2. Lecture 2 – Prime and Maximal ideals, radicals

Theorem. Let A be a ring. The following are equivalent:

- (1) A is a field.
- (2) A has exactly two ideals, $(0) \neq (1)$.
- (3) Every homomorphism $\phi: A \to B$ with $B \neq 0$ is injective.

Proof. (1) \Rightarrow (2), since if $I \subset A$ is an ideal with $I \neq (0)$, there is an $a \neq 0$ in I. Since A is a field, there is an element $b \in A$ with ab = 1, hence $1 \in I$. Then for every $c \in A$, we have $c = c1 \in I$, so I = A = (1).

 $(2) \Rightarrow (3)$ If $B \neq 0$, then $1 \neq 0$ in B. Since $\phi(1) = 1$, we have $1 \notin \ker \phi$, and so $\ker \phi \neq (1)$. Hence $\ker \phi = (0)$, which means ϕ is injective.

$$(3) \Rightarrow (1)$$
 Omitted

2.1. Prime and maximal ideals.

Definition. Let A be a ring, and let $\mathfrak{a} \subseteq A$ be an ideal. We say \mathfrak{a} is a

- **prime** ideal if, for any $a, b \in A \setminus \mathfrak{a}$ we have $ab \notin \mathfrak{a}$
- maximal ideal if $\mathfrak{a} \neq (1)$, and the only ideal containing \mathfrak{a} is (1).

Example. In \mathbb{Z} , the prime ideals are (0) and (p) for primes p. These are prime since

$$a,b\not\in(0)\Leftrightarrow a,b\neq0\Rightarrow ab\neq0\Leftrightarrow ab\not\in(0)$$

and

 $a,b \not\in (p) \Leftrightarrow p$ does not divide $a,b \Rightarrow p$ does not divide $ab \Leftrightarrow ab \not\in (p)$

The maximal ideals are the ideals (p), for all primes p.

Example. Let k be a field. The ideals of k[x] are all principal. An ideal $(f) \subseteq k[x]$ is

- prime if f is irreducible or f = 0.
- \bullet maximal if f is irreducible.

Proposition. (1) An ideal $\mathfrak{a} \subseteq A$ is prime if and only if A/\mathfrak{a} is an integral domain.

- (2) It is maximal if and only if A/\mathfrak{a} is a field.
- *Proof.* (1) If \mathfrak{a} is prime, then given $a, b \in A \setminus \mathfrak{a}$, we have $ab \notin \mathfrak{a}$. Then $(a + \mathfrak{a})(b + \mathfrak{a}) = ab + \mathfrak{a} \neq 0 + \mathfrak{a} \in A/\mathfrak{a}$. Conversely, if \mathfrak{a} is not prime, there exist $a, b \in A \setminus \mathfrak{a}$ such that $ab \in \mathfrak{a}$, which gives that $(a + \mathfrak{a})(b + \mathfrak{a}) = 0$ in A/\mathfrak{a} , proving A/\mathfrak{a} is not an integral domain.
 - (2) A/\mathfrak{a} is a field $\Leftrightarrow A/\mathfrak{a}$ has exactly two ideals \Leftrightarrow There are exactly two ideals in A containing $\mathfrak{a} \Leftrightarrow \mathfrak{a}$ is maximal

Corollary. Every maximal ideal is a prime ideal.

Proof. \mathfrak{a} maximal $\Leftrightarrow A/\mathfrak{a}$ a field $\Rightarrow A/\mathfrak{a}$ an integral domain $\Leftrightarrow \mathfrak{a}$ a prime ideal. \square

Example. Let k be a field, let $a_1, \ldots, a_n \in k$ and consider the homomorphism $\phi \colon k[x_1, \ldots, x_n] \to k$ given by $\phi(f) = f(a_1, \cdots, a_n)$, i.e. evaluate the polynomial f by substituting a_i for x_i . This ϕ is surjective, and the ideal ker ϕ is maximal, since

$$k[x_1,\ldots,x_n]/\ker\phi\cong\operatorname{im}\phi=k,$$

which is a field.

