

MAT4200 Autumn 2023

Commutative algebra, half term revision

4.10.2023

Rings

A **ring** is a commutative ring with unity: a set A equipped with addition a + b and multiplication ab such that

- (A, +) is an abelian group
- Multiplication is associative and commutative
- The distributive law a(b+c) = ab + ac holds
- There is an element $1 \in A$ such that 1a = a for all a.

Basic examples

- $\blacksquare \mathbb{Z}, \mathbb{Z}/n, \mathbb{Q}, \mathbb{R}, \mathbb{C}.$
- Given a ring A, the ring $A[x_1, \ldots, x_n]$ of polynomials in n variables.

Homomorphisms

A **homomorphism** of rings is a map $\varphi \colon A \to B$ preserving addition, multiplication and 1, i.e. for all $x, y \in A$ we have

$$\varphi(x+y) = \varphi(x) + \varphi(y), \ \varphi(xy) = \varphi(x)\varphi(y), \ \varphi(1) = 1.$$

If φ is bijective it is an **isomorphism**, write $A \cong B$.

Basic examples

- The natural maps $\mathbb{Z} \to \mathbb{Q} \to \mathbb{R} \to \mathbb{C}$ and $\mathbb{Z} \to \mathbb{Z}/n$ are homomorphisms.
- For a ring A and elements $b_1, \ldots, b_n \in A$, a homomorphism $\varphi \colon A[x_1, \ldots, x_n] \to A$ given by

$$\varphi(\sum a_{i_1\cdots i_n} x_1^{i_1}\cdots x_n^{i_n}) = \sum a_{i_1\cdots i_n} b_1^{i_1}\cdots b_n^{i_n}.$$

Ideals and quotient rings

- An ideal is a subgroup \mathfrak{a} of (A, +) such that $ax \in \mathfrak{a}$ for all $a \in A, x \in \mathfrak{a}$.
- The **quotient ring** A/a is the set of cosets of a in (A, +), with addition and multiplication defined by

$$(x + \mathfrak{a}) + (y + \mathfrak{a}) = (x + y) + \mathfrak{a}$$
$$(x + \mathfrak{a})(y + \mathfrak{a}) = xy + \mathfrak{a}$$

• The quotient homomorphism $\varphi \colon A \to A/\mathfrak{a}$ is given by

$$\varphi(x)=x+\mathfrak{a},$$

Ideals, examples

For any homomorphism of rings $\varphi \colon A \to B$, the **kernel** ker $\varphi = \varphi^{-1}(0) \subseteq A$ is an ideal, and $a + \ker \varphi \mapsto \varphi(a)$ gives an isomorphism

$$A/\ker \varphi \cong \operatorname{im} \varphi$$

Given $f \in A$, the ideal

$$(f) = \{xf \mid x \in A\}$$

is the **principal ideal** generated by f.

Given $f_1, \ldots, f_n \in A$, the ideal **generated by** the f_i is

$$(f_1, f_2, \ldots, f_n) = \{\sum_{i=1}^n x_i f_i \mid x_i \in A\}.$$

Quotient rings, examples

• $\mathbb{Z}/(n) = \text{ring of integers mod } n.$

For $n \ge 1$ such that n is not a square number,

$$\mathbb{Z}[x]/(x^2-n)=\mathbb{Z}[\sqrt{n}]\cong\{a+b\sqrt{n}\mid a,b\in\mathbb{Z}\}\subset\mathbb{Q}.$$

For $n \leq -1$,

$$\mathbb{Z}[x]/(x^2-n) = \mathbb{Z}[i\sqrt{n}] \cong \{a+ib\sqrt{n} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}.$$

Given $a_1,\ldots,a_n\in A$, $A[x_1,\ldots,x_n]/(x_1-a_1,\ldots,x_n-a_n)\cong A$.

If k is a field, $f \in k[x]$ irreducible, then k[x]/(f) is a finite extension field of k.

Prime and maximal ideals

- $x \in A$ is **unit** if there is $y \in A$ such that yx = 1.
- An ideal $\mathfrak{p} \subseteq A$ is **prime** if $x, y \notin \mathfrak{p}$ implies $xy \notin \mathfrak{p}$.
- An ideal $\mathfrak{m} \subseteq A$ is **maximal** if there is no ideal $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq (1)$.
- A ring A is an **integral domain** if $x, y \neq 0$ implies $xy \neq 0$.
- A ring A is a **field** if $x \neq 0$ implies x is a unit.

