6. LECTURE 6 — NAKAYAMA’S LEMMA & EXACT SEQUENCES
Recall the definitions of local ring and finitely generated module.

Example. Recall R(z), the field of real rational functions, which is the ring of
expressions f/g with f,g € R[z] and g # 0 (up to some equivalence relation). Let
A C R(x) be the subring of those elements which can be written as

g f €R[z],g € Rlz] \ (2).

So e.g.
et 2?2 -z 2?1
r+1" 5rx4+4’22—2 x—1
since x + 1,5z + 4,2 — 1 & (x), while e.g. % ¢ A. Equivalently, A is the ring of the
real rational functions which can be evaluated at 0, since we get a well-defined real
number f(0)/g(0) if and only if f/g € A.

Claim: The ring A is local, with maximal ideal

m={f/geA|[(0)/9(0) =0} ={f/g| [ € (2),9 € Rlz]\ (x)}.

The homomorphism A — R given by f/g — f(0)/g(0) is surjective, with kernel m,
so m is a maximal ideal, and A/m & R.”

3
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Let’s now recall that given an ideal a and an A-module M, the submodule
aM C M is the module containing all sums

aymy + -+ apMmy, a; €a,m; € M.

Lemma (Nakayama’s lemma, local version). 6 Let A be a local ring with mazimal
ideal m, and let M be a finitely generated module. If mM = M, then M = 0.

Definition. Let T' = (b;j)1<i,j<n be an (n x n)-matrix with entries in A, and let
T;; be the (n x n)-matrix obtained by deleting row ¢ and column j. The adjugate
of T is the matrix adJ(T) = (Cij)lgi,jgny where

ey = (=1)"* det(Tj:).

. a b\ . d —c
Example. The adjugate of (c d) is (—b “ )
Theorem. We have T adj(T) = adj(T)T = det(T)I,, where I, is the (n X n)
identity matrix.

Proof of Nakayama’s lemma. Let M be a module, generated by my,...,m, € M,
meaning M = {aym; + -+ + aymy, | a; € A}. We know that mM = M, which
means that for every m;, we have m; € mM, which means we can write

n
mi =Y bimy,
=1

5To see that A is local, note that if f/g & m, then £(0)/g(0) %0, so g/f € A, and so f/g is a
unit. Since all non-units are contained in m, this means m is the unique maximal ideal.

6The textbook states a more general version where A is not necessarily local, where m is
replaced with the Jacobson radical of A.



with b;; € m. Letting T' = I,, — (b;;), we then get that

mi
T =0,
My
and so
mi
adj(T)T | --- | =0,
My

which since adj(T)T = det(T)1, gives det(T)m; = 0 for all 7. But looking at the
cofactor expansion of det(7") shows that
det(T) =1+ X,

where all the terms of X are divisible by b;;, which implies that X € m. Hence
det(T") is a unit, and so det(7")m; = 0 implies m; = 0. Thus all the m; = 0, and so
M =0. (]

Corollary. Let A be a local ring, and let ¢: M — N be a homomorphism of
modules, such that ¢: M/mM — N/mN is surjective. Then ¢ is surjective.

Proof. The trick is to reinterpret “¢ is surjective” as cok ¢ = N/¢(M) = 0. Assume

that ¢ is surjective. That means N = ¢(M) +mN (after some thought). We get
m(N/¢(M)) = (mN + ¢(M)/¢(M)) = N/$p(M),

Since N is finitely generated, so is N/¢(M). We can then apply Nakayama’s lemma

to N/¢(M), and get N/¢p(M) = 0. O

Example. Work in A C R(x) from before. Consider the matrix

142 z?
_ 1—x2 1—x3

B = zt 1+
2—5x l1—x

which gives a homomorphism of A-modules ¢: A9%2 — A92 by

oro-5(7).

