Suggested problems week 7

From Atiyah–Macdonald chapter 4, problems 2 (assume $\mathfrak a$ is decomposable), 4, 5.

- (1) Let $A = \mathbb{Z}[x]/(x^2 + 5)$.
 - (a) Let p be a prime. Show that the ideal $(p) \subseteq A$ is a prime ideal if and only if the congruence equation $t^2 + 5 \equiv 0 \pmod{p}$ has no solutions.
 - (b) Prove that (2) is a primary ideal in A.
 - (c) Prove that $(3) = (3, x 1) \cap (3, x + 1)$ is a minimal primary decomposition of (3).
 - (d) Compute the primary decomposition of (6) as given in the lecture notes.
- (2) An integral domain has dimension 1 if it is not a field and every non-zero prime ideal is maximal.
 - (a) Prove that \mathbb{Z} and k[x] have dimension 1.
 - (b) For the rest of the problem, let A be an integral domain of dimension 1. Prove that an ideal $\mathfrak{a} \subseteq A$ is primary if and only if $\sqrt{\mathfrak{a}}$ is prime.
 - (c) Let $\mathfrak{q}, \mathfrak{q}'$ be non-zero primary ideals with different radicals. Prove that \mathfrak{q} and \mathfrak{q}' are coprime.
 - (d) Prove that if $\mathfrak{a} \subseteq A$ admits a primary decomposition, then it admits a product decomposition

$$\mathfrak{a} = \mathfrak{q}_1 \cdots \mathfrak{q}_n,$$

with each \mathfrak{q}_i primary.

- (e) With $\mathfrak a$ as above, prove that every prime associated with $\mathfrak a$ is minimal.
- (3) (*) Let $A = k[x, y]/(y^2 x^3 + x)$. We want to prove that $y, x, x 1, x + 1 \in A$ are irreducible, to show that A does not have unique factorisation.
 - (a) Prove that every $f \in A$ can be expressed uniquely as

$$f = g_0 + yg_1 \qquad g_i \in k[x].$$

(b) Prove that the map $\phi: A \to k[x]$ defined by

$$\phi(g_0 + yg_1) = g_0^2 - (x^3 - x)g_1^2$$

is multiplicative, that is

$$\phi(ff') = \phi(f)\phi(f')$$

for all $f, f' \in A$.

(c) Prove that for any $g_0, g_1 \in k[x]$, we have

$$\deg \phi(g_0 + yg_1) \neq 1.$$

- (d) Prove that if $deg(g_0 + yg_1) = 0$, then $g_0 + yg_1$ is a unit in A.
- (e) Prove that if y = ff', then either f or f' is a unit.
- (f) Prove the same thing for x, x 1 and x + 1 instead of y.