8. LECTURE 17 — CHAIN CONDITIONS II
Theorem. Let 4
0—-M SMEB M =0
be a short exact sequence of A-modules. Then
M Noetherian < M’ and M" Noetherian.
and
M Artinian < M’ and M" Artinian.

Proof. We only do the statement for te Noetherian condition, the Artinian case is
exactly the same.
=: If
M{ C Mé C.--
is a chain of submodules of M’, then
i(M]) C (M) C -

is a chain of submodules of M. Since M is Noectherian, the latter stabilises, so the
first one must as well.

If
M{ C Mé C---
is a chain of submodules of M”, then
pH (M) CpTH(Mg) C -

is a chain of submodules of M. Since M is Noetherian, the latter stabilises, so the
first one must as well.
<: If
My C M, C -

is a chain of submodules, then we get chains
PN (M) i (M) C -

and

p(M:1) S p(Mz) C---.
Both of these stabilise, so for some N we have that for all i > IV, then

(M) =i (M)
and

p(M;) = p(M;41).

Claim: It follows that M; = M;, ;. It is not hard to prove this directly,® but for
fun we can use the snake lemma on this:

0 — i Y (M;) ——s My —2— p(M;) —— 0

I Js I

0 —— i Y (M) —— Miy1 —2— p(M;y1) — 0.

8If m € M; 1, then p(m) € p(M;y1) = p(M;), so there is some m’ € M;,, such that
p(m) = p(m'). But then p(m —m’) = 0, so there is some m' € M, such that i(m”) =m —m/.
Since i "' M, 11 = i~ M;, we have that m’” € M, and therefore m = m/ +i(m’") € M;.



The snake lemma gives an exact sequence
0 — ker f' — ker f — ker " — cok f' — cok f — cok f" — 0,

and since cok f' = cok f” = 0, we get that cok f = 0, so f is surjective. We've
shown that the sequence M; stabilises. ([l

Corollary. If My,..., M, are Noetherian (resp. Artinian) A-modules, then so is
=3
=1

Proof. Inductively prove that @Zlei is Noetherian, using the exact sequence

Jj+1 J
0— M = @M — P M —o.
=1 =1

O

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let M be a finitely
generated A-module. Then M is Noetherian (resp. Artinian).

Proof. A is Noetherian = A" is Noetherian. There is some surjective homomor-
phism ¢: A™ — M, and the short exact sequence

0—>kerp > A" - M — 0
shows that M is Noetherian. O

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let a C A be an
ideal. Then A is Noetherian (resp. Artinian).

Proof. The ring A/a has structure as an A/a-module and an A-module. A set
M C A/ais an A/a-submodule if and only if it is an A-submodule, since

alx+a)eM VacAx+aelM
is the same condition as
(a+a)(z+a) Yata€c A/a,z+ac M.

Since A/a is a Noetherian A-module, it is then also a Noetherian A/a-module,
i.e. Noetherian as a ring. O
COMPOSITION SERIES

Definition. A module M is simple if it has no proper nontrivial submodules.

Example. If A is a ring with a maximal ideal m C A, then A/m is a simple A-
module: If 0 € M C A/m is a chain of modules, and p: A — A/m is the projection,
then

pH(0)=m Cp (M) Cpi(A/m) = A
is a chain of submodules (ideals) of A. Since m is maximal, then either p~!(M) =m
or p~1(M) = A, which implies M =0 or M = A/m.

Remark. One can show that every simple A-module is isomorphic to one of the
form A/m.



Definition. A composition series of a module M is a finite chain
M=My2 M 2 G My 2 M, =0,
which is maximal, that is it cannot be extended to a longer chain by inserting
M; 2 M' G M.
Equivalently, maximality means that M;/M,; is simple for each i. The length of

a composition series is n, the number of pieces M; /M, appearing.

Example. Let p be a prime, k > 1, and consider the Z-module Z/(p*). This has
a composition series of length k, given by

Z/®*) 2 (0)/®") 2 ®*)/®*) 2--- 2 ")/ (") =0.
The quotients are ((p*)/(p*))/(p™)/(P*) = (p")/(p"*") = Z/p, so are simple.

Example. Let p and ¢ be primes, and consider the module Z/(pgq). This has two
compositions series

Z/(pq) 2 (p)/(pq) 2 (pq)/(pg) =0
and

Z/(pq) 2 (¢)/(pq) 2 (pq)/(pg) =0

Proposition. Let M be a module with a composition series of length n. Then
every composition series has length n, and every chain

M=My2DM 2---2M,=0
can be extended to a composition series by adding finitely many modules M’ with
M; DM 2 M.
Proof. Let I(N) be the function on modules defined as the minimal length of a
composition series of N (400 if N has no composition series).
Lemma. If N C M, then I(N) < l(M).
Proof. Let

M=My2M 22 Mu=0
be a composition series of minimal length. We claim
N=MyNNDOMNOND2D---2Mu)yNN=0

contains a composition series of N, in the sense that we can find

O=jo<j1<-<jg <UM)
such that

N=M, "N2ODM;; "NN2D---2M; "NN=0

is a composition series. For every i, we have a homomorphism

¢: M; "N — M,; — Mi/MH-lv
with

kerqb = Mi+1 N N.

and with

im¢ = M;/M;+1 or im¢ =0,



since M; /M, is simple. Hence

(Mi O N)/(Mit1 N N) = (M; N N)/ker ¢ = im ¢ {Mi/Miﬂ( Case 1)
0 Case 2.

In Case 1, we have

NNOM; =NNM;;q
and in Case 2,

(NNM;) /(NN M)
is simple. Taking the sequence

NﬂMo;zNﬂMjl QNOMJ‘Q QQNQMM =0,
where 0 = jo < j1 < --- < jg < I(m) are the indices such that NNM;, # NNM;, _1,
we have produced a composition series of N of length k < I[(M), proving I(N) <
1(M).
Now as N C M, we have
N=NNMy+# My= M,
while
0=NnN ]\41(]\,[) = MZ(M) =0.
Let ¢ > 0 be the smallest number such that N N M; = M;. Then we have
M, 1 2NNM,_1 DNNM; =M,
which shows that N N M;_1 = N N M;, so i is not in the set {jl}le Hence k =
I(N) <1(M). O
Now if M has a chain of length n, we have
Z(M) = l(M()) > Z(Ml) > > l(Mn) =0,
so [(M) > n. But by definition (M) < n, so [(M) = n.
If
M=My2 - 2M,=0
is a chain of length n < (M), then by definition of (M) it cannot be a composition
series, so we can extend it. O



