5. LECTURE 5 — DIRECT SUMS, SUBMODULES AND QUOTIENT MODULES

Let A be a ring, and recall that an A-module is an abelian group M equipped
with a multiplication map A x M — M denoted (a,m) — am, satisfying some
axioms. Further, a map ¢: M’ — M is a homomorphism if it respects addition and
multiplication from A, meaning ¢(z + y) = ¢(x) + ¢(y), and ¢(ax) = ap(x).

Important special cases are Z-modules, which are the same things as abelian
groups, and k-modules for k a field, which are the same things as vector spaces
over k.

5.1. Direct sums. Given a sequence of abelian groups Gy, ..., Gy, the product set
G1 X -+ X G, is naturally an abelian group. This generalises directly to modules:

Definition. Let My, Ms be A-modules. The direct sum of the M; and M, is the
module

My ® My = {(m1,m2) | m1 € My, my € Ma},

with
(m1,me) + (my,mb) = (m1 +mj,me +m5), a(my,ma) = (amq,ams).

Definition. Given A-modules M, ..., M,, we have the direct sum
n

@Mi =M @ &M, ={(my,...,my,) | m; € M;},
i=1

with addition and A-multiplication similar. If M; = --- = M,, = M, we may write
M®" instead.
Given a set of A-modules {M;};cg, their direct sum is

PicsM; = {(mi)ics | m; € M;, only finitely many m,; # 0},
while their direct product is
[T = {(mi)ics | mi € My},
€S
If S is finite, then the direct sum and direct product are the same, but in general

they differ.

Example. Let k& be a field. Every vector space V over k has a basis, meaning there
is a set {v;};cs such that every v € V can be expressed uniquely as a sum

Z a;v; a; € k‘,
€S
with only finitely many a; # 0.
Define a homomorphism
o: @ k—=V
€S
by
#((a:) = ag;.
€S
Since {v;}ies is a basis for V, every v equals ¢((a;)) for a unique (a;) € @,cgk,
meaning ¢ is an isomorphism, and @G;cgk = V.



Example. Consider R[z,y], and define T' = R[z,y] ® R[x,y]. Thus elements of T
are pairs (f1, f2) with f1, fo € Rlz,y]. We may think of elements of T as vector
fields on R? with components given by polynomials.

Example. Let A be a ring, and consider A[z] as an A-module, i.e. if f = a,z™ +
-+ +ag € Alx] and a € A, we have
af = aa,z™ + - - - aa1x + aag.
We have a homomorphism of A-modules
¢: @A A,
ieN

Note that this is just a module isomorphism; in fact the left hand side does not
have a natural ring structure.

5.2. Submodules. If G is an abelian group, a subset G’ C G which is closed
under addition and inverses is a subgroup. We can then form the quotient group
G" = G/G’, whose elements are the cosets of G’ in G. This concept and most
of the theory generalises neatly from abelian groups to modules, where we defined
submodules as follows.

Definition. Let M be an A-module. A subset M’ C M is a submodule if it is a
subgroup and for all a € A, m € M’, we have am € M'.

Example. e A submodule of A is the same thing as an ideal in A.

e A submodule of a Z-module M is the same thing as a subgroup of M, since
if M/ C M is a subgroup, n € Z and m’ € M’, we automatically have
nm' =m' +---+m’ € M’ (when n is positive, similar arguments work
when n is negative).

Given M, M’ C N, we have their sum defined as M + M’ C N, given by
M+M ={m+m'|meMm €M}
This generalises the notion of sum of ideals.
Example. With ring Rz,y] and T = R[z,y]®2, we have the submodule 7" C T
given by
T = {(f, fy) | f € Rlz.yl}

Informally, this is the submodule of vector fields which point outwards from the
origin at all points. We have ¢: Rz, y] — T given by ¢(f) = (fz, fy), and this is
an isomorphism.

Let’s take T"” = {(g,0) | ¢ € R[z,y]} C T, this is again a submodule, the
horizontal vector fields.

We have

T'+T" ={(fr+g, fy) | £,9 € Rlz,y]} = {(h, fy) | h, f € Rz, y]},

vector fields which are horizontal along the x-axis.

5.3. Quotients. If M’ is a submodule of M, then the group M /M’ has a natural
structure of A-module such that M — M /M’ is a homomorphism of A-modules.
Concretely, we define the A-multiplication on M’ by

alm+ M') =am + M’

In particular, for any ideal a, the quotient ring A/a is an A-module.



5.4. Kernels, images and cokernels.

Definition. Let ¢: M — N be a homomorphism of A-modules. We have
e The kernel of ¢,
ker¢p C M,
a submodule of M.
e The image of ¢,
img={¢p(m)|me M} CN,

a submodule of N.
e The cokernel of ¢,
cok¢p = N/im M.

Example. Let aq,...,a, € A, and define

¢: Pa—a
i=1
by
O(x1, ..., xy) = inai.
=1
Then

im(¢) = {x1a1 + 2002 + -+ + xpay | x; € A} = (a1,...,a,) C A.

The following statements are “well known” for abelian groups, and the content
of this proposition is that the natural isomorphisms respect the module structures
as well.

Proposition (“Module isomorphism theorems”). e Let M — N be a ho-
momorphism of modules. We have
im M = M/ ker ¢.
o Let M" C M' C M be A-modules and submodules. There is an isomor-
phism
M/M" = (M/M) [ (M"/AF)
o Let M, N be submodules of P. We then have
(M+N)/N2XM/(MNN)
Definition. A module M is finitely generated if either of the following two
equivalent conditions hold:

e There exists mq, ..., m, € M such that every m € M is of the form x1m;+
<o 4 x,my,, with z; € A.
e There exists a surjective homomorphism ¢: @), A — M.

Example. e An abelian group is finitely generated as a group if and only if
it is finitely generated as a Z-module.
So every finitely generated Z-module is isomorphic to one of the form

LOLD---LOL/(pF) ®--- DL/(p;"),

while Q is not a finitely generated Z-module.
e If k is a field, then a finitely generated k-module is the same thing as a
finite-dimensional k-vector space.



e An ideal a C A is finitely generated as an A-module if and only if it is
finitely generated as an ideal, i.e. it is of the form (ay,...,a,).



Main ideas:

e Direct sums and products of modules
Submodules
Sums and intersections of modules
“The module isomorphism theorems”
Kernels, images and cokernels
The “module isomorphism theorems”



