3. Lecture 3 - Operations on ideals

Let A be a ring. We've seen two ways of constructing ideals, either as principal ideals $(f) \subseteq A$ for some $f \in A$, or by the general existence result giving us a maximal ideal $\mathfrak{m} \subset A$.

There are a few natural operations we have access to in order to build more ideals.

3.1. Addition.

Definition (Addition). Let $\mathfrak{a}, \mathfrak{b} \subseteq A$ be ideals. The set

$$
\mathfrak{a}+\mathfrak{b}=\{a+b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\} \subseteq A
$$

is an ideal. Given a sequence $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subseteq A$, the set

$$
\mathfrak{a}_{1}+\cdots+\mathfrak{a}_{n}=\left\{a_{1}+\cdots+a_{n} \mid a_{i} \in \mathfrak{a}_{i}\right\}
$$

is an ideal. Given an collection of ideals $\left\{\mathfrak{a}_{i}\right\}_{i \in I}$, the sum $\sum_{i \in I} \mathfrak{a}_{i}$ has as elements all finite sums $a_{i_{1}}+\cdots+a_{i_{n}}$, where $i_{1}, \ldots, i_{n} \in I$ and $a_{i_{j}} \in \mathfrak{a}_{i_{j}}$.

Remark. The ideal $\mathfrak{a}+\mathfrak{b}$ is the smallest ideal containing both \mathfrak{a} and \mathfrak{b}. Similar statements hold for the more general versions.
Example. In \mathbb{Z}, given ideals (m) and (n), with $m, n>0$, we have the ideal

$$
(m)+(n)=\{x m+y n \mid x, y \in \mathbb{Z}\} .
$$

We know that $(m)+(n)=(k)$ for some integer k, and we know that $(m)+(n)$ is the smallest ideal containing (m) and (n). This means that k must be the biggest number dividing both m and n, and so $k=\operatorname{gcd}(m, n)$.
Definition. If $a_{1}, \ldots, a_{n} \in A$, then we write

$$
\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}\right)+\left(a_{2}\right)+\cdots+\left(a_{n}\right)=\left\{x_{1} a_{1}+\cdots+x_{n} a_{n} \mid x_{i} \in A\right\} .
$$

An ideal that can be written in this form is called finitely generated.
Example. In the ring $\mathbb{Q}[x, y]$, we have the ideal (x, y). This consists of all polynomials f which can be written in the form

$$
f=x g_{1}+y g_{2} \quad g_{i} \in \mathbb{Q}[x, y] .
$$

Writing

$$
f=\sum_{i, j \geq 0} a_{i j} x^{i} y^{j} \quad a_{i j} \in \mathbb{Q}
$$

we have $f \in(x, y)$ if and only if $a_{00}=0$. On the one hand, if $f=x g_{1}+y g_{2}$, then clearly $a_{00}=0$. On the other, if $a_{00}=0$, we can write

$$
f=x\left(\sum_{i \geq 1} \sum_{j \geq 0} a_{i j} x^{i-1} y^{j}\right)+y\left(\sum_{j \geq 1} a_{0 j} y^{j-1}\right) \in(x, y) .
$$

Lemma (A computational trick). Let $a_{1}, a_{2}, b \in A$. Then we have an equality of ideals

$$
\left(a_{1}, a_{2}\right)=\left(a_{1}, a_{2}+b a_{1}\right)
$$

Proof. We clearly have $a_{1} \in\left(a_{1}, a_{2}\right)$, and $a_{2}+b a_{1} \in\left(a_{1}, a_{2}\right)$. This means that $\left(a_{1}, a_{2}+b a_{1}\right) \subseteq\left(a_{1}, a_{2}\right)$.

On the other hand, we have $a_{1} \in\left(a_{1}, a_{2}+b a_{1}\right)$, and, since $a_{2}=-b a_{1}+\left(a_{2}+b a_{1}\right)$, that $a_{2} \in\left(a_{1}, a_{2}+b a_{1}\right)$. Thus $\left(a_{1}, a_{2}\right) \subseteq\left(a_{1}, a_{2}+b a_{1}\right)$, and we are done.

Example. In the ring \mathbb{Z}, we have

$$
(5,7)=(5,7-5)=(5,2)=(5-2 \cdot 2,2)=(1,2)=(1,2-2 \cdot 1)=(1,0)=(1)
$$

You may recognize this as the Euclidean algorithm for finding the greatest common divisor of two integers.

Example. In $\mathbb{Q}[x]$, we have
$\left(x-2,2 x^{2}-2\right)=\left(x-2,\left(2 x^{2}-2\right)-2 x(x-2)\right)=(x-2,4 x-2)=(x-2,4 x-2-4(x-2))=(x-2,6)$.
Since 6 lies in the ideal, so must $\frac{1}{6} 6=1$, so $\left(x-2,2 x^{2}-2\right)=(1)$.
Definition (Intersection). Let $\mathfrak{a}, \mathfrak{b} \subseteq A$ be ideals, then $\mathfrak{a} \cap \mathfrak{b} \subseteq A$ is also an ideal. Similarly given $\left\{\mathfrak{a}_{i}\right\} \subseteq A$, we have $\cap_{i \in I} \mathfrak{a}_{i}$ is an ideal.

