- (1) Let B be an A-algebra, and let $I \subset B$ be an ideal. Prove that if B is a finite A-algebra, then so is B/I.
- (2) Let B be an A-algebra, and let $I \subset B$ be an ideal. Prove that if B is a finite type A-algebra, then so is B/I.
- (3) Let A be a ring, and let $I \subseteq A$ an ideal. Prove that if A/I is a flat A-module, then $I = I^2$. Hint: Consider the inclusion of A-modules $I \to A$.
- (4) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is isomorphic to \mathbb{Q} as a ring.
- (5) Let B be an A-algebra. Prove that

$$A[x] \otimes_A B \cong B[x]$$

(6) Let A be a ring and $I,J\subseteq A$ ideals. Prove that we have an isomorphism of $A\text{-}\mathrm{algebras}$

$$A/I \otimes A/J \to A/(I+J)$$
.

(7) Let A be a ring, let B and C be A-algebras, with A-algebra structure given by

$$\psi_B \colon A \to B \text{ and } \psi_C \colon A \to C.$$

Let $\phi_B : B \to B \otimes_A C$ and $\phi_C : C \to B \otimes_A C$ be given by $\phi_B(b) = b \otimes 1$ and $\phi_C(c) = 1 \otimes c$. Verify that the following diagram of ring homomorphisms is commutative.

$$A \xrightarrow{\psi_B} B$$

$$\downarrow^{\psi_C} \qquad \downarrow^{\phi_B}$$

$$C \xrightarrow{\phi_C} B \otimes_A C,$$

that is, that $\phi_B \circ \phi_B = \phi_C \circ \psi_C$.

(8) (*) With notation as above, let D be a ring, and let $\rho_B \colon B \to D$ and $\rho_C \colon C \to D$ be ring homomorphisms such that $\rho_B \circ \psi_B = \rho_C \circ \psi_C$. Prove that there is a unique ring homomorphism

$$\rho \colon B \otimes_A C \to D$$

such that $\rho_B = \rho \circ \phi_B$ and $\rho_C = \rho \circ \phi_C$.

In diagrams: Prove that the commutative diagram of ring homomorphisms

can be extended uniquely to a commutative diagram

(9) Let $S\subseteq A$ be a multiplicatively closed subset. Show that the kernel of the homomorphism $\phi\colon A\to S^{-1}A$ is the set

$$\bigcup_{s \in S} \operatorname{Ann}(s) \subseteq A$$

- (10) Let A be a ring and $f \in A$. Prove that $A[x]/(fx-1) \cong A_f$. (11) Let A be a ring and let $S \subseteq A$ be a multiplicatively closed subset. Prove that if $S^{-1}A = 0$, then $0 \in S$.