Lecture 21 – Discrete valuation rings

Recall from last time the notion of **dimension** of a ring A, the maximal length of any chain of prime ideals

$$\mathfrak{p}_0 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$
.

Proposition. An integral domain A has dimension 1 if and only it is not a field, and every non-zero prime ideal is maximal.

Proof. If A has dimension 1, there must be a chain

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1$$

of prime ideals, which implies that A is not a field. Assume for a contradiction that there is a prime ideal $\mathfrak{p} \neq (0)$ which is not maximal. Then we can find a maximal \mathfrak{m} containing \mathfrak{p} , and so find the chain

$$(0) \subsetneq \mathfrak{p} \subsetneq \mathfrak{m},$$

contradicting dim A = 1.

Conversely, if A is not a field, there is a maximal ideal $\mathfrak{m} \neq (0)$, and so we have at least one chain

$$(0) \subseteq \mathfrak{m}$$
.

On the other hand, there can be no chain

$$(0) \subseteq \mathfrak{p} \subseteq \mathfrak{m},$$

so dim A = 1.

Proposition. Let A be a Noetherian integral domain of dimension 1. Then every ideal \mathfrak{a} can be written as a product of primary ideals.

Proof. If $\mathfrak{a} = (0)$, then \mathfrak{a} is prime and so primary.

Otherwise, the Lasker-Noether theorem asserts that we can write

$$\mathfrak{a} = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n,$$

where the \mathfrak{q}_i are primary and have distinct radicals $\sqrt{\mathfrak{q}_i}$. These are all maximal, and we have that

$$\sqrt{\mathfrak{q}_i + \mathfrak{q}_j} \supseteq \sqrt{\mathfrak{q}_i} + \sqrt{\mathfrak{q}_j} = (1),$$

hence $1 \in \mathfrak{q}_i + \mathfrak{q}_j$, and these are pairwise coprime. Thus we can replace the intersection by a product and find

$$\mathfrak{a} = \mathfrak{q}_1 \cdots \mathfrak{q}_n$$
.

DISCRETE VALUATION RINGS

Definition. Let K be a field. A **discrete valuation** on K is a surjective function $v: K \setminus \{0\} \to \mathbb{Z} \cup \{\infty\}$ satisfying three properties

- (1) For all $x, y \in K$, we have v(xy) = v(x) + v(y).
- (2) For all $x, y \in K$, we have $v(x + y) \ge \min(v(x), v(y))$.
- (3) $v(x) = \infty \Leftrightarrow x = 0$.

Example. The field \mathbb{Q} admits an valuation v_p , defined as follows. Every rational number x admits a prime factorisation $x = p^a p_1^{e_1} \cdots p_n^{e_n}$, where the primes $p, p_1, \cdots p_n$ are distinct and $a, e_1, \cdots, e_n \in \mathbb{Z}$. We define $v_p(x) = a$.

E.g.
$$v_2(2) = 1$$
, $v_2(3/2) = -1$.

Example. Let k be a field. The field k(x) admits a valuation defined by the "order of vanishing at 0". Every element of k(x) can be written as $x^n \frac{f}{g}$, where f and g are polynomials such that $f(0), g(0) \neq 0$, and $n \in \mathbb{Z}$. We define $v(x^n \frac{f}{g}) = n$.

Definition. Let A be an integral domain, with fraction field K. We say that A is a **discrete valuation ring** (or DVR), if there exists some valuation v on K such that for $x \in K$ we have

$$x \in A \Leftrightarrow v(x) > 0.$$

Remark. If v is a valuation on a field K, then the set $\{x \in K \mid v(x) \geq 0\}$ is easily seen to be a subring of K. In other words, every field equipped with a valuation contains a DVR determined by the valuation.

Example. For the valuation v_p on \mathbb{Q} , the associated discrete valuation ring consists of fractions of the form $p^a \frac{m}{n}$ where $a \geq 0$ and p divides neither m nor n. Equivalently, setting $m' = p^a m$, we see that it consists of all fractions m'/n such that p does not divide n, which is precisely the ring $\mathbb{Z}_{(p)} \subset \mathbb{Q}$.

Example. For the valuation $v(x^n f/g) = n$, the associated DVR is $k[x]_{(x)} \subset k(x)$.

Example. Let k be a field, and let k((x)) be the ring of formal Laurent series, i.e. whose elements are formal sums

$$\sum_{i \ge n} a_i x^i,$$

where $n \in \mathbb{Z}$ (so finitely many terms $a_i x^i$ with i < 0 are allowed). One can check that this is a field. Setting v(f) = i, where i is the smallest integer such that $a_i \neq 0$, we get a discrete valuation on k((x)), with associated DVR the ring of formal power series $k[[x]] \subset k((x))$.

Discrete valuation rings have excellent properties.

Theorem. Let A be a discrete valuation ring with fraction field K and discrete valuation v. Then

(1) The ring A is local, with maximal ideal

$$\mathfrak{m} = \{ x \in A \mid v(x) > 0 \}.$$

- (2) For any element $x \in A$ such that v(x) = 1, we have $\mathfrak{m} = (x)$.
- (3) With x as in the previous point, every ideal in A is either (0) or equal to (x^k) for some $k \geq 0$.
- (4) A has dimension 1.
- (5) A is integrally closed.