The associated homomorphism of ¢: A®2/mA®2 — A®2/mA®2 can be identified
with the linear map R? — R? obtained by setting 2 = 0 in the above matrix. That
map is clearly surjective, hence ¢ is.

6.1. Exact sequences and additivity. Given ¢: M — N a homomorphism, we
know about ker ¢ C M, im¢ C N, cok ¢ = N/im ¢.

Definition. A sequence of morphisms M- g My — - — M,_1 %—31 M,, is exact
at M;, 2 <i<n—1, if we have
im ¢; = ker ¢; 1.
It is exact A sequence of the form
0—M —-M—M'"—=0

is called short exact.



Example. If M; = 0, then we have im¢; = 0, so ker ¢, 1, and exactness at
M; 1 means simply that ker ¢,41 = 0, i.e. that ¢;41 is surjective. We also have
ker¢p;_1 = M,;_1, so exactness at M,;_; means that im¢p; o = M, 1, i.e. that
im ¢;_» is surjective.

Example. Let M’ C M be a submodule. Then the sequence
0—-M —-M—M/M —0

is exact, since (1) M’ — M is injective, (2) M — M/M’ is surjective, and (3)
ker(M — M/M') = im(M’ — M).
“Up to isomorphism”, every short exact sequence is of this form, meaning if

00— M —-M— My —0
is short exact, them M; is isomorphic to some submodule M’ C M, and M is
isomorphic to M/M’.
Example. The sequence 0 — Z i/ Z/(n) — 0 is exact, where ¢(k) = nk.

Example. The sequence 0 — Z/(2) — Z/(4) — Z/(2) — 0 is exact, where Z/(2)
is the inclusion 1 — 2.

Example. Let V be the R-vector space of all smooth vector fields on R3, and let
W be the R-vector space of all functions on R3. The sequence

0-R“ETw Sy By Tw o
is exact.

Example. For any modules M and N, the sequence
0—+M-—->M®N—-N-—0

is exact, where M — M @ N is the map m — (m,0) and M @ N — N is the map
(m,n) — n.

We can break up exact sequences into short ones, as follows: If M;_; — M; —
M, is an exact sequence, we can take 0 — im(¢;—1) — M; — im(¢;) — 0 as a
short exact sequence. This motivates the following definition

Definition. A function from some set of modules to an abelian group G is called
additive if for all short exact sequences

0—-M —>M-—M"—0
we have v(M) = v(M') +v(M").

Example. If M’, M, M" are finite-dimensional vector spaces, then dim(—) is ad-
ditive, since we can extend a basis for M’ to a basis for M, and the new elements
give a basis for M" after projection.

Example. If M’, M, M" are finite abelian groups, then v(M) = |M|, the number
of elements of M, is an additive function to the group Q- with the operation
of multiplication, since Lagrange’s theorem says that for subgroups M’ C¢ M we
always have

| M| = [M'||[M/M'].



Theorem. Let 0 — My — My — --- — M, — 0 be an exact sequence, and let v
be an additive function. Then

D (=1)'w(M;) =0
Proof. We have v(M;) = v(im¢;) + vim(¢;_1). Inserting this in > (—1)w(M;)
everything cancels to give 0. O

Example. In an exact sequence of vector spaces 0 = Vi — Vo — -+ =V, — 0,
we have Y (—1)*dim V; = 0.

Example. Given an exact sequence
0—-M —-—=M,—0

of finite Z-modules, we have

[T =1
i=1

Definition. A diagram of modules and homomorphisms between them is called
commutative if the composed maps between any two modules agree.

Example. The diagram
ML
[k
N My N
is commutative if go f = hoy.

Lemma (The snake lemma). Given modules and homomorphisms that fit into the
following commutative diagram

0 M’ M M 0
l & l 4 l o
0 N’ N N 0,

we get an exact sequence of modules

0 — ker ¢’ — ker ¢ — ker ¢” — cok ¢’ — cok ¢ — cok¢” — 0