2.2. Existence of maximal ideals.

Theorem. Let A be a non-zero ring. There exists a maximal ideal $\mathfrak{m} \subseteq A$.

Corollary. If $\mathfrak{a} \subset A$ is an ideal and $\mathfrak{a} \neq (1)$, then there is a maximal ideal \mathfrak{m} containing \mathfrak{a} .

Proof. A/\mathfrak{a} has a maximal ideal, which under the correspondence between ideals of A and those of A/\mathfrak{a} gives a maximal ideal containing \mathfrak{a} .

Corollary. Let f be a ring. Then f is a non-unit if and only if f is contained in a maximal ideal.

Proof. f a non-unit \Leftrightarrow $(f) \neq (1) \Leftrightarrow (f) \subseteq \mathfrak{m}$ for a maximal $\mathfrak{m} \Leftrightarrow f \in \mathfrak{m}$ for a maximal \mathfrak{m} .

The proof of the theorem uses **Zorn's lemma**.

Definition. A partially ordered set is a set S and a binary relation \leq on the elements of S such that

- (1) For all $x \in S$, $x \le x$.
- (2) For $x, y, z \in S$ such that $x \leq y$ and $y \leq z$, we have $x \leq z$.
- (3) If $x \le y$ and $y \le x$, then x = y.

Remark. Given x, y in a partially ordered set S, they may be incomparable in the sense that neither $x \leq y$ nor $y \leq x$.

Definition. Let R be a subset of a partially ordered set (S, \leq) . An element $x \in S$ is an **upper bound** for R if for every $y \in R$ we have $y \leq x$.

Definition. An element $x \in S$ is **maximal** if there is no $y \in S$ with x < y (meaning $x \le y$ and $y \ne x$).

Definition. A subset $R \subseteq S$ of a partially ordered set is a **chain** if for every $x, y \in R$ we have either $x \leq y$ or $y \leq x$.

Example. The set of positive integers admits a partial ordering with $m \le n$ if and only if $n \mid m$. So e.g. $2 \ge 4 \ge 12$, while 2 and 3 are incomparable. The subset $R = \{2^n \mid n \ge 0\}$ is a chain, since every pair of elements is comparable. This set has a unique maximal element 1.

Theorem (Zorn's lemma). Let S be a partially ordered set, and assume that every chain $R \subseteq S$ has an upper bound. Then S has a maximal element.

Proof of existence of maximal ideals. Let S be the set of ideals $\mathfrak{a} \subseteq A$ such that $\mathfrak{a} \neq (1)$. We claim that every chain in S admits an upper bound. Let $\{\mathfrak{a}_i\}_{i\in R}$ be a chain of ideals in S. Define $\mathfrak{a} = \bigcup_{i\in R} \mathfrak{a}_i$. We then have

- (1) \mathfrak{a} is a subgroup of (A, +): If $a, b \in \mathfrak{a}$, there are $i, j \in R$ such that $a \in \mathfrak{a}_i$ and $b \in \mathfrak{a}_j$. Now as R is totally ordered, we have either $\mathfrak{a}_i \subseteq \mathfrak{a}_j$ or $\mathfrak{a}_j \subseteq \mathfrak{a}_i$. In either case, we will have that a + b is contained in the bigger of the two ideals, so \mathfrak{a} is closed under addition. It's easy to check that \mathfrak{a} is closed under additive inverses and multiplication from A, so \mathfrak{a} is an ideal.
- (2) $\mathfrak{a} \neq (1)$, since if $1 \in \mathfrak{a}$, we must have $1 \in \mathfrak{a}_i$ for some $i \in R$, contradicting the assumption that $\mathfrak{a}_i \in S$.

Thus \mathfrak{a} is an upper bound for the chain R. Since every chain of ideals has an upper bound, Zorn's lemma tells us that maximal ideals exist.

2.3. Local rings.

Definition. A ring A is **local** if it has precisely one maximal ideal.

Example. Every field is a local ring with maximal ideal (0).