Proof. (1) Let $x \in A$, and consider $x^{-1} \in K$. The element x is a unit in A if and only if $x^{-1} \in A$, which is if and only if $v(x^{-1}) = -v(x) \ge 0$. But we know that $v(x) \ge 0$, so x is a unit if and only if v(x) = 0. Thus the set of non-units is precisely the set described in the proposition, which it's easy to see is an ideal.

(2) If $x, y \in A$ and $v(y) \ge v(x)$, then $v(xy^{-1}) \ge 0$, so $xy^{-1} \in A$, which means that $y \in (x)$. Since a discrete valuation is by definition surjective, there exists at least one such x. In particular, $\mathfrak{m} = (x)$ for any element $x \in A$ with v(x) = 1.

- (3) Let \mathfrak{a} be an ideal, and let $x \in \mathfrak{a}$ be such that v(x) is minimal. Then for any $y \in \mathfrak{a}$, we have $v(y) \geq v(x)$, so as above we find $y \in (x)$. Thus $\mathfrak{a} \subseteq (x)$. Since obviously $(x) \subseteq \mathfrak{a}$, we have $\mathfrak{a} = (x)$.
- (4) By the previous two points, we have that the ideals of A are $(1), (x), (x^2), \cdots$ and (0). It is easy to see that (x) and (0) are the only prime ideals of A, so A has dimension 1.
- (5) Let $x \in K$, and assume that x is integral over A. We must show that $x \in A$. Since x is integral over A, we can find a relation.

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_0 = 0, \qquad a_i \in A$$

so

$$x^n = -a_{n-1}x^{n-1} - \dots - a_0.$$

If v(x) = d, we then get

$$v(x^n) = nv(x) = nd = v(-a_{n-1}x^{n-1} - \dots - a_0)$$

 $\ge \min_i(v(-a_ix^i))$

Thus there exists an $i \leq n-1$ such that

$$nd = v(x^d) \ge v(-a_i x^i) = v(-a_i) + v(x^i) \ge id,$$

This gives $(n-i)d \ge 0$, and so $d \ge 0$. Hence $x \in A$.

In fact, most of these properties characterise DVRs (among Noetherian local domains of dimension 1).

Proposition. Let A be a Noetherian, local integral domain of dimension 1. The following are equivalent:

- (1) A is a DVR.
- (2) A is integrally closed.
- (3) m is principal.
- (4) $\mathfrak{m}/\mathfrak{m}^2$ is a 1-dimensional A/\mathfrak{m} -module.
- (5) Every non-zero ideal of A is a power of \mathfrak{m} .
- (6) There exists an $x \in A$ such that every ideal in A is of the form (x^k) .

Proof. We have already seen that (1) implies all the other conditions.

Let us just do a few of the easier other implications.

- $(4) \Rightarrow (3)$: If $\mathfrak{m}/\mathfrak{m}^2$ is 1-dimensional, there is some $x \in \mathfrak{m}$ such that $x + \mathfrak{m}^2$ generates $\mathfrak{m}/\mathfrak{m}^2$. But \mathfrak{m} is finitely generated, since A is Noetherian, and then Nakayama's lemma says that x generates \mathfrak{m} .
- $(3) \Rightarrow (6)$: There is an x such that $\mathfrak{m} = (x)$, so that every non-unit in A is of the form ax for some $a \in A$. Assume for a contradiction that \mathfrak{a} is an ideal which is not of the form (x^k) , and let it be maximal among ideals with this property (there is such a maximal one since A is Noetherian). We have

$$\mathfrak{a} = (y_1, \dots, y_n) = (a_1 x, \dots, a_n x) = (a_1, \dots, a_n)(x).$$

Now $\mathfrak{a} = (a_1, \ldots, a_n)(x) \subseteq (a_1, \ldots, a_n)$. If $\mathfrak{a} = (a_1, \ldots, a_n)$, we have $\mathfrak{a} = (x)\mathfrak{a}$, which by Nakayama's lemma implies $\mathfrak{a} = (0)$.

Otherwise $\mathfrak{a} \subsetneq (a_1, \ldots, a_n)$, which by the maximality property of \mathfrak{a} implies that $(a_1, \ldots, a_n) = (x^k)$ for some k. But then $\mathfrak{a} = (x)(x^k) = (x^{k+1})$, contradicting the defining property of \mathfrak{a} .

(6) \Rightarrow (1): For every $y \neq 0$, we have $\sqrt{(y)} = \mathfrak{m} = (x)$. It then follows that $y \in (x^k)$ for some k, and we take a minimal such. Then define v(y) = k, and extend this multiplicatively to the fraction field of A.

Example. Consider the domain $A = k[x^2, x^3] \subset k[x]$, and consider the maximal ideal $\mathfrak{m} = (x^2, x^3) \subset A$. Then $\mathfrak{m}^2 = (x^4, x^5, x^6)$, and we find that $\mathfrak{m}/\mathfrak{m}^2$ is spanned by $x^2 + \mathfrak{m}^2, x^3 + \mathfrak{m}^2$, so is 2-dimensional as a k-module.

The ring $A_{\mathfrak{m}}$ has local ideal $\mathfrak{m}_{\mathfrak{m}}$, and the quotient is given by

$$\mathfrak{m}_{\mathfrak{m}}/(\mathfrak{m}_{\mathfrak{m}})^2=(\mathfrak{m}/\mathfrak{m}^2)_{\mathfrak{m}}\cong \mathfrak{m}/\mathfrak{m}^2,$$

so is 2-dimensional as an A/\mathfrak{m} -module.

It follows that $A_{\mathfrak{m}}$ is not a DVR.