Theorem

Let $\mathfrak{a} \subseteq A$ be ideal.

- \mathfrak{a} prime $\Leftrightarrow A/\mathfrak{a}$ is an integral domain.
- \mathfrak{a} maximal $\Leftrightarrow A/\mathfrak{a}$ is a field.
- \square a maximal \Rightarrow a prime.

Prime and maximal ideals, examples

- In Z, the prime ideals are (0) and (p) for all primes p. The maximal ideals are the primes except for (0).
- If k is a field, then in k[x], the prime ideals are (0) and (f) with f irreducible. The maximal ideals are the prime ideals except for (0).
- Let k be a field, $a_1, \ldots, a_n \in k$. Then $(x_1 - a_1, x_2 - a_2, \ldots, x_n - a_n) \subset k[x_1, \ldots, x_n]$ is a maximal ideal.
- If $f \in k[x_1, \ldots, x_n]$ is irreducible, then (f) is prime.

Maximal ideals exist

Theorem

If $A \neq 0$, then there is a maximal ideal $\mathfrak{m} \subset A$.

Strengthening

If $\mathfrak{a} \subsetneq A$, then there is a maximal ideal $\mathfrak{m} \supseteq \mathfrak{a}$.

Corollary

 $f \in A$ is a unit $\Leftrightarrow (f) = (1) \Leftrightarrow f$ lies in no maximal ideal.

Operations on ideals

Given ideals $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \subseteq A$, we define new ideals by:

- Ideal sum: $\mathfrak{a}_1 + \cdots + \mathfrak{a}_n = \{x_1 + \cdots + x_n \mid x_i \in \mathfrak{a}_i\}$
- Intersection: $\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$
- Product:

 $\mathfrak{a}_1 \cdots \mathfrak{a}_n = \{ \text{all finite sums of expressions } x_1 x_2 \cdots x_n \mid x_i \in \mathfrak{a}_i \}$

Ideal quotient

$$(\mathfrak{a}_1 : \mathfrak{a}_2) = \{x \in A \mid x\mathfrak{a}_2 \subseteq \mathfrak{a}_1\}.$$

The **radical** of an ideal \mathfrak{a} is given by

$$\sqrt{\mathfrak{a}} = \{ x \in A \mid x^n \in \mathfrak{a} \text{ for some } n \ge 0 \}$$

Finitely generated ideals

An ideal $\mathfrak{a} \subseteq A$ is **finitely generated** if we can find $f_1, \ldots, f_n \in A$ such that

$$\mathfrak{a} = (f_1, f_2, \ldots, f_n).$$

We say that f_1, \ldots, f_n generate \mathfrak{a} .

Rewriting finitely generated ideals

Given $a, f_1, \ldots, f_n \in A$

$$(f_1,\ldots,f_n)=(f_1,f_2+af_1,f_3,\ldots,f_n).$$

Given a unit $u \in A$, we have

$$(f_1,\ldots,f_n)=(uf_1,f_2,\ldots,f_n).$$

The nilradical

An element $f \in A$ is **nilpotent** if there is an $n \ge 1$ such that $f^n = 0$. The **nilradical** of A is

$$\mathfrak{N} = \sqrt{(0)} = \{ f \in A \mid f \text{ is nilpotent} \}.$$

Theorem

The nilradical of A equals the intersection of all prime ideals of A.

Extension and contraction of ideals

Let $\varphi \colon A \to B$ be homomorphism. We can move ideals between A and B as follows.

- If $\mathfrak{b} \subseteq B$ is an ideal, its **contraction** is $\mathfrak{b}^c = \varphi^{-1}(\mathfrak{b}) \subseteq A$.
- If $\mathfrak{a} \subseteq A$ is an ideal, its **extension**, denoted $\mathfrak{a}^e \subseteq B$, is the smallest ideal of *B* containing $\varphi(\mathfrak{a})$. Concretely

$$\mathfrak{a}^e = \{\sum_{i=1}^n b_i \varphi(x_i) \mid b_i \in B, x_i \in \mathfrak{a}\}$$

Theorem

If $\mathfrak{p} \subset B$ is a prime ideal, then so is \mathfrak{p}^c .

