LECTURE 14 — PRIMARY IDEALS II
Recall (a:2)={ye€ A|yx € a}.

Theorem (Uniqueness 1). Let a be a decomposable ideal, with minimal decompo-

sition
n
i=1

The prime ideals \/q; are precisely the prime ideals which can be written as /(a : x).

Corollary. FEvery minimal primary decomposition of a gives the same set of prime
ideals.

Definition. The ideals of the form ,/q; are the prime ideals associated with a.
Proof of Uniqueness theorem. The proof requires two reasonably simple lemmas.

Lemma (AM, Prop. 1.11). Ifp is a prime ideal, and a1,02,...,a, C A are prime
ideals such that
pCanN---Nap,
then a; C p for some i. If moreover
p=agN---Napy,
then p = a; for some 1.

To motivate the second one, note that if
n

a=()a
=1

then

n

Vierz) =v(nai o) = Vg 2) = () V(e ),

i=1

so we need to analyse (q; : x).

Lemma. Let q be a p-primary ideal. Then

o pifeda
(a:e) {(1)ifa:€q

Proof. If x € q, then (q: z) = (1).

Ifx¢gqandy € (q: ), then zy € q. Since q is primary, this implies that y™ € q
for some n, so y € p. Conversely, if ¢ q and y € p, then for some n > 1 we have
yreq=ayt eq=yt €(qia) =y e (q: ).

O

Now to prove the Uniquness theorem, assume that a = Ng; is a minimal primary
decomposition and that p; = \/gq;. Now assume that p = \/a: ) is a prime ideal —
we must show that p = p; for some i. We have, using Lemma 2, that

PZm\/(%’?m)zpnﬁpizﬁ”'ﬂpik,
i=1



where the set {i1,...,9x} is the set of ¢ for which z ¢ ¢;. Using Lemma 1, then
p = p;, for some j.

We must also show that for every prime ideal p;, we can find an 2 € A such that
p; = y/(a:x). Taking z € q; for all j # ¢ but = ¢ g, (which is possible since the
decomposition is minimal), we get that 1/(a: x) = p;. O

Example. The ideal (ry,y?) C k[z,y] can be given minimal primary decomposi-
tions

(2y,9%) = (2%, 2y.y*) N (y) = (2", 2y, %) N (y).
The associated primes are \/(z2,zy,y?) = (z,y) and /(y) = (y), and for each

n > 1 we have that \/(z", 2y, y?) = (z,y).

Definition. The set of prime ideals associated with a is partially ordered with
respect to inclusion, i.e. p < p’ if p C p’.

The minimal elements of this set are called the isolated or minimal prime
ideals associated with a, while the other ones are called embedded.

Example. In the decomposition (3%, zy) = (2%, 2y,5%) N (y), the we have (y) C
(z,y), so (y) is an isolated prime ideal, while (z,y) is embedded.

Proposition. The isolated prime ideals of a are exactly the prime ideals minimal
over a, i.e. the prime ideals p such that there is no prime ideal p’ with a C p’ C p.

Proof. Let t1,...,t, be the prime ideals which are minimal over a, let p1,...,py
be the prime ideals associated with a, ordered in such a way that p; is isolated for
i=1,...,m and embedded for i =m +1,...,n. The claim to be shown is

{tl, e ,tk} = {pl, Ce. 7p7n}~

We first show the inclusion C: Let p = t; 2 a be a minimal prime ideal containing
a, and assume a = Ng; is a minimal primary decomposition. We have

aCp=vVa=nyq =Np; Cp.

This implies by the lemma above that for some ¢, p; C p. But p being minimal over
a then implies that p; = p. Hence every prime ideal minimal over a is an isolated
prime ideal for a.

Now for the inclusion 2, let p; be an isolated prime ideal of a. Assume for a
contradiction that p; is not minimal over a, then there will be some minimal prime
ideal p’ such that a C p’ C p; (this requires a Zorn’s lemma argument). But by
the above we know p’ is associated with a, so then p; is not isolated, giving a
contradiction. O

Example. In our decompositions of (y%,zy) C k[z,y], we will always have two
components, of which one is (y) and the other could be (22, xy, ™) for any n. Our

uniqueness statement from today says that at least \/(y) = (y) and \/ (22, 2y, y") =
(z,y) will be the same for any primary decomposition.

Theorem. Assume A admits a primary decomposition of (0), and let p1,-+- ,pn

be the associated prime ideals of (0). Then

{r € A|x is a O-divisor} = U pi

i=1



Proof. Let
0)= ﬂ qi
i=1

be a minimal primary decomposition, with p; = \/4;.

Assume y & p; for any 4, and that xy = 0. Then g; being primary implies that
x € q4, and since this holds for all 4, we have € Ng; = (0), so z = 0. This means
y is not a O-divisor, proving the C inclusion of the theorem.

For the inclusion D, assume y € p; for some 7. There is some x € A such that

VAm(z) = /(0): 2) = p.

This means there is some n such that ™ € Ann(z), which means there is some n
such that y"z = 0. Taking ng to be the minimal such n, we have y™ 12 # 0, and
y(y™~lx) = y"ox = 0, which means y is a 0-divisor. O

Example. In the ring A = k[z,y]/(2y,4?), the ideal (0) has a primary decompo-
sition

(0) = @, 75,5°) N ().
with & and g the images of  and y in A. The associated primes ideals of (0) are
(z,9) and (), and so the set of O-divisors in A is

(Z,9) U (y) = (z,7) C A.

Theorem (Uniqueness 2). Let a be an ideal with primary decomposition

m Qis
i=1

with associated prime ideals p; = \/q;, and assume that p1,. .., P, are the minimal
prime ideals.
Then for each i with 1 <1i < m, we have
ql — a€C7
where extension and contraction are along the homomorphism A — A,, .
In particular, these q; are the same in any minimal primary decomposition.

Example. In the case of (zy,y?) and all its primary decompositions (2", zy, y?) N
(y), the primary ideal (y) is uniquely determined by (xy,y?).

Example. The ideal (zy) = (z) N (y) C k[z,y] can have no other minimal primary
decomposition, since both (z) and (y) are minimal over (zy).

Proof. The idea of the proof is the following simple lemma.

Lemma. Let p C A be a prime ideal, and assume that q is a primary ideal. We
consider the extension and contraction of ideals with respect to A — A,.

« If G b, then q¢ = (1), and 4 = (1),
o If \/q Cp, then q*° =q.
Now let p; be a minimal prime of a, and consider extension and contraction with

respect to A — A, . Since p; is minimal, we have for all i # j that \/q; = p; Z p;,
so g7 = (1), while q5° = q;.



Recall from the lecture on modules of fractions that localisation (the operation
a — a®) preserves finite intersections of ideals, as does contraction.

i=1



