3. LECTURE 3 — OPERATIONS ON IDEALS

Let A be a ring. We've seen two ways of constructing ideals, either as principal
ideals (f) C A for some f € A, or by the general existence result giving us a
maximal ideal m C A.

There are a few natural operations we have access to in order to build more
ideals.

3.1. Addition.
Definition (Addition). Let a,b C A be ideals. The set
a+b={a+blacabeb}CA
is an ideal. Given a sequence aq,...,a, C A, the set
o+ ta,={ar+-+an|a €a;}
is an ideal. Given an collection of ideals {a;}ics, the sum ), ; a; has as elements
all finite sums a;, + - -+ + a;,, where 41,...,9, € I and a;; € a;;.

Remark. The ideal a + b is the smallest ideal containing both a and b. Similar
statements hold for the more general versions.

Example. In Z, given ideals (m) and (n), with m,n > 0, we have the ideal
(m) + (n) ={zm+yn |,y € Z}.

We know that (m) + (n) = (k) for some integer k, and we know that (m) + (n) is
the smallest ideal containing (m) and (n). This means that &k must be the biggest
number dividing both m and n, and so k = ged(m,n).

Definition. If aq,...,a, € A, then we write
(a1, ... an) = (a1) + (a2) + -+ (an) = {z101 + -+ + Tpay, | z; € A}

An ideal that can be written in this form is called finitely generated.
Example. In the ring Q[z,y], we have the ideal (z,y). This consists of all poly-
nomials f which can be written in the form

f=2g1+yg2 g €Qla,yl.
Writing

f=> ax’y’  a;€Q,

1,j>0

we have f € (z,y) if and only if agp = 0. On the one hand, if f = zg; + yga, then
clearly ago = 0. On the other, if agy = 0, we can write

F=20 Y a2 y) +y(Oagy’ ) € (z,y).

i>1 >0 j>1

Lemma (A computational trick). Let ai,as,b € A. Then we have an equality of
ideals
(al, CLQ) = (al, a9 + bal).

Proof. We clearly have a; € (a1,a2), and az + ba; € (a1,a2). This means that
(a1,a2 + bar) C (a1, az).

On the other hand, we have a1 € (a1, a2+baq), and, since az = —bay + (az+bay),
that as € (a1, a2 + bay). Thus (a1,a2) C (a1, a2 + bay), and we are done. O



Example. In the ring Z, we have

You may recognize this as the Euclidean algorithm for finding the greatest common
divisor of two integers.

Example. In Q[z], we have
(x—2,20%-2) = (22, (20°—2)—2z(v—2)) = (v—2,42—2) = (z—2,42—2—4(x—2)) = (v—2,6).
Since 6 lies in the ideal, so must £6 = 1, so (z — 2,22% — 2) = (1).

Definition (Intersection). Let a,b C A be ideals, then anb C A is also an ideal.
Similarly given {a;} C A, we have N;cra; is an ideal.

Remark. The ideal a N b is the biggest ideal contained in a and in b.
Example. Given m,n > 0, we have (m), (n) C Z, and moreover
(m)N(n)={k €Z|mlk and n|k} = {k € Z | lem(m, n)|k} = (lem(m,n)).

Example. Working in Q[z, y], we have that (x)N(y) is the ideal consisting of those
f which can be written both as zg and as yh. Writing f = >_ a;;2'y’, a;; € Q, the
first condition becomes ag; = 0 for all j, while the second becomes ajo = 0 for all
j. It follows that f € (x) N (y) if and only if a;; = 0 whenever ¢ or j is 0, which is
the same as saying f € (zy), so (z) N (y) = (zy).

Definition (Product). Given two ideals a,b, the product ideal is
ab = {Zazbz | a; € a,b; € b},
i=1

i.e. the set of elements which are finite sums of products of elements from a and b.
Given aq, ..., ak, the product a; - - - ai is defined similarly

n
al---ak:{Zail--ﬂik | Qij Eaj}.
i=1

Example. Let m,n € Z, then

k ag=l;m n
br,',: ',,-,n . .
(m)(n) = {Z aib; | a; € (m),b; € (n)} "= {Zlim]m | li,5i € Z} = (mn).
i=1 i=1
Example. More generally, given a1, as,...,a, € A, we have

(a1)(az) -+ (an) = (a1a2---a,) C A
Remark. We always have a;---a, Ca;N---Na,.