UiO **Contemportation** Department of Mathematics University of Oslo

Extension and contraction for the quotient homomorphism

Let $\mathfrak{a} \subseteq A$ be an ideal, and let $\varphi \colon A \to A/\mathfrak{a}$ be the quotient homomorphism.

- For an ideal $\mathfrak{b} \subseteq A$, $\mathfrak{b}^e = (\mathfrak{a} + \mathfrak{b})/\mathfrak{a} \subseteq A/\mathfrak{a}$.
- For an ideal $\mathfrak{c} \subseteq A/\mathfrak{a}$ has $\mathfrak{c}^{ce} = \mathfrak{c}$.
- This gives a bijection between the set of ideals of *A*/a and the ideals in *A* containing a, which sends prime (resp. maximal) ideals to prime (resp. maximal) ideals.

Extension and contraction, further examples

- If $\varphi \colon A \to B$ is the inclusion of a subring and $\mathfrak{b} \subseteq B$ an ideal, then $\mathfrak{b}^c = \mathfrak{b} \cap A$.
- \blacksquare For $\pmb{\varphi} \colon A \to A[x]$ the standard inclusion, and $\mathfrak{a} \subseteq A$, we have

$$\mathfrak{a}^{e} = \{\sum_{i=1}^{n} a_{i}x^{i} \mid a_{i} \in \mathfrak{a}\} \subseteq A[x].$$

Coprime ideals

Two ideals $\mathfrak{a}, \mathfrak{b} \subseteq A$ are **coprime** if $\mathfrak{a} + \mathfrak{b} = (1)$.

Theorem

If $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are pairwise coprime, then $\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n = \mathfrak{a}_1 \cdots \mathfrak{a}_n$ and

$$A/(\mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n) = A/\mathfrak{a}_1 \times \cdots \times A/\mathfrak{a}_n.$$

Example

In \mathbb{Z} , ideals (m) and (n) are coprime if and only if integers m and n are. If k_1, \ldots, k_n are pairwise coprime integers, get

$$\mathbb{Z}/(k_1\cdots k_n)\cong \mathbb{Z}/k_1\times\cdots\times \mathbb{Z}/k_n.$$

Local rings

A ring A is **local** if it has a *unique* maximal ideal \mathfrak{m} .

Theorem

A ring A is local if and only if its set of non-units form an ideal. If A is local, then the set of non-units is the maximal ideal.

Examples

- All fields are local.
- $k[x]/(x^n)$ is local, with maximal ideal $(x)/(x^n)$.
- $\mathbb{Z}_{(2)} = \{m/n \mid m \in \mathbb{Z}, n \in \mathbb{Z} \setminus (2)\} \subset \mathbb{Q}$ is local, with maximal ideal $\{m/n \mid m \in (2), n \in \mathbb{Z} \setminus (2)\}$.

Modules

A **module** of a ring A is an abelian group M equipped with an operation of multiplication from A

$$\begin{array}{ll} A \times M \to M & (1) \\ (a,m) \mapsto am & (2) \end{array}$$

satisfying a short list of axioms.

Example

If k is a field, then a k-module is the same thing as a k-vector space (*the axioms are the same*).

Example

A \mathbb{Z} -module is the same thing as an abelian group.

Modules, examples

- Every ring A is an A-module in a natural way.
- Every ideal of A is an A-module in a natural way.
- Given A-modules M, N, get A-module

$$M \oplus N = \{(m, n) \mid m \in M, n \in N\},\$$

with (m, n) + (m', n') = (m + m', n + n'), a(m, n) = (am, an).

Given a ring homomorphism $\varphi \colon A \to B$, B is an A-module via

$$ab= arphi(a)b \quad a\in A, b\in B$$

Homomorphism

A homomorphism of A-modules is a map $\varphi \colon M \to N$ respecting multiplication from A and addition, so for all $a \in A$, $m, n \in M$, we have

$$\varphi(am) = a\varphi(m), \quad \varphi(m+n) = \varphi(m) + \varphi(n).$$

It is an isomorphism if it is bijective.

Example

- If *M* is *A*-module and $x \in A$, have a homomorphism $\varphi \colon M \to M$ given by $\varphi(m) = xm$.
- If $m \in M$, get a homomorphism $\varphi \colon A \to M$ by $\varphi(x) = xm$.

