LECTURE 15 — INTEGRAL DEPENDENCE

Recall that given a field extension k& C k', we say that an clement o € k' is
algebraic over k if there is a some polynomial f € k[x] such that f(«) = 0.
We now generalise this concept, but in a stronger form, to general rings.

Definition. Let A C B be rings, and let b € B. We say b is integral over A if we
can find a polynomial
f=a"4+ap_12" '+ +ax+ag, a; €A,
such that f(b) = 0.
Remark. It is crucial in this definition that the coefficient of 2™ is 1.

Example. Consider Z C Q. Then b € Q is integral over Z < z € Z.
<: If b € Z, then take f = 2 — b, so b is integral over Z.
=: Let b = p/q, and assume that ged(p,q) = 1. If

"+ cp 2" e =0,
then we get
P+ enap" gt 4 cog” = 0.

Since ¢ divides all the other terms, ¢ divides p™, and since ged(q,p) = 1 this can
only happen if ¢ = 1. Hence p/q € Z.

Example. Let k be a field, and consider k[z] C k(z). Then similarly f € k(z) is
integral over k[z] if and only if f € k[z]. The proof is exactly the same as in the
previous example: In k[x] we have unique factorisation into irreducibles, so we can
write f = p/q with p,q € k[z] having no common factor, and the rest of the proof
goes through.

Example. Given A C B, every element a € A is integral over A, by taking the
polynomial z — a.

Definition. Given A C B and b € B, we let A[b] C B be the smallest subring of
B containing A and b. Explicitly

k
Al ={>_a:b' |ai € A} C B.
i=1
More generally, given by,...,b, € B, we let

Alby, .o bn] = ) @iy, b bl [ a; € A} C B.

Theorem. Let A C B, and let b € B. The following are equivalent:
(1) b is integral over A.
(2) A[b] is a finitely generated A-module.
(3) There is a ring C with Ab] C C C B such that C is a finitely generated
A-module.

Proof. (1) = (2): The ring A[b] is generated by the infinite set 1,b,0%,---. If b is
integral, we can write
W= —(ak_lbkil + - +ag),
and therefore
bk+7n — (ak_lbk+m—1 N aobm)



So we can always express b*™ in terms of b’ for i < k + m. This gives that
1,b,...,b" ! generate A[b].

(2) = (3): Obvious, take C' = A[b].

(3) = (1): We need the following

Lemma (Ch. 2, Lemma 2.4). 7 Let M be a finitely generated A-module, gener-
ated by k elements, and let ¢: M — M be a homomorphism. Then we can find
ag, + ,ap_1 € A such that

O+ ap_ 10"+ 4+ ap =0 € Homy (M, M).
o ——
where ¢* = ¢o---0¢.
Take now M = C, ¢: C — C given by ¢(c) = bc. The lemma ensures that we
can find a; € A such that
O +ar_ 10"+ 4+ a9 =0 € Homu(C,C).
Inserting 1 € C' on both sides gives
Wt ap b 4 e =0,
S0 b is integral over A. O

Example. Consider Z C Q again, and take for instance % € Q. In this case % is
not integral over Z, and equivalently the ring

Z[1/2] =Z> C Q
is not a finite Z-module.

Proposition. Assume by, by € B are integral over A. Then Alby,bs] is a finitely
generated A-module.

Proof. Consider the chain of rings

AC Alby] € Alby.bs] € B
Then by is integral over A = by is integral over A[by], so A[by,bs] = A[b1][bs]
is a finitely generated A[b;]-module. If it is generated by c1,...,cx and A[b] is

generated as an A-module by dy,...,d;, one checks that A[by,bs] is generated as
an A-module by {c;d;}:

k
w € Abi,bo) = x =) fici, [fi € Alb]
i=1
k1
= ZZaijcidj.
i=1 j=1

Tt is perhaps useful to think of this lemma as a version of the Cayley—Hamilton theorem. If A
is an (n X n) matrix with coefficients in a field k, then recall its characteristic polynomial is given
by

det(zl, — A) =a" + an_12" "L +--- 4+ ap € k[z],
where for instance an,—1 = —tr(A) and a9 = (—1)™ det(A). The Cayley—Hamilton theorem says
that we have an equality of (n X n)-matrices

A" 4 an_1 A" T4 ag=0.



O

Corollary. Let A C B. The set of elements of B which are integral over A forms
a subring of B.

Proof. We must show that given by,bs € B integral over A, then also b; &+ by and
b1by are integral over A. But b; and by being integral over A implies A[by,bo] is
a finitely generated A-module, and we have by + bo,biby € A[by,bs]. These then
satisfy condition (3) of the theorem above, so are integral. O

Definition. Given A C B, we call the ring
C = {b e B|b integral over A}

the integral closure of A in B. If A is equal to its integral closure, we say it is
integrally closed in B.

Proposition. The integral closure C' of A in B is itself integrally closed in B.
Proof. Assume b € B is integral over C, then we can write
V' +cp D" P44 g =0, ¢ eC.

We have that b is integral over Alcg, - ,cn—1], so Alco, - ,¢n—1,b] is a finitely
generated Alcg, -+, cn—1]-module. The ring Alcg, - ,cp—1] is itself a finitely gen-
erated A-module, since the ¢; are integral over A. Then Alcg,- - ,cn_1,b] is a
finitely generated A-module. Therefore b is integral over A, so b € C. O

Example. The ring Z is integrally closed in Q.

Example. The integral closure of Z in C is called the ring of algebraic integers,
i.e. a complex number z is an algebraic integer if we can find integers ag,- -+, an—1
such that

2 ap_12" T o+ ag.

The most important special case is the following. Given an integral domain A,
it is contained in its field of fractions K. We say A is integrally closed if it is
integrally closed in K.

Example. The ring Z, and more generally every unique factorisation domain, is
integrally closed.

Example. The ring Z[/5] is not integrally closed (which means that it does not
have unique factorisation). The fraction field

K:{a+b\/5
c+dvs

and in particular we have the golden ratio ¢ = 1+—2\/5 € K. But we have

| a,b,¢,d € Z} = Q(v5) C R,

¢’ —p—1=0,
so ¢ is integral over Z, hence over Z[v/5]. One checks that ¢ & Z[/5].

Example. Consider the ring k[2?, 23] C k[z]. Concretely, we have

k[z?, 2% = {Z a;z' | a; € kya; = 0}.
i=0



Let K be the fraction field of k[z2, 23]. We have an element a = 23/2? € K, and
moreover

a® = a*/2? = 2?1,
S0 a is a zero of the polynomial ¢* — 22, This shows that a is integral over k[z?, z
One can also check that a € k[22, 23], so k[z?, 23] is not integrally closed.
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