2. LECTURE 2 — PRIME AND MAXIMAL IDEALS, RADICALS

Theorem. Let A be a ring. The following are equivalent:

(1) A s a field.

(2) A has exactly two ideals, (0) # (1).

(3) Every homomorphism ¢: A — B with B # 0 is injective.
Proof. (1) = (2), since if I C A is an ideal with I # (0), there is an a # 0 in I.
Since A is a field, there is an element b € A with ab = 1, hence 1 € I. Then for
every c€ A, wehavec=cl €1, s0l=A=(1).

(2) = (3) If B#0, then 1#0 in B. Since ¢(1) = 1, we have 1 € ker ¢, and so
ker ¢ # (1). Hence ker ¢ = (0), which means ¢ is injective.

(8) = (1) Omitted O
2.1. Prime and maximal ideals.

Definition. Let A be a ring, and let a C A be an ideal. We say ais a
e prime ideal if, for any a,b € A\ a we have ab & a
e maximal ideal if a # (1), and the only ideal containing a is (1).

Example. In Z, the prime ideals are (0) and (p) for primes p. These are prime
since

a,bZ (0) = a,b£0=ab#0< ab¢ (0)
and
a,b & (p) < p does not divide a,b = p does not divide ab < ab & (p)
The maximal ideals are the ideals (p), for all primes p.
Example. Let k be a field. The ideals of k[z] are all principal. An ideal (f) C k[z]
is
e prime if f is irreducible or f = 0.
e maximal if f is irreducible.
Proposition. (1) An ideal a C A is prime if and only if A/a is an integral
domain.
(2) It is maximal if and only if A/a is a field.
Proof. (1) If a is prime, then given a,b € A\ a, we have ab € a. Then (a +
a)(b+a)=ab+a#0+aec A/a. Conversely, if a is not prime, there exist
a,b € A\ a such that ab € a, which gives that (e + a)(b+a) =0 in A/a,
proving A/a is not an integral domain.

(2) A/ais afield & A/a has exactly two ideals < There arc exactly two ideals

in A containing a < a is maximal
O

Corollary. Every maximal ideal is a prime ideal.
Proof. a maximal < A/a a field = A/a an integral domain < a a prime ideal. O

Example. Let k& be a field, let aq,...,a, € k and consider the homomorphism
¢: klxy,...,x,] = k given by ¢(f) = f(a1,--- ,ay), i.e. evaluate the polynomial f
by substituting a; for z;. This ¢ is surjective, and the ideal ker ¢ is maximal, since

Elxy,...,zn]/ ker ¢ 2 im¢o = k,
which is a field.



2.2. Existence of maximal ideals.
Theorem. Let A be a non-zero ring. There exists a maximal ideal m C A.

Corollary. If a C A is an ideal and a # (1), then there is a mazimal ideal m
containing a.

Proof. A/a has a maximal ideal, which under the correspondence between ideals of
A and those of A/a gives a maximal ideal containing a. O

Corollary. Let f be a ring. Then f is a non-unit if and only if f is contained in
a maximal ideal.

Proof. f a non-unit < (f) # (1) & (f) € m for a maximal m < f € m for a
maximal m. O

The proof of the theorem uses Zorn’s lemma.

Definition. A partially ordered set is a set S and a binary relation < on the
elements of S such that

(1) Forall z € S, =z < x.

(2) For z,y,z € S such that z < y and y < z, we have z < z.

3) If z <yand y <z, then z = y.

Remark. Given x,y in a partially ordered set S, they may be incomparable in the
sense that neither x < y nor y < x.

Definition. Let R be a subset of a partially ordered set (S, <). An element € S
is an upper bound for R if for every y € R we have y < z.

Definition. An element x € S is maximal if there is no y € S with x < y
(meaning x < y and y # x).

Definition. A subset R C S of a partially ordered set is a chain if for every
z,y € R we have either z <y or y < z.

Example. The set of positive integers admits a partial ordering with m < n if and
only if n | m. Soe.g. 2 >4 > 12, while 2 and 3 are incomparable. The subset
R = {2" | n > 0} is a chain, since every pair of elements is comparable. This set
has a unique maximal eclement 1.