Sub- and quotient modules

Let *M* be an *A*-module. Then $M' \subseteq M$ is **submodule** if it is closed under addition and multiplication from *A*, i.e.

$$x, y \in M' \Rightarrow x + y \in M' \quad x \in M' \Rightarrow ax \in M'.$$

The quotient group M/M' is an A-module in a natural way.

Example

Given an ideal $\mathfrak{a} \subset A$ and A-module M, get submodule

$$\mathfrak{a}M = \{\sum_{i=1}^n a_i m_i \mid a_i \in \mathfrak{a}, m_i \in M\} \subseteq M.$$

Module isomorphism theorems

Given homomorphism $\varphi \colon M \to N$, have

 $\operatorname{im}(\boldsymbol{\varphi})\cong M/\ker \boldsymbol{\varphi}.$

Given chain of A-modules $M \subseteq N \subseteq P$, have a submodule inclusion $N/M \subseteq P/M$ and an isomorphism

 $P/N \cong (P/M)/(N/M).$

Given submodules $P, N \subseteq M$, have an isomorphism

$$(P+N)/N \cong P/(P \cap N).$$

Kernels, images and cokernels

Given a homomorphism of modules $\varphi \colon M \to N$, there are three main associated modules:

- Kernel: ker $\varphi = \varphi^{-1}(0) \subseteq M$
- Image: $\operatorname{im} \varphi = \{\varphi(m) \mid m \in M\}.$
- Cokernel: $\operatorname{cok} \varphi = N / \operatorname{im} \varphi$.

We have " ϕ injective $\Leftrightarrow \ker \phi = 0$ " and ϕ surjective $\Leftrightarrow \operatorname{cok} \phi = 0$.

Exact sequences

A sequence of homomorphisms of modules

$$M_1 \xrightarrow{\phi_1} M_2 \xrightarrow{\phi_2} \cdots \xrightarrow{\phi_{n-1}} M_n$$

is **exact** at M_i if ker $\varphi_i = \operatorname{im} \varphi_{i-1}$. It is exact if it is exact at M_i for $2 \le i \le n-1$.

Example

- A sequence $M \to M'' \to 0$ is exact if and only if φ is surjective.
- A sequence $0 \to M' \to M$ is exact if and only if ϕ is injective.
- A sequence $0 \to M \to N \to 0$ is exact if and only if φ is an isomorphism.

Short exact sequences

An exact sequence of the form

$$0 \to M' \stackrel{i}{\to} M \stackrel{p}{\to} M'' \to 0$$

is called short exact. The sequence being exact is equivalent to

- 1 *i* is injective,
- p is surjective, and

$$\operatorname{im}(i) = \operatorname{ker}(p)$$

Finitely generated modules

A module M is **finitely** generated if equivalently

- **II** there is a surjective homomorphism of A-modules $A^n \rightarrow M$, or
- **2** *M* is isomorphic to A^n/K for some submodule $K \subseteq A^n$, or
- 3 there are elements $m_1, \ldots, m_n \in M$ such that all $m \in M$ can be written as

$$m = a_1 m_1 + \cdots + a_n m_n, \quad a_i \in A.$$

Nakayama's lemma

In all statements let A be a local ring with maximal ideal \mathfrak{m} , and let M be a finitely generated A-module.

Theorem

Nakayama's lemma If $\mathfrak{m}M = M$, then M = 0.

Theorem

Let N be an A-module. A homomorphism $\varphi \colon N \to M$ is surjective if and only if the composed map $N \to M \to M/\mathfrak{m}M$ is surjective.

Theorem

Elements $x_1, \ldots, x_n \in M$ generate M as an A-module if and only if $x_1 + \mathfrak{m}M, \ldots, x_n + \mathfrak{m}M$ generate $M/\mathfrak{m}M$ as an A/\mathfrak{m} -module.

Tensor product

Let M, N and P be A-modules. A map $\varphi \colon M \times N \to P$ is **bilinear** if for $x, x' \in M, y, y' \in N$ and $a \in A$ we have

$$\begin{aligned} \varphi(x+x',y) &= \varphi(x,y) + \varphi(x',y) \\ \varphi(x,y+y') &= \varphi(x,y) + \varphi(x,y') \\ \varphi(ax,y) &= \varphi(x,ay) = a\varphi(x,y). \end{aligned}$$

Theorem

There exists a module $M \otimes_A N$ together with a bilinear map $\chi \colon M \times N \to M \otimes_A N$ such that every bilinear map $\varphi \colon M \times N \to P$ can be factored uniquely as $\varphi = \psi \circ \chi$ for an A-module homomorphism $\psi \colon M \otimes_A N \to P$. The module $M \otimes_A N$ is uniquely defined by this property (up to isomorphism).

