4. LECTURE 4 — FURTHER OPERATIONS ON IDEALS + MODULES
4.1. Ideal quotient.

Definition. Let a,b C A be ideals. The ideal quotient (a : b) C A is the set of
x € A such that b C q, i.e. the set of x such that for every b € b, we have zb € a.
(This is an ideal.)

Example. If a C A is an ideal, then (a : a) = (1), since « € (a : a) means that
za € a for all @ € a. But since a is closed under multiplication from A, this holds
forall z € A= (1).

Example. If a C A is an ideal and b € A, then z € (a: (b)) if and only if b € a.

Proof: It © € (a : (b)), then since b € (b), we have xb € a. Conversely, suppose
xb € a. The elements of (b) are all of the form yb with ¥y € A, and we then have
x(yb) = y(zb) € a, s0 x € (a: (b)).

Example. If m,n > 1, then « € ((m) : (n)) if and only if zn € (m), so
((m):(n))=A{x]an € (m)} ={z | m divides zn}.

This means that ((m) : (n)) = (k), we in particular have that k is the smallest
positive integer such that m divides kn. In particular, if n divides m, then k = m/n.

Definition. The annihilator of an ideal a C A is defined as
Amn(a)=(0:a)={x € Ajza=0 Va€a}
The annihilator of an element a € A is
Ann(a) = Ann((a)) = (0: (a)) = {z € A | za = 0}.

Example. In an integral domain A, if a # 0, then Ann(a) = (0).
In any ring A, the set of zero-divisors is {J,¢ 4\ (o} Ann(a).

4.2. Radicals.

Definition. Let A be a ring, a C A an ideal. The radical of a is the set of
x € A such that there is an n > 1 such that 2™ € a. We denote this by v(a), one
occasionally sees /a.

Example. The radical v((0)) is exactly the same thing as the nilradical 9t C A,
since 2™ € (0) for some n < 2™ = 0 for some n <z € N.

Proposition. The set t(a) is an ideal, and equals the intersection of the prime
ideals containing a.

The proofs are generalisations of the corresponding statements for the nilradical.
Alternatively one can use the following:

Proposition. Let 9 be the nilradical of A/a, and let ¢: A — A/a be the quotient
homomorphism. Then t(a) = ¢~ 1(N).

Proof. Let © € A. Then if x € t(a) we have for some n > 1 that
2" cas p(z") =04 ¢(x)" =0= ¢(x) €N



Example. Let n > 1 have prime factorisation n = p{* ---pi*. Then m € Z lies in
t((n)) if and only if there is an I > 1 such that m! € (n), which is if and only if m/
is divisible by n. If every p; divides m, then m™?*¢ is divisible by n, while if some
p; does not divide m, then no power of m is divisible by n.

Summing up, m lies in t((n)) if and only if m is divisible by each p;, which is
the same as saying m is divisible by p; ... pg, and we thus get

t((n)) = (p1---pr).2

Example. Consider Q[z] and the ideal (z™). Then f € t((z™)) is equivalent to
f™ is divisible by z" for some n > 1. Let

f=ap+az+ - +ag’.

Then if ag # 0, we have " = af + z(...), so f* & (x™) for all n > 1. If ag = 0,
then f™ = a'z™ + 2™ *1(...), so f™ € (#™). Thus f € v((2™)) if and only if
ag = 0, which is if and only if f € (x). We’ve shown

t((z™)) = (x).
4.3. Extension and contraction of ideals.

Definition. Let ¢: A — B be a homomorphism, let a C A and b C B be ideals.
The extension of a is the smallest ideal in B containing ¢(a), denoted a¢. The
contraction of b is ¢71(b) C A, denoted b°.

Both of these are ideals.

Remark. The image ¢(a) C B is not itself an ideal, take e.g. the homomorphism
¢: Q — R, where ¢(Q) is not an ideal in R.
Concretely, the elements of a¢ are all finite sums ¢(a1) + - - - + ¢(ay,) with a; € a.