Example. Let p be a prime, and let $k \ge 1$. Then the ideals of $\mathbb{Z}/(p^k)$ correspond to ideals of \mathbb{Z} which contain (p^k) . These are given by (n), where n divides p^k , and so the ideals of $\mathbb{Z}/(p^k)$ are the images of

$$(p^k) \subset (p^{k-1}) \subset \cdots \subset (p) \subset \mathbb{Z}.$$

The unique maximal ideal is the image of (p), so $\mathbb{Z}/(p^k)$ is local.

Example. Let k be a field, and let $A = k[x]/(x^2)$. The ideals of A are in bijection with the ideals of k[x] which contain (x^2) . Such an ideal is of the form (f) with f dividing x^2 , which means that up to some scalar multiple it is either 1, x or x^2 . So in k[x] there are three ideals containing (x^2) , namely (1), (x) and (x^2) . In A, if we let \overline{x} be the image of x under the quotient map, we have three ideals total

$$(0) = (\bar{x}^2) \subset (\bar{x}) \subset (1) = A.$$

The ideal (\bar{x}) is the unique maximal element of A, so A is local.

Proposition. In a local ring A with maximal ideal \mathfrak{m} , the set of units is $A \setminus \mathfrak{m}$.

Proof. $f \in A$ is a unit $\Leftrightarrow f$ is not contained in a maximal ideal $\Leftrightarrow f \notin \mathfrak{m}$.

2.4. Radicals.

Definition. An element a of a ring A is **nilpotent** if there exists an $n \ge 1$ such that $x^n = 0$. The set of nilpotent elements of A is called the **nilradical** of A, denoted \mathfrak{N} .

Proposition. The nilradical of A is an ideal.

Proof. It is easy to see that if $a \in \mathfrak{N}$, and $x \in A$, then $-a \in \mathfrak{N}$ and $xa \in \mathfrak{N}$. To see that \mathfrak{N} is closed under addition, observe that if $a, b \in \mathfrak{N}$, we have $m, n \geq 0$ such that $a^m = b^n = 0$. Now compute

$$(a+b)^{m+n} = \sum_{i=0}^{m+n} {m+n \choose i} a^i b^{m+n-i}.$$

If $i \ge m$, then $a^i = 0$, while if i < m, then $m + n - i \ge n$ so $b^{m+n-i} = 0$. Hence all terms vanish and so $a + b \in \mathfrak{N}$.

Theorem. The nilradical \mathfrak{N} of A is the intersection of all prime ideals of A.

Half of the proof. Easy half: If $f \in A$ is nilpotent and \mathfrak{p} is prime ideal, then $f^n = 0 \Rightarrow f^n \in \mathfrak{p} \Leftrightarrow f \in \mathfrak{p}$. This gives us $\mathfrak{N} \subseteq \cap \mathfrak{p}$.

Hard half: If $f \in A$ is contained in all prime ideals of A, then f is nilpotent. \square

Example. In any integral domain, obviously f is nilpotent if and only if f = 0, so $\mathfrak{N} = (0)$.

In $\mathbb{Z}/(p^k)$, we have just one prime ideal (p), so $\mathfrak{N}=(p)$.

Definition. Let A be a ring. The **Jacobson radical** of A, denoted \Re , is the intersection of all the maximal ideals of A.

Example. In \mathbb{Z} , a field k, and $k[x_1, \ldots, x_n]$, we have $\mathfrak{R} = (0)$, while in a local ring A, we by definition have $\mathfrak{R} = \mathfrak{m}$, the unique local ideal.

Key concepts Lecture 2

- Prime ideal
- Maximal ideal
- Prime and maximal ideals in \mathbb{Z} and k[x]
- $\bullet\,$ Quotient rings of prime and maximal ideals are integral domains and fields, respectively
- Theorem of existence of maximal ideals, statement and corollaries
- Theorem of existence of maximal ideals, main idea of proof
- Local ring
- \bullet Nilradical
- Description of nilradical via prime ideals
- ullet Jacobson radical