Tensor product, description

Elements of $M \otimes_A N$ are formal sums

$$\sum_{i=1}^n x_i \otimes y_i \quad x_i \in M, y_i \in N,$$

subject to relations $(x, x' \in M, y, y' \in N, a \in A)$:

$$(x + x') \otimes y = x \otimes y + x' \otimes y$$
$$x \otimes (y + y') = x \otimes y + x \otimes y'$$
$$a(x \otimes y) = ax \otimes y = x \otimes ay.$$

Given a bilinear map $\varphi \colon M \times N \to P$, the associated homomorphism $\psi \colon M \otimes_A N \to P$ has $\psi(x \otimes y) = \varphi(x, y)$.

Tensor product, applications

If $\varphi \colon A \to B$ is a ring homomorphism, then we can turn A-modules into B-modules and vice versa.

- If N is a B-module, the induced A-module is $N_A = N$, with A-module structure given by $an = \varphi(a)n$.
- If *M* is an *A*-module, the induced *B*-module is $M_B = B \otimes_A M$, with *B*-module structure given by $b(c \otimes m) = bc \otimes m$.

Tensor product, examples

- For any module M, $A \otimes_A M \cong M$, via the map $a \otimes m \mapsto am$.
- Given M, M', N, we have (M ⊕ M') ⊗ N = M ⊗ N ⊕ M' ⊗ N (⊗ behaves as multiplication).
- For any ideal $\mathfrak{a} \subseteq A$, we have $M \otimes A/\mathfrak{a} \cong M/\mathfrak{a}M$.

Flat modules

The functor of tensor product preserves some exactness.

Theorem

If M is an A-module, and

$$N' \to N \to N'' \to 0$$

is an exact sequence of A-modules, then so is

$$M \otimes_A N' \to M \otimes_A N \to M \otimes_A N'' \to 0.$$

A module M is **flat** if equivalently

• $\varphi \colon N' \to N$ injective $\Rightarrow \varphi \otimes_A \operatorname{id}_M \colon N' \otimes_A M \to N \otimes_A M$ injective, or

$$\blacksquare \ N' \to N \to N'' \text{ exact} \Rightarrow M \otimes_A N' \to M \otimes_A N \to M \otimes_A N'' \text{ exact}.$$

Flatness, examples

- *M* and *N* flat \Leftrightarrow *M* \oplus *N* flat.
- A is flat as A-module.
- Every free module is flat.
- Every fraction ring $S^{-1}A$ is flat as an A-module.
- $\mathbb{Z}/2 \text{ is not flat as a } \mathbb{Z}\text{-module, since the map } \varphi \colon \mathbb{Z} \to \mathbb{Z} \text{ gives } \\ \varphi \otimes \operatorname{id}_{\mathbb{Z}/2} = 0 \colon \mathbb{Z} \otimes \mathbb{Z}/2 \to \mathbb{Z} \otimes \mathbb{Z}/2.$

Algebras

Let A be a ring. An A-algebra is a ring B together with a homomorphism $\varphi \colon A \to B$.

An *A*-algebra is an *A*-module via $ab = \varphi(a)b$.

Example

Every ring *B* of the form $A[x_1, \ldots, x_n]/\mathfrak{a}$ is an *A*-algebra.

Fraction rings

A subset $S \subseteq A$ is **multiplicatively closed** if $1 \in S$ and $s, t \in S \Rightarrow st \in S$.

Definition

The fraction ring $S^{-1}A$ has elements equivalence classes of symbols a/s with $a \in A$ and $s \in S$, and with equivalence relation defined by

$$a/s = b/t \Leftrightarrow \exists u \in S \mid (at - bs)u = 0.$$

Addition and multiplication is defined by the usual fraction formulas:

$$a/s + b/t = (at + bs)/st$$
, $(a/s)(b/t) = ab/st$.

Example

If A is an integral domain and $S = A \setminus \{0\}$, then $S^{-1}A$ is the fraction field of A.

