}}$. So being primary is a stronger condition than having prime radical.

Proposition. If $\mathfrak{m} \subset A$ is maximal, and $\sqrt{\mathfrak{a}} = \mathfrak{m}$, then \mathfrak{a} is primary.

Proof. The ring A/\mathfrak{a} has the property that the nilradical $\sqrt{(0)} = \mathfrak{m}/\mathfrak{a}$ is a maximal ideal. Since the nilradical is the intersection of all prime ideals, we must have that $\mathfrak{m}/\mathfrak{a}$ is the unique prime ideal of A/\mathfrak{a} . Every element outside of $\mathfrak{m}/\mathfrak{a}$ is then a unit, so every 0-divisor lies in $\mathfrak{m}/\mathfrak{a} = \sqrt{(0)}$, which means \mathfrak{a} is primary.

Definition. A primary decomposition of an ideal $\mathfrak{a} \subseteq A$ is an expression

$$\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$$

with the \mathfrak{q}_i primary. It is said to be minimal if the $\sqrt{\mathfrak{q}_i}$ are distinct, and if there is no i such that

$$q_i \subseteq q_1 \cap q_2 \cap \cdots q_{i-1} \cap q_{i+1} \cap \cdots \cap q_n$$
.

Remark. A nonminimal primary decomposition easily gives a minimal one. If $\sqrt{\mathfrak{q}_i} = \sqrt{\mathfrak{q}_j}$, just replace \mathfrak{q}_i and \mathfrak{q}_j by $\mathfrak{q}_i \cap \mathfrak{q}_j$, which is primary by the lemma below.

$$\mathfrak{q}_i \subseteq \mathfrak{q}_1 \cap \mathfrak{q}_2 \cap \cdots \mathfrak{q}_{i-1} \cap \mathfrak{q}_{i+1} \cap \cdots \cap \mathfrak{q}_n$$

just remove \mathfrak{q}_i .

Lemma. If $\mathfrak{q}, \mathfrak{q}'$ are \mathfrak{p} -primary, then so is $\mathfrak{q} \cap \mathfrak{q}'$.

There are two natural questions to ask of these primary decompositions

- (1) Do they exist, i.e. does every ideal have such a decomposition?
- (2) Are they unique?

The answers are

- (1) No in general, but for "Noetherian rings", then yes. In particular the answer is yes for all rings of the form $k[x_1, \ldots, x_n]/I$ and $\mathbb{Z}[x_1, \ldots, x_n]/I$. We'll prove this later.
- (2) No in general, but certain aspects are preserved.

Example. In the ring $\mathbb{Z}[i\sqrt{5}]$, one can check that (6) is written as an intersection

$$(6) = (2) \cap (3, 1 - i\sqrt{5}) \cap (3, 1 + i\sqrt{5})$$

The ideal (2) is $(2, 1 - i\sqrt{5})$ -primary, and $(3, 1 \pm i\sqrt{5})$ are prime ideals. The ideals involved are coprime, so we also have

$$(6) = (2)(3, 1 - i\sqrt{5})(3, 1 + i\sqrt{5}).$$

This decomposition is (we'll see) unique.

Example. The ideal $(xy) \subseteq k[x,y]$ admits a minimal primary decomposition $(xy) = (x) \cap (y)$, which is also unique.

Example. Let's compute a primary decomposition of $(xy, y^2) \subset k[x, y]$. Firstly, note that (xy, y^2) is not primary, since $yx \in (xy, y^2)$, but $y \notin (xy, y^2)$ and no power of x lies in (xy, y^2) .

A reasonable candidate for one primary ideal is (y), which is a prime ideal, and clearly $(xy, y^2) \subseteq (y)$. A second possible ideal is $(x^2, xy, y^2) = (x, y)^2$. This is (x, y)-primary since (x, y) is maximal.

Now to see

$$(xy, y^2) = (y) \cap (x^2, xy, y^2),$$

note that

$$(xy, y^2) = \{ \sum a_{ij} x^i y^j \mid a_{i0} = 0 \text{ and } a_{01} = 0 \}$$

while

$$(y) = \{ \sum a_{ij} x^i y^j \mid a_{i0} = 0 \}$$

and

$$(x^2, xy, y^2) = \{ \sum a_{ij} x^i y^j \mid a_{00} = a_{10} = a_{01} = 0 \}.$$

This is a minimal primary decomposition since $(y) \neq (x, y)$ and neither of the ideals (y) and (x^2, xy, y^2) are contained in the other.

In this case, the primary decomposition is not unique, in particular we can also write

$$(xy, y^2) = (y) \cap (y^2, xy, x^n)$$

for any $n \geq 1$, or

$$(xy, y^2) = (y) \cap (y^2, x + ay)$$

for any $a \in k$.

Recall $(\mathfrak{a}:x) = \{y \in A \mid yx \in \mathfrak{a}\}.$

Theorem (Uniqueness 1). Let $\mathfrak a$ be a decomposable ideal, with minimal decomposition

$$\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i.$$

The prime ideals $\sqrt{\mathfrak{q}_i}$ are precisely the prime ideals which can be written as $\sqrt{(\mathfrak{a}:x)}$.

Corollary. Every minimal primary decomposition of \mathfrak{a} gives the same set of prime ideals.

Definition. The set of primes $\sqrt{\mathfrak{q}_i}$ the prime ideals associated with \mathfrak{a} .

Proof. We have

$$\sqrt{(\mathfrak{a}:x)} = \sqrt{(\cap \mathfrak{q}_i:x)} = \bigcap_{i=1}^n \sqrt{(\mathfrak{q}_i:x)},$$

so we need to analyse $(\mathfrak{q}_i : x)$.

Lemma. Let q be a p-primary ideal. Then

$$\sqrt{(\mathfrak{q}:x)} = \begin{cases} \mathfrak{p} & \text{if } x \notin \mathfrak{q} \\ (1) & \text{if } x \in \mathfrak{q} \end{cases}$$

Picking $x \in \mathfrak{q}_i$ but not in any other \mathfrak{q}_j gives $\sqrt{(\mathfrak{a}:x)} = \mathfrak{p}_i$, so all the prime ideals \mathfrak{p}_i appear as $\sqrt{(\mathfrak{a}:x)}$.

Conversely, if a prime ideal \mathfrak{p} appears as $\sqrt{(\mathfrak{a}:x)}$, we must have that $\mathfrak{p} = \mathfrak{p}_{i_1} \cap \cdots \cap \mathfrak{p}_{i_k}$, which means that $\mathfrak{p} = \mathfrak{p}_i$ for one of these, by a basic lemma for prime ideals (Prop. 1.11 in the book).

Definition. The minimal elements of the set of prime ideals associated with $\mathfrak a$ is called the **minimal** prime ideals belonging to $\mathfrak a$. The remaining ones are called **embedded** prime ideals belonging to $\mathfrak a$.

Example. In our decompositions of $(y^2, xy) \subset k[x, y]$, we will always have two components, of which one is (y) and the other could be (x^2, xy, x^n) for any n. Our uniqueness statement from today says that at least $\sqrt{(y)} = (y)$ and $\sqrt{(x^2, xy, y^n)} = (x, y)$ will be the same for any primary decomposition.