Proposition. The operation of contraction sends prime ideals to prime ideals.

Proof. Let p C B be a prime ideal, and let ¢: A — B be a ring homomorphism.
We must show that p¢ = ¢ !(p) is a prime ideal. If a,a’ € A\ ¢ '(p), then

é(a),p(a’) € p, so ¢p(aa’) = ¢(a)d(a’) & p, which means aa’ € ¢~ (p), and that

means ¢~ 1(p) is prime. O

4.4. Modules. Informally, a module is a structure where you can add elements in
the module, and multiply module elements by the ring elements.

Definition. Let A be a ring. A module over A (or “A-module”) is an abelian
group (M, +) equipped with an operation A x M — M, denoted

(a,m) — am,
satisfying
(1) Im=m Vme M.
(2) a(bm) = (ab)m  Va,be Ame M
(3) (a+b)ym =am+bm Ya,be A me M
(4) a(m+n) =am+bn Vae Am+ne M.

Example. For any ring A, the 0-module has one element 0, and addition and
multiplication are trivially defined.

2Look up the “abc conjecture” for a natural appearance of this operation in number theory.



Example. Let k be a field. Then a k-module is quite literally the same thing as a
k-vector space.

Example. A Z-module is the “same thing” as an abelian group, meaning any
abelian group admits a unique structure as a Z-module. To see this, let G be an
abelian group. We define a Z-module structure on G by, for n € Z,g € G

—_—
g+---+gifn>0
ng = Ug:()

—-n

ng=(—g)+---+(—g) if n <0.

One can check that this is a well-defined Z-module structure. Moreover, this Z-
module structure is forced on us by the axioms: If n > 0 we must have
n
——
ng=01+-+1)g=1g+lg+--+lg=g+---+g,

and similar considerations tell us what ng has to be for n < 0.

Example. Let a C A be an ideal. Then a is an A-module in a natural way, since
given x € A and a € a, we have xza € a, and the operation (z,a) — xa satisfies the
axioms of the definition.

Example. Let ¢: A — B be a homomorphism. Then B has a natural structure of
A-module, defined by

ab = ¢(a)b Ya € A,b € B.
This generalises the useful fact from field theory that if ¢: k — k' is a homo-
morphism of fields, then &’ is a k-vector space.

Definition. Let M and N be A-modules. A homomorphism of A-modules from
M to N is a map ¢: M — N such that

d(m+m')=¢(m)+o(m') VYm,m' e M
d(am) = agp(m) Yae AmeM
If ¢ is a bijection, we say it is an isomorphism of A-modules.
Example. For A-modules M and N, we always have a homomorphism 0: M — N
given by
0(m)=0 Vme M.

Example. Let k be a field, and let M and N be k-modules. Then a homomorphism
M — N is the same thing as a linear map of vector spaces. So if M and N

are finite-dimensional as vector spaces, we can choose bases and represent ¢ by a
(dim N) x (dim M )-matrix.

Example. A homomorphism of Z-modules is the same thing as a homomorphism of
(abelian) groups. This boils down to the fact that given a homomorphism ¢: M —
N of abelian groups, the condition

p(nz) = no(x)

is automatically satisfied.



Example. Let a € A, and consider (a) C A as an A-module. There is a homomor-
phism of A-modules

¢: A— (a)
given by

o(x) = za.

This is surjective, with kernel equal to Ann(a).

Definition. Let M and N be A-modules, and let Hom (M, N) be the set of
homomorphisms. This set has a structure of an A-module, where for ¢,v €
Homa(M,N),a € A and m € M, we have
(& + ) (m) = ¢(m) + ¢ (m)
(ag)(m) = ad(m)
Example. Let k be a field, and consider the modules k™, k™. Then Homy (K™, k™)

is naturally identified with the set of (n X m)-matrices with entries in k, and the
above states that this set has a natural structure of k-module (or k-vector space).



