Suggested problems week 1

- (1) Prove that if A is a ring such that 1 = 0, then A is the 0 ring.
- (2) Prove Proposition 1.1. in [AM].
- (3) Use the relation between ideals in \mathbb{Z} and $\mathbb{Z}/(n) = \mathbb{Z}_n$ to show that the number of ideals in \mathbb{Z}_n equals the number of positive integers dividing n.
- (4) Let k be a field, and prove that the ideal

$$(x,y) = \{g_1x + g_2y \mid g_1, g_2 \in k[x,y]\} \subseteq k[x,y]$$

is not a principal ideal.

- (5) Let $\mathfrak{a} \subset \mathbb{Z}[x]$ be the set of polynomials such that $f \in \mathfrak{a}$ if and only if f(0) is even. Show that \mathfrak{a} is an ideal, and that it is not a principal ideal.
- (6) Prove that a ring A is an integral domain if and only if A[x] is an integral domain.
- (7) Convince yourself that for any ring A, we have an isomorphism $(A[x])[y] \cong A[x,y]$
- (8) Let A be a ring. Prove that there exists some field k such that there is a surjective homomorphism $\phi \colon A \to k$.
- (9) Let A be a ring. Prove that there exists a unique homomorphism $\phi \colon \mathbb{Z} \to A$.
- (10) Let A be a ring, and let $a \in A$. Prove that there exists a unique homomorphism $\phi \colon \mathbb{Z}[x] \to A$ such that $\phi(x) = a$. Use this to describe the set of all homomorphisms $\phi \colon \mathbb{Z}[x] \to A$.

From Atiyah–Macdonald chapter 1: 1, 7, 8, 9, 10, 12, 15, 16.