LECTURE 18 — FINITE LENGTH MODULES, NOETHERIAN RINGS

Recall a composition series for a module M is a chain
M:MOQMI 2"'2Mn:O,

such that every quotient M;/M;; is simple, that is admits only 0 and M;/M;41
as submodules.
We stated and almost proved

Proposition. If M admits a composition series of length n, then every composition
series of M has length n, and every chain

M=My2DM 2---2M,=0
satisfies
(1) k <mn,
(2) if k <n, then the chain can be extended to a composition series by adding
modules.

Definition. The length of a module M, denoted (M), is the length of any com-
position series of M, and oo if M admits no composition series.

Remark. Worth knowing, but not something we will prove or focus on, is the
Jordan—Holder theorem. This says that given two composition series M; and M/

of a module M, the isomorphism classes of modules appearing in {M; /]\/[,-Jrl},ll.(:]‘f)

and {M//M] +1}2(:Af) are the same. A given isomorphism class appears the same
number of times in each of the two sets.

Example. Given distinct primes p and ¢, the two composition series for Z/(pq)
are

Z/(pq) 2 (p)/(pq) 20

and
Z/(pq) 2 (¢)/(pq) 2 0.
We have
(Z/(p9))/((p)/(pe)) = Z/p, ((p)/(pqg))/0=17Z/q
and

(Z/(pq))/((q)/(pa)) = Z/q, ((q)/(pq))/0=Z/p.

Proposition. Let M be a module. Then M has finite length < M is Noetherian
and Artinian.

Proof. =: Any increasing sequence has at most {(M) distinct terms, similarly for
a decreasing sequence.

<: Define a descending chain as follows: Let My = M, and let M; be a maximal
submodule of M not equal to M. This exists because M is Noetherian. Inductively
define M;;1 as a maximal submodule of M; among those not equal to M;. The
sequence My 2 M7 2D My 2 --- cannot be extended indefinitely, since M is Ar-
tinian, hence we eventually have M,, = 0. Then M; defines a composition series for
M. O

Proposition. Given a short exact sequence of modules
. p
0—-M 5 M— M -0,
we have I(M) =1(M") +1(M").



Proof. The case where one of [(M),l(M’) or I(M") is co can be handled by the
previous proposition and the fact that M is Noetherian (resp. Artinian) if and only
if M and M" are.

Hence we can assume that M’, M and M" are all of finite length. Take a
composition series M; for M’ and M} for M". These induce the following sequence
of submodules of M:

M =p t(Mg) 2 p~ (MY) 2 - p~ H(M{{pm)) = p~1(0) = i(M')

= i(Mg) 2 i(M) 2 -+ i(M(pry) = 0.
Since
pTHM) [pTH (M) = MM
and
i(M7) /i( M) = M /M,
this gives a composition series of length I[(M’) + I(M") for M. O

NOETHERIAN RINGS

Recall a ring A is Noetherian if either of the following equivalent conditions hold

(1) Every ascending chain of ideals stabilises.
(2) Every set of ideals has a maximal element.
(3) Every set of ideals is finitely generated.

We have shown that the class of Noetherian rings is closed under quotients, i.e. if
A is Noetherian and a C A is an ideal, then so is A/a.

Proposition. Let A be a ring, and let S C A be a multiplicative closed subset. The
if A is Noetherian, so is S™1A.

Proof. Every ideal in S71A is of the form a¢, where a C A is an ideal and extension
is along A — S~'A. Since A is Noetherian, we can write a = (a1,...,a,), and then
a¢ = (a1 /1, ,a,/1). Hence every ideal of S™!A is finitely generated. O

Theorem (Hilbert’s basis theorem). Let A be a Noetherian ring. Then Alz] is
Noetherian.

Proof. For any ideal a C Alz], define
an = {a, € A apz"™ +a, 12"+ +ag € a}.

In words, a,, is the set of leading terms of degree n polynomials in a.

Easy clatim 1: a, C A is an ideal.

Easy claim 2: a,, C a,41 for every n.

Since A is Noetherian, there is an NV such that a, = a.,, for all n > N, i.e. we
have

G CaC---Cav=anyp1 S
Now for each i =0,..., N, we can find a finite set of generators a; ; € A for a;, so
that e.g.
(ui,h cee 7“11@) =a;

For each 7, j, the fact that a; ; € a; means there is an f; ; € a such that

fi.j = a; 32" + lower order terms.



Main claim: We have a = (f;;)i;. Let g € a, we need to show g € (f; ;)i -
Arguing by induction on deg g, starting from degg = —oo where g = 0. There are
two cases:

e degg < N: Writing
g = a;x" + lower order terms,

we have a; € a;. We can then write
ki
a; = Zciam, c; € A.
j=1
Considering
ki
g =g-— Z cifi; = (ai— Z cl-ai,j)x" + lower order terms,
j=1

we have deg g’ < degg, and clearly ¢’ € a. By induction on degree ¢’ €
(fij)s0 g € (fi)
o If degg > N, take instead

TN

/ d —-N
g =9-Y cifnalEN,
Jj=1

and conclude similarly.
O
Example. Consider the case of a field k. Then for any ideal a C k[z], we have
a; = (0) or a; = (1). We thus get
O=ap=0a;=---=an_1 galV:(l):a1V+1:"' X
In this case the proof above says: Take a generator ay 1 ay. Choose an fn1 € ay
such that
fvi= aNylxN + lower order terms.
Then a = (fn,1).

Corollary. If A is a Noetherian ring, then so is Alxy,...,Ty].

Proof. A Noetherian = A[z1] Noetherian = A[z1, 2] = A[z1][z2] Noetherian and
SO on. 0

Corollary. If A is Noetherian and B is an A-algebra of finite type, then B is
Noetherian.

Proof. B is of finite type if it is isormorphic (as A-algebra) to A[zy,...,x,]/a. Now
A Noetherian = A[xy,...,x,] Noetherian = Alzq,...,z,]/a Noetherian. O



