LECTURE 16 — MORE ON INTEGRAL DEPENDENCE -+ CHAIN CONDITIONS

Recall the notions of integral dependence and integral closure from last week.
‘We round out the section on integral dependence with the claim that for an integral
domain A, being integrally closed is a local property.

Theorem. Let A be an integral domain. Then the following are equivalent:
(1) A is integrally closed.
(2) A, is integrally closed for all prime ideals p C A.
(3) Aw is integrally closed for all mazimal ideals m C A.

The proof goes via understanding how integrality behaves with respect to taking
fraction rings more generally.

Proposition. Let A C B be rings, and let C' C B be the integral closure of A in B.
Let S C A be a multiplicatively closed subset. Then S™'C C S™'B is the integral
closure of ST1A in ST1B.
Proof. Let D C S™'B be the integral closure of S™'A in S™'B. We want D =
s-1c.

D C S71C: If b/s € D, then b/s is integral over S™1A, and so we can find
a; € A, s; € S, such that

(b/8)" + (an—1/sn-1)(b/s)" ' 4 -+ + ZT()) =0.

Multiplying by (ssn—1---S0)" gives us a relation
(bsp—1-++80)" + dpn_1(bsp—1++-80)" "L+ + dobsp_1- - S0
1
in S™'A. This means that there is some t € S such that the relation

t((bb‘n_l cee So)n + dn—l(bsn—l v So)n_l + -4 dobb’n_l v 30) =0

holds in A. Multiplying by t*~! we get that bs,_1 - - - st is integral over A, and so
bs,_1---sot € C, which implies that b/s € S~1C.
S~IC C D: Given ¢ € C and s € S, we have a relation

:07

a1 ag =0 a; € A,
which implies that

C n C n—1
() s () s
s s
hence § is integral over S—1'A. It follows that S~'C C D. O

Corollary. If A is an integral domain and C' is the integral closure of A in the
fraction field K, then for any prime ideal p C A, we have that C, C K is the
integral closure of A, in K.

Proof of theorem. Let K be the fraction field of A, and let C be the integral closure.
If A=C, then also A, = C,, so we get (1) = (2).

(2) = (3) is obvious since maximal ideals are prime.

To get (3) = (1), we know that being surjective is a local property. The inclusion
map ¢: A — C is an A-module homomorphism. By assumption (3), all A, are
integrally closed, which means ¢, : A, — Cly is surjective. Since being surjective is
a local property, it follows that ¢ is surjective, and hence A is integrally closed. O



Example. Recall that k[z?, 23] C k[] is an integral domain which is not integrally
closed. The fraction field of A is identified with k(z), so we have

k[z? 2% C k[z] C k(x),
Now z € k(z)\ k[x?, 23] is integral over k[z?, 2%
t? — 2? € k[2?, 2%)[t].

Since z is integral over k[z2, 23], it is also integral over all the bigger rings

k[z?,2%], C k(x) for various primes p. Letting m = (z%,2%), one can check that

x & k[22, 23], and therefore k[2?, 23]y, is not integrally closed.

, since z is a zero of the polynomial

CHAIN CONDITIONS

Our theory so far has mostly been developed for arbitrary rings. The motivation
for the field of commutative algebra, both historically and in practice, is mostly
drawn from number theory and algebraic geometry, where the rings which appear
are “reasonably small”. In order to develop the theory further, we now begin intro-
ducing these smallness conditions. The elegant formulation of these conditions is
in terms of chains of subobjects.

Lemma. Let (S,>) be a partially ordered set. The following two conditions are
equivalent:

o Fuvery sequence s1 < so < s3 < --- stabilises, that is there is some N such
that s; = sy for alli > N.
o FEvery nonempty subset T C S contains a mazimal element of T

Recall an element ¢ € T is maximal if there is no ¢/ € T with ¢/ > t.

Proof. (1) = (2): Suppose T' C S contains no maximal element. This means that
for every t € T, we can choose an f(t) € T with f(t) > t. Take now the sequence

s1 =t,82 = f(t),ss = f(f(t)), -

which does not stabilise, so contradicts (1).

(2) = (1): Given a sequence s; < s < ---, let T' = {s;}2,. By (2) there is
a maximal element, say sy, and since s; > sy for i > N, we have s; = sy for
i> N. O

Definition. Let A be a ring and let M be an A-module, and let S be the set of
submodules of M.

e We say M is Noetherian if the set S, partially ordered by M’ < M" if
M' C M”, satisfies either condition above.

e We say M is Artinian if the set S, partially ordered by M’ < M”" if
M’ D M", satisfies either condition above.

In concrete terms, M is Noetherian if it satisfies the ascending chain condi-
tion: Every sequence
My C My C M3 2 ---
of submodules stabilises, or equivalently, every set T of submodules has a maximal
element.
The module M is Artinian if it satisfies the descending chain condition, every
sequence of submodules
My 2 My 2D M3 2 ---



stabilises. Equivalently, every set T' of submodules has a minimal element.

Definition. A ring A is called Noetherian (resp. Artinian) if it is Noetherian
(resp. Artinian) as an A-module.

Example. The ring Z is Noetherian, but not Artinian. A submodule of Z is an
ideal (n). An ascending chain looks like

(n1) € (n2) € (n3) C--- .
The containment (n;) C (n;+1) implies that n;yq1 divides n;, so njy1 < n;. The

sequence must then clearly stabilise.
The ring Z is not Artinian, since

22@)2@®)2

=

does not stabilise.

Example. Let k be a field, and let M be a k-module (vector space). Then M is
Noetherian if and only if M is Artinian if and only if M has finite dimension.

Example. The ring C(R) of smooth functions on R is neither Artinian nor Noe-

therian, since
1) 2 (@) 2 @),
and
(sin(z)) C (sin(z/2)) S (sin(z/4)) C (sin(z/8)) & -
This example is mainly to show that the rings appearing outside of algebra typically
satisfy none of the smallness conditions we want.

Proposition. Let M be an A-module. Then M is Noetherian if and only if every
submodule of M is finitely generated.

Proof. Assume that M is Noetherian, and let M’ C M be a submodule. Let
T={NCM'|M" a finitely generated submodule of M’}.

By the Noetherian hypothesis, there is a maximal element N, € T'. Assume for
a contradiction that N4, # M’. Then there is an m € M’ \ Ny,4z, SO

Niaz € N = Nppaz + Am C M,

and N is still finitely generated, so N € T. This contradicts the maximality of
Nppaz, 80 we have our contradiciton, and N,,,, = M’, which means M’ is finitely
generated.

Assume that every submodule M’ C M is finitely generated. Let

My CMy; C M3 C---

be a chain of submodules, and let

o0
M =M C M
i=1
Then M’ is by assumption finitely generated, say by my, ..., m,. We must then
have m; € My, for certain k;, and taking k = max(kq,...,ky), we have my,...,m, €
M;,. But then M;, = M’, and the chain stabilises at Mj,. O



