5. Suggested problems week 2

- (*) means I suspect a problem is difficult (and you're not likely to miss anything important by skipping it).
 - (1) Let A be a ring, let $a_1, \ldots, a_n \in A$ and $b_1, \ldots, b_m \in A$. Prove that

$$(a_1,\ldots,a_n)(b_1,\ldots,b_m)=(a_1b_1,a_1b_2,\ldots,a_nb_m),$$

where the sequence in the rightmost brackets contains every product $a_i b_j$ with $1 \le i \le n$ and $1 \le j \le m$.

- (2) Let A be a ring, and let $a \in A$. Prove that $A[x]/(x-a) \cong A$.
- (3) Let A be a ring, let $a, b \in A$. Prove that $A[x]/(x-a,b) \cong A/(b)$.
- (4) Let k be a field, and let $f, g \in k[x]$. Prove that if (f) and (g) are coprime if and only if f and g have no common irreducible factor.³
- (5) Let k be a field, and $0 \neq f \in k[x]$. Prove that k[x]/(f) is isomorphic to a direct product of rings of the form $k[x]/(g^n)$, where g is irreducible.
- (6) Let $(a_1, b_1) \neq (a_2, b_2) \in \mathbb{C}^2$. Prove that the ideals $(x a_1, y b_1)$ and $(x a_2, y b_2)$ in $\mathbb{C}[x, y]$ are coprime.
- (7) Show that the ideals (x-2) and $(2x^2-2)$ in $\mathbb{Z}[x]$ are not coprime.
- (8) Let $a_1, \ldots, a_n, b \in A$, and let $1 \le i, j \le n$ with $i \ne j$. Prove that

$$(a_1, \ldots, a_n) = (a_1, \ldots, a_{j-1}, a_j + ba_i, a_{j+1}, \ldots, a_n)$$

(9) Let $a_1, \ldots, a_n \in A$, let $1 \le i \le n$, and let $c \in A$ be a unit. Prove that

$$(a_1,\ldots,a_n)=(a_1,\ldots,a_{i-1},ca_i,a_{i+1},\ldots,a_n).$$

(10) (*) Let $a_1, \ldots, a_n \in A$, and let $(b_{ij})_{1 \leq i,j \leq n}$ be an invertible matrix with coefficients in A.⁴ Prove that

$$(a_1, \dots, a_n) = \left(\sum_{j=1}^n b_{1j} a_j, \sum_{j=1}^n b_{2j} a_j, \dots, \sum_{j=1}^n b_{nj} a_j\right).$$

- (11) (*) Let $A = \mathbb{Z}[x]/(x^2+1)$, and let p be a prime. Show that the extension $(p)^e$ of (p) along $\phi \colon \mathbb{Z} \to A$ is a prime if and only if -1 is a quadratic residue modulo p, that is if and only if the equation x^2+1 admits solutions in $\mathbb{Z}/(p)$. Hint: Show that $A/(p)^e \cong \mathbb{Z}/(p)[x]/(x^2+1)$ and consider what it means for this ring to be an integral domain.
- (12) Let $\mathfrak{a}, \mathfrak{p} \subseteq A$ be ideals with \mathfrak{p} prime \mathfrak{a} not contained in \mathfrak{p} . Prove that $(\mathfrak{p} : \mathfrak{a}) = \mathfrak{p}$.
- (13) Let G be an abelian group, and let $\phi: G \to G$ be a group homomorphism. Prove that there is a unique structure of $\mathbb{Z}[x]$ -module on G such that $xg = \phi(g)$ for all $g \in G$.

$$\sum_{k=1}^{n} b_{ik} c_{kj} = \sum_{k=1}^{n} c_{ik} b_{kj} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}.$$

³Recall that in k[x] every ideal is principal, every polynomial can be factored into irreducible polynomials, and $h \in k[x] \setminus \{0\}$ is irreducible if and only if (h) is prime.

⁴This means that there exist $(c_{ij})_{1 \leq i,j \leq n}$ with $c_{ij} \in A$ such that

- (14) Let G be an abelian group and $n \ge 1$. Show that G admits a structure of $\mathbb{Z}/(n)$ -module if and only if $g + \cdots + g = 0$ for all $g \in G$. Show that if this condition holds, then the structure of $\mathbb{Z}/(n)$ -module on G is unique.
- (15) Let A be an integral domain and $0 \neq a \in A$. Show that A and (a) are isomorphic as A-modules.
- (16) Let M be an A-module. Show that the map $F\colon \operatorname{Hom}_A(A,M)\to M$ given by

$$F(\phi) = \phi(1)$$

is an isomorphism of A-modules.