Theorem. Let

$$0 \to M' \xrightarrow{i} M \xrightarrow{p} M'' \to 0$$

be a short exact sequence of A-modules. Then

M Noetherian $\Leftrightarrow M'$ and M'' Noetherian.

and

M Artinian $\Leftrightarrow M'$ and M'' Artinian.

Proof. We only do the statement for te Noetherian condition, the Artinian case is exactly the same.

⇒: If

$$M_1' \subseteq M_2' \subseteq \cdots$$

is a chain of submodules of M', then

$$i(M_1') \subseteq i(M_2') \subseteq \cdots$$
.

is a chain of submodules of M. Since M is Noetherian, the latter stabilises, so the first one must as well.

If

$$M_1' \subseteq M_2' \subseteq \cdots$$

is a chain of submodules of M'', then

$$p^{-1}(M_1') \subseteq p^{-1}(M_2') \subseteq \cdots.$$

is a chain of submodules of M. Since M is Noetherian, the latter stabilises, so the first one must as well.

⇐: If

$$M_1 \subseteq M_2 \subseteq \cdots$$

is a chain of submodules, then we get chains

$$i^{-1}(M_1) \subseteq i^{-1}(M_2) \subseteq \cdots$$

and

$$p(M_1) \subseteq p(M_2) \subseteq \cdots$$
.

Both of these stabilise, so for some N we have that for all $i \geq N$, then

$$i^{-1}(M_i) = i^{-1}(M_{i+1})$$

and

$$p(M_i) = p(M_{i+1}).$$

Claim: It follows that $M_i = M_{i+1}$. It is not hard to prove this directly,⁸ but for fun we can use the snake lemma on this:

$$0 \longrightarrow i^{-1}(M_i) \stackrel{i}{\longrightarrow} M_i \stackrel{p}{\longrightarrow} p(M_i) \longrightarrow 0$$

$$\downarrow^{f'} \qquad \qquad \downarrow^{f''} \qquad \qquad \downarrow^{f''}$$

$$0 \longrightarrow i^{-1}(M_{i+1}) \stackrel{i}{\longrightarrow} M_{i+1} \stackrel{p}{\longrightarrow} p(M_{i+1}) \longrightarrow 0.$$

⁸If $m \in M_{i+1}$, then $p(m) \in p(M_{i+1}) = p(M_i)$, so there is some $m' \in M_{i+1}$ such that p(m) = p(m'). But then p(m-m') = 0, so there is some $m'' \in M'_{i+1}$ such that i(m'') = m - m'. Since $i^{-1}M_{i+1} = i^{-1}M_i$, we have that $m'' \in M'_i$, and therefore $m = m' + i(m'') \in M_i$.

The snake lemma gives an exact sequence

$$0 \to \ker f' \to \ker f \to \ker f'' \to \operatorname{cok} f' \to \operatorname{cok} f \to \operatorname{cok} f'' \to 0$$
,

and since $\operatorname{cok} f' = \operatorname{cok} f'' = 0$, we get that $\operatorname{cok} f = 0$, so f is surjective. We've shown that the sequence M_i stabilises.

Corollary. If M_1, \ldots, M_n are Noetherian (resp. Artinian) A-modules, then so is

$$\bigoplus_{i=1}^{n} M_i.$$

Proof. Inductively prove that $\bigoplus_{i=1}^{j} M_i$ is Noetherian, using the exact sequence

$$0 \to M_{j+1} \to \bigoplus_{i=1}^{j+1} M_i \to \bigoplus_{i=1}^{j} M_i \to 0.$$

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let M be a finitely generated A-module. Then M is Noetherian (resp. Artinian).

Proof. A is Noetherian $\Rightarrow A^n$ is Noetherian. There is some surjective homomorphism $\phi \colon A^n \to M$, and the short exact sequence

$$0 \to \ker \phi \to A^n \to M \to 0$$

shows that M is Noetherian.

Proposition. Let A be a Noetherian (resp. Artinian) ring, and let $\mathfrak{a} \subseteq A$ be an ideal. Then A is Noetherian (resp. Artinian).

Proof. The ring A/\mathfrak{a} has structure as an A/\mathfrak{a} -module and an A-module. A set $M \subset A/\mathfrak{a}$ is an A/\mathfrak{a} -submodule if and only if it is an A-submodule, since

$$a(x + \mathfrak{a}) \in M \quad \forall a \in A, x + \mathfrak{a} \in M$$

is the same condition as

$$(a + \mathfrak{a})(x + \mathfrak{a}) \quad \forall a + \mathfrak{a} \in A/\mathfrak{a}, x + \mathfrak{a} \in M.$$

Since A/\mathfrak{a} is a Noetherian A-module, it is then also a Noetherian A/\mathfrak{a} -module, i.e. Noetherian as a ring.

Composition series

Definition. A module M is **simple** if it has no proper nontrivial submodules.

