LECTURE 21 — DISCRETE VALUATION RINGS

Recall from last time the notion of dimension of a ring A, the maximal length
of any chain of prime ideals

Po G & P
Proposition. An integral domain A has dimension 1 if and only it is not a field,
and every non-zero prime ideal is mazimal.

Proof. If A has dimension 1, there must be a chain

Po & b1
of prime ideals, which implies that A is not a field. Assume for a contradiction that
there is a prime ideal p # (0) which is not maximal. Then we can find a maximal
m containing p, and so find the chain

0)Sp&m,
contradicting dim A = 1.

Conversely, if A is not a field, there is a maximal ideal m # (0), and so we have
at least one chain

(0) C m.
On the other hand, there can be no chain
0)Sp&m,
so dim A = 1. O

Proposition. Let A be a Noetherian integral domain of dimension 1. Then every
ideal a can be written as a product of primary ideals.

Proof. If a = (0), then a is prime and so primary.
Otherwise, the Lasker—Noether theorem asserts that we can write

a:‘hﬂ'“ﬂ%m

where the q; are primary and have distinct radicals /q;. These are all maximal,

and we have that
Vi 5 2 VA + /g = (1),

hence 1 € g; + q;, and these are pairwise coprime. Thus we can replace the inter-
section by a product and find

a=4dq1--qn-

DISCRETE VALUATION RINGS

Definition. Let K be a field. A discrete valuation on K is a surjective function
v: K\ {0} — Z U {oo} satisfying three properties

(1) For all z,y € K, we have v(zy) = v(z) + v(y).

(2) For all z,y € K, we have v(z + y) > min(v(x),v(y)).

3) v(r) =0 x=0.

Example. The field Q admits an valuation v, defined as follows. Every ratio-
nal number = admits a prime factorisation x = p®pi' ---p¢, where the primes
D, D1, - P are distinct and a,e1,--- , e, € Z. We define v,(z) = a.

E.g. v12(2) =1, v2(3/2) = —1.



Example. Let k be a field. The field k(z) admits a valuation defined by the “order
of vanishing at 0”. Every element of k(x) can be written as .7:"%, where f and g are

polynomials such that f(0),g(0) # 0, and n € Z. We define U(mng) =n.

Definition. Let A be an integral domain, with fraction field K. We say that A is
a discrete valuation ring (or DVR), if there exists some valuation v on K such
that for z € K we have

z€Asv(z)>0.

Remark. If v is a valuation on a field K, then the set {x € K | v(x) > 0} is easily
seen to be a subring of K. In other words, every field equipped with a valuation
contains a DVR determined by the valuation.

Example. For the valuation v, on Q, the associated discrete valuation ring con-
sists of fractions of the form p®”* where a > 0 and p divides neither m nor n.
Equivalently, setting m’ = p®m, we see that it consists of all fractions m’/n such

that p does not divide n, which is precisely the ring Z,) C Q.
Example. For the valuation v(z" f/g) = n, the associated DVR is k[z],) C k(z).

Example. Let k be a field, and let k((x)) be the ring of formal Laurent series,
i.e. whose elements are formal sums

g a;x’,

i>n

where n € Z (so finitely many terms a;x’ with i < 0 are allowed). One can check
that this is a field. Setting v(f) = 4, where 7 is the smallest integer such that a; # 0,
we get a discrete valuation on k((x)), with associated DVR the ring of formal power

series k[[z]] C k((x)).
Discrete valuation rings have excellent properties.

Theorem. Let A be a discrete valuation ring with fraction field K and discrete
valuation v. Then

(1) The ring A is local, with mazimal ideal
m={z € A|v(z)>0}.

(2) For any element x € A such that v(z) = 1, we have m = (z).

(3) With z as in the previous point, every ideal in A is either (0) or equal to
(x*) for some k > 0.

(4) A has dimension 1.

(5) A is integrally closed.

Proof. (1) Let € A, and consider 7 € K. The element z is a unit in A if
and only if 27! € A, which is if and only if v(z7!) = —v(x) > 0. But we
know that v(x) > 0, so x is a unit if and only if v(z) = 0. Thus the set of
non-units is precisely the set described in the proposition, which it’s easy
to see is an ideal.

(2) If 2,y € A and v(y) > v(z), then v(zy 1) >0, so zy~* € A, which means
that y € (). Since a discrete valuation is by definition surjective, there
exists at least one such z. In particular, m = (z) for any element z € A
with v(z) = 1.



(3) Let a be an ideal, and let € a be such that v(z) is minimal. Then for
any y € a, we have v(y) > v(z), so as above we find y € (x). Thus a C (z).
Since obviously (z) C a, we have a = ().

(4) By the previous two points, we have that the ideals of A are (1), (z), (22),---
and (0). It is easy to see that (z) and (0) are the only prime ideals of A,
so A has dimension 1.

(5) Let x € K, and assume that x is integral over A. We must show that z € A.

Since x is integral over A, we can find a relation.

"+ ap 12" P+ +ay=0, a; € A

SO
" = —ap_1z" T — o —ag.
If v(z) = d, we then get

v(z™) = nv(z) = nd = v(—a,_12" ' — - —ap)

> min(v(-a;a'))
(]
Thus there exists an ¢ < n — 1 such that
nd = v(z?) > v(—a;x") = v(—a;) + v(z') > id,

This gives (n —i)d > 0, and so d > 0. Hence x € A.
O

In fact, most of these properties characterise DVRs (among Noetherian local
domains of dimension 1).

Proposition. Let A be a Noetherian, local integral domain of dimension 1. The
following are equivalent:

(1) Ais a DVR.

(2) A is integrally closed.

(3) m is principal.

(4) m/m? is a 1-dimensional A/m-module.

(5) FEvery non-zero ideal of A is a power of m.

6) There exists an © € A such that every ideal in A is of the form (z*).

(

Proof. We have already seen that (1) implies all the other conditions.

Let us just do a few of the easier other implications.

(4) = (3): If m/m? is 1-dimensional, there is some x € m such that x + m?
generates m/m2. But m is finitely generated, since A is Noetherian, and then
Nakayama’s lemma says that x generates m.

(3) = (6): There is an x such that m = (z), so that every non-unit in A is of
the form ax for some a € A. Assume for a contradiction that a is an ideal which is
not of the form (z¥), and let it be maximal among ideals with this property (there
is such a maximal one since A is Noetherian). We have

a=(y1,-.,yn) = (@12, -+ ,anz) = (a1, - ,a,)(x).

Now a = (a1,...,a,)() C (a1,...,a,). If a = (a1,...,a,), we have a = (z)a,
which by Nakayama’s lemma implies a = (0).

Otherwise a C (a1, ..., a,), which by the maximality property of a implies that
(ai,...,a,) = (z¥) for some k. But then a = (z)(2*) = (z¥*!), contradicting the

defining property of a.



(6) = (1): For every y # 0, we have 1/(y) = m = (). It then follows that
y € (z¥) for some k, and we take a minimal such. Then define v(y) = k, and
extend this multiplicatively to the fraction field of A. [l

Example. Consider the domain A = k[2?, 23] C k[z], and consider the maximal
ideal m = (22,2%) C A. Then m? = (2%, 2%, 2°), and we find that m/m? is spanned
by #? + m?, 23 4+ m?, so is 2-dimensional as a k-module.
The ring A, has local ideal m,,, and the quotient is given by
My /(M)? = (m/m?) = m/m?,

so is 2-dimensional as an A/m-module.
It follows that A, is not a DVR.