Remark. The ideal $\mathfrak{a} \cap \mathfrak{b}$ is the biggest ideal contained in \mathfrak{a} and in \mathfrak{b}.
Example. Given $m, n \geq 0$, we have $(m),(n) \subseteq \mathbb{Z}$, and moreover

$$
(m) \cap(n)=\{k \in \mathbb{Z}|m| k \text { and } n \mid k\}=\{k \in \mathbb{Z}|\operatorname{lcm}(m, n)| k\}=(\operatorname{lcm}(m, n)) .
$$

Example. Working in $\mathbb{Q}[x, y]$, we have that $(x) \cap(y)$ is the ideal consisting of those f which can be written both as $x g$ and as $y h$. Writing $f=\sum a_{i j} x^{i} y^{j}, a_{i j} \in \mathbb{Q}$, the first condition becomes $a_{0 j}=0$ for all j, while the second becomes $a_{j 0}=0$ for all j. It follows that $f \in(x) \cap(y)$ if and only if $a_{i j}=0$ whenever i or j is 0 , which is the same as saying $f \in(x y)$, so $(x) \cap(y)=(x y)$.
Definition (Product). Given two ideals $\mathfrak{a}, \mathfrak{b}$, the product ideal is

$$
\mathfrak{a b}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathfrak{a}, b_{i} \in \mathfrak{b}\right\},
$$

i.e. the set of elements which are finite sums of products of elements from \mathfrak{a} and \mathfrak{b}. Given $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{k}$, the product $\mathfrak{a}_{1} \cdots \mathfrak{a}_{k}$ is defined similarly

$$
\mathfrak{a}_{1} \cdots \mathfrak{a}_{k}=\left\{\sum_{i=1}^{n} a_{i 1} \cdots a_{i k} \mid a_{i j} \in \mathfrak{a}_{j}\right\} .
$$

Example. Let $m, n \in \mathbb{Z}$, then

$$
(m)(n)=\left\{\sum_{i=1}^{k} a_{i} b_{i} \mid a_{i} \in(m), b_{i} \in(n)\right\} \stackrel{\substack{a_{i}=l_{i} m \\ b_{i}=j_{i} n}}{=}\left\{\sum_{i=1}^{n} l_{i} m j_{i} n \mid l_{i}, j_{i} \in \mathbb{Z}\right\}=(m n)
$$

Example. More generally, given $a_{1}, a_{2}, \ldots, a_{n} \in A$, we have

$$
\left(a_{1}\right)\left(a_{2}\right) \cdots\left(a_{n}\right)=\left(a_{1} a_{2} \cdots a_{n}\right) \subseteq A
$$

Remark. We always have $\mathfrak{a}_{1} \cdots \mathfrak{a}_{n} \subseteq \mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{n}$.
Example. The union of two ideals is usually not an ideal, e.g. $(2) \cup(3)$ is not an ideal of \mathbb{Z}.

There are various rules for manipulating these three operations (intersection, addition and multiplication) of ideals, e.g. $\mathfrak{a}(\mathfrak{b}+\mathfrak{c})=\mathfrak{a} \mathfrak{b}+\mathfrak{a c}$. The set of ideals with operations of addition and multiplication forms a semiring, i.e. a structure with all the ring axioms except additive inverses.

3.2. Coprime ideals.

Definition. We say that two ideals $\mathfrak{a}, \mathfrak{b} \in A$ are coprime if $\mathfrak{a}+\mathfrak{b}=(1)$.
Remark. Since an ideal equals (1) if and only if it contains the element 1, we have that $\mathfrak{a}+\mathfrak{b}$ are coprime if and only if there exist $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ such that $a+b=1$.

Example. In \mathbb{Z}, we know that $(m)+(n)=(\operatorname{gcd}(m, n))$, so (m) and (n) are coprime if and only if $\operatorname{gcd}(m, n)=1$, i.e. if the numbers m and n are coprime.

Example. We computed above that $\left(x-2,2 x^{2}-2\right)=(1)$ in $\mathbb{Q}[x]$, so the ideals $(x-2)$ and $\left(2 x^{2}-2\right)$ in $\mathbb{Q}[x]$ are coprime.
Example. If $f \in(x)+(y) \subseteq \mathbb{Q}[x, y]$, then $f=\sum a_{i j} x^{i} y^{j}$ where we must have $a_{00}=0$. This means that $1 \notin(x)+(y)$, so (x) and (y) are not coprime.
Proposition. Let $\mathfrak{a}, \mathfrak{b} \subseteq A$ be ideals. If \mathfrak{a} and \mathfrak{b} are coprime, then $\mathfrak{a b}=\mathfrak{a} \cap \mathfrak{b}$.
Proof. If \mathfrak{a} and \mathfrak{b} are coprime, this means that we can find $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ such that $a+b=1$. Now if $x \in \mathfrak{a} \cap \mathfrak{b}$ we also have

$$
x=1 x=a x+b x
$$

Since $x \in \mathfrak{b}$, we have $a x \in \mathfrak{a b}$, and since $x \in \mathfrak{a}$, we have $b x \in \mathfrak{a b}$. It follows that $x \in \mathfrak{a b}$.

