
3. Lecture 3 – Operations on ideals

Let A be a ring. We’ve seen two ways of constructing ideals, either as principal
ideals (f) ⊆ A for some f ∈ A, or by the general existence result giving us a
maximal ideal m ⊂ A.

There are a few natural operations we have access to in order to build more
ideals.

3.1. Addition.

Definition (Addition). Let a, b ⊆ A be ideals. The set
a + b = {a + b | a ∈ a, b ∈ b} ⊆ A

is an ideal. Given a sequence a1, . . . , an ⊆ A, the set
a1 + · · · + an = {a1 + · · · + an | ai ∈ ai}

is an ideal. Given an collection of ideals {ai}i∈I , the sum
�

i∈I ai has as elements
all finite sums ai1 + · · · + ain , where i1, . . . , in ∈ I and aij ∈ aij .

Remark. The ideal a + b is the smallest ideal containing both a and b. Similar
statements hold for the more general versions.

Example. In Z, given ideals (m) and (n), with m, n > 0, we have the ideal
(m) + (n) = {xm + yn | x, y ∈ Z}.

We know that (m) + (n) = (k) for some integer k, and we know that (m) + (n) is
the smallest ideal containing (m) and (n). This means that k must be the biggest
number dividing both m and n, and so k = gcd(m, n).

Definition. If a1, . . . , an ∈ A, then we write
(a1, . . . , an) = (a1) + (a2) + · · · + (an) = {x1a1 + · · · + xnan | xi ∈ A}.

An ideal that can be written in this form is called finitely generated.

Example. In the ring Q[x, y], we have the ideal (x, y). This consists of all poly-
nomials f which can be written in the form

f = xg1 + yg2 gi ∈ Q[x, y].
Writing

f =
�

i,j≥0
aijxiyj aij ∈ Q,

we have f ∈ (x, y) if and only if a00 = 0. On the one hand, if f = xg1 + yg2, then
clearly a00 = 0. On the other, if a00 = 0, we can write

f = x(
�

i≥1

�

j≥0
aijxi−1yj) + y(

�

j≥1
a0jyj−1) ∈ (x, y).

Lemma (A computational trick). Let a1, a2, b ∈ A. Then we have an equality of
ideals

(a1, a2) = (a1, a2 + ba1).

Proof. We clearly have a1 ∈ (a1, a2), and a2 + ba1 ∈ (a1, a2). This means that
(a1, a2 + ba1) ⊆ (a1, a2).

On the other hand, we have a1 ∈ (a1, a2 +ba1), and, since a2 = −ba1 +(a2 +ba1),
that a2 ∈ (a1, a2 + ba1). Thus (a1, a2) ⊆ (a1, a2 + ba1), and we are done. �



Example. In the ring Z, we have

(5, 7) = (5, 7 − 5) = (5, 2) = (5 − 2 · 2, 2) = (1, 2) = (1, 2 − 2 · 1) = (1, 0) = (1).

You may recognize this as the Euclidean algorithm for finding the greatest common
divisor of two integers.

Example. In Q[x], we have

(x−2, 2x2−2) = (x−2, (2x2−2)−2x(x−2)) = (x−2, 4x−2) = (x−2, 4x−2−4(x−2)) = (x−2, 6).

Since 6 lies in the ideal, so must 1
6 6 = 1, so (x − 2, 2x2 − 2) = (1).

Definition (Intersection). Let a, b ⊆ A be ideals, then a ∩ b ⊆ A is also an ideal.
Similarly given {ai} ⊆ A, we have ∩i∈Iai is an ideal.

Remark. The ideal a ∩ b is the biggest ideal contained in a and in b.

Example. Given m, n ≥ 0, we have (m), (n) ⊆ Z, and moreover

(m) ∩ (n) = {k ∈ Z | m|k and n|k} = {k ∈ Z | lcm(m, n)|k} = (lcm(m, n)).

Example. Working in Q[x, y], we have that (x)∩(y) is the ideal consisting of those
f which can be written both as xg and as yh. Writing f =

�
aijxiyj , aij ∈ Q, the

first condition becomes a0j = 0 for all j, while the second becomes aj0 = 0 for all
j. It follows that f ∈ (x) ∩ (y) if and only if aij = 0 whenever i or j is 0, which is
the same as saying f ∈ (xy), so (x) ∩ (y) = (xy).

Definition (Product). Given two ideals a, b, the product ideal is

ab = {
n�

i=1
aibi | ai ∈ a, bi ∈ b},

i.e. the set of elements which are finite sums of products of elements from a and b.
Given a1, . . . , ak, the product a1 · · · ak is defined similarly

a1 · · · ak = {
n�

i=1
ai1 · · · aik | aij ∈ aj}.