Example. If A is a ring with a maximal ideal $\mathfrak{m} \subset A$, then A/\mathfrak{m} is a simple A-module: If $0 \subseteq M \subseteq A/\mathfrak{m}$ is a chain of modules, and $p: A \to A/\mathfrak{m}$ is the projection, then

$$p^{-1}(0) = \mathfrak{m} \subseteq p^{-1}(M) \subseteq p^{-1}(A/\mathfrak{m}) = A$$

is a chain of submodules (ideals) of A. Since \mathfrak{m} is maximal, then either $p^{-1}(M) = \mathfrak{m}$ or $p^{-1}(M) = A$, which implies M = 0 or $M = A/\mathfrak{m}$.

Remark. One can show that every simple A-module is isomorphic to one of the form A/\mathfrak{m} .

Definition. A composition series of a module M is a finite chain

$$M = M_0 \supseteq M_1 \supseteq \cdots \subseteq M_{n-1} \supseteq M_n = 0,$$

which is maximal, that is it cannot be extended to a longer chain by inserting

$$M_i \supseteq M' \subseteq M_{i+1}$$
.

Equivalently, maximality means that M_i/M_{i+1} is simple for each i. The length of a composition series is n, the number of pieces M_i/M_{i+1} appearing.

Example. Let p be a prime, $k \ge 1$, and consider the \mathbb{Z} -module $\mathbb{Z}/(p^k)$. This has a composition series of length k, given by

$$\mathbb{Z}/(p^k) \supseteq (p)/(p^k) \supseteq (p^2)/(p^k) \supseteq \cdots \supseteq (p^k)/(p^k) = 0.$$

The quotients are $((p^i)/(p^k))/(p^{i+1})/(p^k) \cong (p^i)/(p^{i+1}) \cong \mathbb{Z}/p$, so are simple.

Example. Let p and q be primes, and consider the module $\mathbb{Z}/(pq)$. This has two compositions series

$$\mathbb{Z}/(pq) \supseteq (p)/(pq) \supseteq (pq)/(pq) = 0$$

and

$$\mathbb{Z}/(pq) \supseteq (q)/(pq) \supseteq (pq)/(pq) = 0$$

Proposition. Let M be a module with a composition series of length n. Then every composition series has length n, and every chain

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_k = 0$$

can be extended to a composition series by adding finitely many modules M' with $M_i \supseteq M' \supseteq M_{i+1}$.

Proof. Let l(N) be the function on modules defined as the minimal length of a composition series of N ($+\infty$ if N has no composition series).

Lemma. If $N \subsetneq M$, then l(N) < l(M).

Proof. Let

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{l(M)} = 0$$

be a composition series of minimal length. We claim

$$N = M_0 \cap N \supseteq M_1 \cap N \supseteq \cdots \supseteq M_{l(M)} \cap N = 0$$

contains a composition series of N, in the sense that we can find

$$0 = j_0 < j_1 < \cdots < j_k \le l(M)$$

such that

$$N = M_{j_0} \cap N \supsetneq M_{j_1} \cap N \supsetneq \cdots \supsetneq M_{j_k} \cap N = 0$$

is a composition series. For every i, we have a homomorphism

$$\phi \colon M_i \cap N \hookrightarrow M_i \to M_i/M_{i+1},$$

with

$$\ker \phi = M_{i+1} \cap N.$$

and with

$$\operatorname{im} \phi = M_i/M_{i+1} \text{ or } \operatorname{im} \phi = 0,$$

since M_i/M_{i+1} is simple. Hence

$$(M_i \cap N)/(M_{i+1} \cap N) = (M_i \cap N)/\ker \phi \cong \operatorname{im} \phi \begin{cases} M_i/M_{i+1} (\text{ Case } 1) \\ 0 \text{ Case } 2. \end{cases}$$

In Case 1, we have

$$N \cap M_i = N \cap M_{i+1}$$

and in Case 2,

$$(N \cap M_i)/(N \cap M_{i+1})$$

is simple. Taking the sequence

$$N \cap M_0 \supseteq N \cap M_{j_1} \supseteq N \cap M_{j_2} \supseteq \cdots \supseteq N \cap M_{j_k} = 0,$$

where $0 = j_0 < j_1 < \cdots < j_k \le l(m)$ are the indices such that $N \cap M_{j_k} \ne N \cap M_{j_{k-1}}$, we have produced a composition series of N of length $k \le l(M)$, proving $l(N) \le l(M)$.

Now as $N \subsetneq M$, we have

$$N = N \cap M_0 \neq M_0 = M$$
,

while

$$0 = N \cap M_{l(M)} = M_{l(M)} = 0.$$

Let i > 0 be the smallest number such that $N \cap M_i = M_i$. Then we have

$$M_{i-1} \supseteq N \cap M_{i-1} \supseteq N \cap M_i = M_i,$$

which shows that $N \cap M_{i-1} = N \cap M_i$, so i is not in the set $\{j_l\}_{l=1}^k$ Hence k = l(N) < l(M).

Now if M has a chain of length n, we have

$$l(M) = l(M_0) > l(M_1) > \dots > l(M_n) = 0,$$

so $l(M) \ge n$. But by definition $l(M) \le n$, so l(M) = n.

$$M = M_0 \supseteq \cdots \supseteq M_n = 0$$

is a chain of length n < l(M), then by definition of l(M) it cannot be a composition series, so we can extend it.