Example. If m, n are coprime, then $\operatorname{lcm}(m, n)=m n$, so $(m) \cap(n)=(\operatorname{lcm}(m, n))=$ $(m n)=(m)(n)$.

Recall that given rings A_{1}, \ldots, A_{n}, we have the product ring

$$
\prod_{i=1}^{n} A_{i}=A_{1} \times \cdots \times A_{n}
$$

whose elements are n-tuples $\left(a_{1}, \ldots, a_{n}\right)$, with addition and multiplication defined componentwise.

Given ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subseteq A$, we have homomorphisms $A \rightarrow A / \mathfrak{a}_{i}$ for each i, and we can take a product homomorphism $\phi: A \rightarrow \prod_{i=1}^{n} A / \mathfrak{a}_{i}$ given by

$$
\phi(a)=\left(a+\mathfrak{a}_{1}, a+\mathfrak{a}_{2}, \ldots, a+\mathfrak{a}_{n}\right) .
$$

Theorem (Generalised Chinese remainder theorem). Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subseteq$ A. Assume that the \mathfrak{a}_{i} are pairwise coprime. Then the homomorphism $\phi: A \rightarrow \prod_{i=1}^{n} A / \mathfrak{a}_{i}$ is surjective, and

$$
\operatorname{ker} \phi=\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{n}=\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}
$$

hence we have an isomorphism

$$
A / \prod \mathfrak{a}_{i}=A / \operatorname{ker} \phi \cong \phi(A)=\prod A / \mathfrak{a}_{i}
$$

Proof assuming $n=2: \phi$ is surjective: It's enough to show that $(1,0),(0,1) \in \phi(A)$, since if $\phi\left(x_{1}\right)=(1,0)$ and $\phi\left(x_{2}\right)=(0,1)$, since every element $\left(b_{1}+\mathfrak{a}_{1}, b_{2}+\mathfrak{a}_{2}\right)$ is then equal to $\phi\left(b_{1} x_{1}+b_{2} x_{2}\right)$.

Coprimality of \mathfrak{a}_{1} and \mathfrak{a}_{2} means there are $a_{1} \in \mathfrak{a}_{1}, a_{2} \in \mathfrak{a}_{2}$ such that $a_{1}+a_{2}=1$. But now

$$
\phi\left(a_{1}\right)=\left(a_{1}+\mathfrak{a}_{1}, a_{1}+\mathfrak{a}_{2}\right)=\left(a_{1}+\mathfrak{a}_{1},\left(1-a_{2}\right)+\mathfrak{a}_{2}\right)=(0,1),
$$

and similarly we get $\phi\left(a_{2}\right)=(1,0)$.
It is clear that $\phi(x)=0$ is equivalent to $x \in \mathfrak{a}_{1} \cap \mathfrak{a}_{2}$, so $\operatorname{ker} \phi=\mathfrak{a}_{1} \cap \mathfrak{a}_{2}$, and we know that $\mathfrak{a}_{1} \cap \mathfrak{a}_{2}=\mathfrak{a}_{1} \mathfrak{a}_{2}$.

Example (Chinese remainder theorem). If k_{1}, \ldots, k_{n} are pairwise coprime integers, then $\mathbb{Z} / \Pi k_{i} \cong \prod \mathbb{Z} /\left(k_{i}\right)$. In particular if $n=\prod p_{1}^{e_{1}} \ldots p_{k}^{e_{k}}$ is the prime factorisation of an integer n, we have

$$
\mathbb{Z} /(n)=\prod \mathbb{Z} /\left(p_{i}^{e_{i}}\right)
$$

Example. In the example above, we showed $(x-2),\left(2 x^{2}-2\right) \subseteq \mathbb{Q}[x]$ are coprime. We therefore have

$$
\mathbb{Q}[x] /(x-2)\left(2 x^{2}-2\right)=\mathbb{Q}[x] /\left((x-2)\left(2 x^{2}-2\right)\right)=\mathbb{Q}[x] /(x-2) \times \mathbb{Q}[x] /\left(2 x^{2}-2\right) \cong \mathbb{Q} \times \mathbb{Q}(\sqrt{2})
$$

Main ideas:

- Sum of ideals
- Intersection of ideals
- Products of ideals
- The ideal $\left(a_{1}, \ldots, a_{n}\right)$
- Coprime ideals
- The Chinese remainder theorem