Example. Let m, n ∈ Z, then

(m)(n) = {
k�

i=1
aibi | ai ∈ (m), bi ∈ (n)}

ai=lim

bi=jin= {
n�

i=1
limjin | li, ji ∈ Z} = (mn).

Example. More generally, given a1, a2, . . . , an ∈ A, we have

(a1)(a2) · · · (an) = (a1a2 · · · an) ⊆ A

Remark. We always have a1 · · · an ⊆ a1 ∩ · · · ∩ an.

Example. The union of two ideals is usually not an ideal, e.g. (2) ∪ (3) is not an
ideal of Z.

There are various rules for manipulating these three operations (intersection,
addition and multiplication) of ideals, e.g. a(b+ c) = ab+ac. The set of ideals with
operations of addition and multiplication forms a semiring, i.e. a structure with all
the ring axioms except additive inverses.



3.2. Coprime ideals.
Definition. We say that two ideals a, b ∈ A are coprime if a + b = (1).
Remark. Since an ideal equals (1) if and only if it contains the element 1, we have
that a+b are coprime if and only if there exist a ∈ a and b ∈ b such that a + b = 1.
Example. In Z, we know that (m)+(n) = (gcd(m, n)), so (m) and (n) are coprime
if and only if gcd(m, n) = 1, i.e. if the numbers m and n are coprime.
Example. We computed above that (x − 2, 2x2 − 2) = (1) in Q[x], so the ideals
(x − 2) and (2x2 − 2) in Q[x] are coprime.
Example. If f ∈ (x) + (y) ⊆ Q[x, y], then f =

�
aijxiyj where we must have

a00 = 0. This means that 1 �∈ (x) + (y), so (x) and (y) are not coprime.
Proposition. Let a, b ⊆ A be ideals. If a and b are coprime, then ab = a ∩ b.
Proof. If a and b are coprime, this means that we can find a ∈ a and b ∈ b such
that a + b = 1. Now if x ∈ a ∩ b we also have

x = 1x = ax + bx.

Since x ∈ b, we have ax ∈ ab, and since x ∈ a, we have bx ∈ ab. It follows that
x ∈ ab. �
Example. If m, n are coprime, then lcm(m, n) = mn, so (m)∩(n) = (lcm(m, n)) =
(mn) = (m)(n).

Recall that given rings A1, . . . , An, we have the product ring
n�

i=1
Ai = A1 × · · · × An,

whose elements are n-tuples (a1, . . . , an), with addition and multiplication defined
componentwise.

Given ideals a1, . . . , an ⊆ A, we have homomorphisms A → A/ai for each i, and
we can take a product homomorphism φ : A → �n

i=1 A/ai given by
φ(a) = (a + a1, a + a2, . . . , a + an).

Theorem (Generalised Chinese remainder theorem). Let a1, . . . , an ⊆ A. Assume
that the ai are pairwise coprime. Then the homomorphism φ : A → �n

i=1 A/ai is
surjective, and

ker φ = a1 ∩ · · · ∩ an = a1 · · · an,

hence we have an isomorphism
A/

�
ai = A/ ker φ ∼= φ(A) =

�
A/ai.

Proof assuming n = 2: φ is surjective: It’s enough to show that (1, 0), (0, 1) ∈ φ(A),
since if φ(x1) = (1, 0) and φ(x2) = (0, 1), since every element (b1 + a1, b2 + a2) is
then equal to φ(b1x1 + b2x2).

Coprimality of a1 and a2 means there are a1 ∈ a1, a2 ∈ a2 such that a1 + a2 = 1.
But now

φ(a1) = (a1 + a1, a1 + a2) = (a1 + a1, (1 − a2) + a2) = (0, 1),
and similarly we get φ(a2) = (1, 0).

It is clear that φ(x) = 0 is equivalent to x ∈ a1 ∩ a2, so ker φ = a1 ∩ a2, and we
know that a1 ∩ a2 = a1a2. �



Example (Chinese remainder theorem). If k1, . . . , kn are pairwise coprime integers,
then Z/

�
ki

∼=
�

Z/(ki). In particular if n =
�

pe1
1 . . . pek

k is the prime factorisation
of an integer n, we have

Z/(n) =
�

Z/(pei
i )

Example. In the example above, we showed (x − 2), (2x2 − 2) ⊆ Q[x] are coprime.
We therefore have
Q[x]/(x−2)(2x2−2) = Q[x]/((x−2)(2x2−2)) = Q[x]/(x−2)×Q[x]/(2x2−2) ∼= Q×Q(

√
2).



Main ideas:
• Sum of ideals
• Intersection of ideals
• Products of ideals
• The ideal (a1, . . . , an)
• Coprime ideals
• The Chinese remainder theorem