Example. The union of two ideals is usually not an ideal, e.g. (2) U (3) is not an
ideal of Z.

There are various rules for manipulating these three operations (intersection,
addition and multiplication) of ideals, e.g. a(b+c¢) = ab+ac. The set of ideals with
operations of addition and multiplication forms a semiring, i.e. a structure with all
the ring axioms except additive inverses.



3.2. Coprime ideals.
Definition. We say that two ideals a,b € A are coprime if a + b = (1).

Remark. Since an ideal equals (1) if and only if it contains the element 1, we have
that a+ b are coprime if and only if there exist @ € a and b € b such that a+b = 1.

Example. In Z, we know that (m)+(n) = (ged(m,n)), so (m) and (n) are coprime
if and only if ged(m,n) = 1, i.e. if the numbers m and n are coprime.

Example. We computed above that (x — 2,222 — 2) = (1) in Q[z], so the ideals
(x —2) and (222 — 2) in Q[z] are coprime.

Example. If f € (z) + (y) C Q[z,y], then f = Y a;;z'y’ where we must have
agp = 0. This means that 1 & (z) + (y), so (z) and (y) are not coprime.

Proposition. Let a,b C A be ideals. If a and b are coprime, then ab = anNb.

Proof. If a and b are coprime, this means that we can find a € a and b € b such
that a + b= 1. Now if z € a N b we also have

r=1lr =ax + bx.

Since z € b, we have ax € ab, and since = € a, we have bx € ab. It follows that
x € ab. O

Example. If m,n are coprime, then lem(m, n) = mn, so (m)N(n) = (lem(m,n)) =
(mn) = (m)(n).

Recall that given rings A4, ..., A,, we have the product ring

ﬁAzzAl X'--XA”,
=1

whose elements are n-tuples (a1, ...,a,), with addition and multiplication defined
componentwise.
Given ideals ay,...,a, C A, we have homomorphisms A — A/a; for each i, and

we can take a product homomorphism ¢: A — [[", A/a; given by
d(a) =(a+aj,a+ag,...,a+ay,).
Theorem (Generalised Chinese remainder theorem). Let ay,...,a, C A. Assume
that the a; are pairwise coprime. Then the homomorphism ¢: A — [];_, A/a; is
surjective, and
kero=a;N---Na, =dag---a,,
hence we have an isomorphism

A/ ] ai = A/ker¢ = ¢(A) =[] A/a.

Proof assuming n = 2: ¢ is surjective: It’s enough to show that (1,0), (0,1) € ¢(A4),
since if ¢(z1) = (1,0) and ¢(z2) = (0,1), since every element (by + aj, by + ag) is
then equal to ¢(bix1 + baza).

Coprimality of a; and a; means there are a; € a;,as € as such that a; +as = 1.
But now

¢(ar) = (ar +a1,a1 4+ az) = (a1 + ay, (1 — az) +az) = (0,1),

and similarly we get ¢(az2) = (1,0).
It is clear that ¢(z) = 0 is equivalent to x € a; Nag, so ker ¢ = a3 N ag, and we
know that a; Nag = ajds. O



Example (Chinese remainder theorem). If k1, ..., k,, are pairwise coprime integers,
thenZ/ [ k; = [[Z/(k;). In particularif n = [[ pi* ... pg* is the prime factorisation
of an integer n, we have

z/(n) =[] 2/

Example. In the example above, we showed (z —2), (222 —2) C Q] are coprime.
We therefore have

Q[z]/(2—2)(22°-2) = Q[z]/((2~2)(2¢%~2)) = Ql]/(z~2) xQlz]/ (227 ~2) = QxQ(V2).



Main ideas:

Sum of ideals

Intersection of ideals

Products of ideals

The ideal (aq,...,a,)

Coprime ideals

The Chinese remainder theorem