Theorem (Zorn’s lemma). Let S be a partially ordered set, and assume that every
chain R C S has an upper bound. Then S has a maximal element.

Proof of existence of mazrimal ideals. Let S be the set of ideals a C A such that
a # (1). We claim that every chain in S admits an upper bound. Let {a;};,cr be a
chain of ideals in S. Define a = |, a;. We then have
(1) ais a subgroup of (A,+): If a,b € a, there are 4,5 € R such that a € a;
and b € a;. Now as R is totally ordered, we have either a; C a; or a; C a;.
In either case, we will have that a + b is contained in the bigger of the two
ideals, so a is closed under addition. It’s easy to check that a is closed
under additive inverses and multiplication from A, so a is an ideal.
(2) a # (1), since if 1 € a, we must have 1 € q; for some ¢ € R, contradicting
the assumption that a; € S.
Thus a is an upper bound for the chain R. Since every chain of ideals has an upper
bound, Zorn’s lemma tells us that maximal ideals exist. Il



2.3. Local rings.
Definition. A ring A is local if it has precisely one maximal ideal.
Example. Every field is a local ring with maximal ideal (0).

Example. Let p be a prime, and let & > 1. Then the ideals of Z/(p*) correspond
to ideals of Z which contain (p*). These are given by (n), where n divides p*, and
so the ideals of Z/(p*) are the images of

e e chck
The unique maximal ideal is the image of (p), so Z/(p") is local.
Example. Let k be a field, and let A = k[x]/(2?). The ideals of A are in bijection
with the ideals of k[x] which contain (2?). Such an ideal is of the form (f) with f
dividing 2, which means that up to some scalar multiple it is either 1, x or z2. So
in k[z] there are three ideals containing (22), namely (1), (z) and (z?). In A, if we
let T be the image of x under the quotient map, we have three ideals total

(0) = () C (@) (1) = A

The ideal (Z) is the unique maximal element of A4, so A is local.
Proposition. In a local ring A with mazimal ideal m, the set of units is A\ m.

Proof. f € Ais a unit < f is not contained in a maximal ideal < f ¢ m. O
2.4. Radicals.

Definition. An element a of a ring A is nilpotent if there exists an n > 1 such
that ™ = 0. The set of nilpotent elements of A is called the nilradical of A,
denoted .

Proposition. The nilradical of A is an ideal.

Proof. 1t is easy to see that if a € M, and x € A, then —a € M and xa € N. To see
that 91 is closed under addition, observe that if a,b € 9N, we have m,n > 0 such
that a™ = 0™ = 0. Now compute

asg (m +n

(a+ b)m+n — Z .

=0

) az bm+n—z )

If i > m, then a’ = 0, while if i < m, then m4+n —1i > n so b+~ = 0. Hence all
terms vanish and so a + b € . O

Theorem. The nilradical N of A is the intersection of all prime ideals of A.
Half of the proof. Easy half: If f € A is nilpotent and p is prime ideal, then f™ =
0= f"e€p< fep. This gives us 9N C Np.

Hard half: If f € A is contained in all prime ideals of A, then f is nilpotent. [

Example. In any integral domain, obviously f is nilpotent if and only if f = 0, so
2N = (0).

In Z/(p"), we have just one prime ideal (p), so N = (p).
Definition. Let A be a ring. The Jacobson radical of A, denoted R, is the
intersection of all the maximal ideals of A.

Example. In Z, a field k, and k[x1, ..., 2z,], we have R = (0), while in a local ring
A, we by definition have SR = m, the unique local ideal.



Key concepts Lecture 2

Prime ideal

Maximal ideal

Prime and maximal ideals in Z and k[z]

Quotient rings of prime and maximal ideals are integral domains and fields,
respectively

Theorem of existence of maximal ideals, statement and corollaries
Theorem of existence of maximal ideals, main idea of proof

Local ring

Nilradical

Description of nilradical via prime ideals

Jacobson radical