Fraction rings examples

Example

- If $\mathfrak{p} \subset A$ is a prime ideal, take $S = A \setminus \mathfrak{p}$, and write $A_{\mathfrak{p}} = S^{-1}A$.
- If $f \in A$, take $S = \{f^k\}_{k \ge 0}$, and write $A_f = S^{-1}A$.
- $\blacksquare \mathbb{Z}_{(0)} = \mathbb{Q}.$
- More generally, if A is an integral domain, $A_{(0)}$ is the fraction field of A.
- For p a prime, $\mathbb{Z}_{(p)} = \{m/n \mid m \in \mathbb{Z}, n \notin (p)\} \subset \mathbb{Q}$.

$$\blacksquare \mathbb{Z}_n = \{m/n^k \mid m \in \mathbb{Z}, k \ge 0\} \subset \mathbb{Q}.$$

Fraction modules

If $S \subset A$ is multiplicatively closed and M is an A-module, define an $S^{-1}A$ -module as the set of equivalence classes of symbols m/s, with $m \in M$, $s \in S$ and

$$m/s \sim n/t \Leftrightarrow \exists u \in S$$
 such that $(tm - sn)u = 0$

Theorem

If $M' \to M \to M''$ is exact, then so is $S^{-1}M' \to S^{-1}M \to S^{-1}M''$.

We have
$$S^{-1}A \otimes_A M \cong S^{-1}M$$
.

The ring $S^{-1}A$ is flat as an A-module.

Properties of fraction modules

Theorem ("Taking fraction modules commutes with most things")

Let $S\subset A$ be a multiplicatively closed system. The functor from A-modules to $S^{-1}A$ -modules given by $M\mapsto S^{-1}M$

sends submodules to submodules

$$M' \subseteq M \rightsquigarrow S^{-1}M' \subseteq S^{-1}M$$

commutes with taking direct sums

$$S^{-1}(M\oplus N)=S^{-1}M\oplus S^{-1}N\cong S^{-1}(M\oplus N)$$

• commutes with taking intersections and sums, that is for $M, N \subseteq P$, we have

$$S^{-1}(M \cap N) = S^{-1}M \cap S^{-1}N \subseteq S^{-1}P$$

and

$$S^{-1}(M + N) = S^{-1}M + S^{-1}N \subseteq S^{-1}P$$

commutes with tensor product

$$S^{-1}(M \otimes_A N) \cong S^{-1}M \otimes_{S^{-1}A} S^{-1}N.$$

Fraction modules, examples

Notation

Similarly to the case of rings

- For $\mathfrak{p} \subset A$ a prime ideal, write $M_{\mathfrak{p}} = S^{-1}M$ with $S = A \setminus \mathfrak{p}$.
- For $f \in A$, write $M_f = S^{-1}M$ with $S = \{f^k\}_{k \ge 0}$.

Local properties

A property *P* of modules (rings, homomorphisms, ideals...) is **local** if it "*P* holds for *M*" is equivalent to "*P* holds for M_p for all prime ideals $\mathfrak{p} \subset A$ ".

Theorem

The following are local properties

- A module being 0
- A homomorphism being injective
- A homomorphism being surjective
- A homomorphism being an isomorphism
- A module being flat

Ideals in fraction rings

Let $S \subseteq A$ be multiplicatively closed, and consider the standard homomorphism $\varphi \colon A \to S^{-1}A$.

Theorem

Every ideal $\mathfrak{a} \subseteq S^{-1}A$ satisfies

$$\mathfrak{a}^{ce} = \mathfrak{a}.$$

Immediate consequences:

- Every ideal of $S^{-1}A$ is of the form \mathfrak{b}^e for some $\mathfrak{b} \subseteq A$.
- Different ideals $\mathfrak{a}, \mathfrak{b} \subseteq S^{-1}A$ contract to distinct ideals $\mathfrak{a}^c, \mathfrak{b}^c \subseteq A$.

Prime ideals in fraction rings

Let $S \subseteq A$ be multiplicatively closed and $\varphi \colon A \to S^{-1}A$ the standard homomorphism.

Theorem

The operations of extension and contraction along φ give a bijection between prime ideals of $S^{-1}A$ and the prime ideals of A contained in $A \setminus S$.

Examples

- The prime ideals of A_p are of the form q^e for some unique prime ideal q ⊆ p. This shows A_p is local with maximal ideal p^e.
- The prime ideals of A_f are in bijection with prime ideals \mathfrak{p} such that $f \notin \mathfrak{p}$.

MAT4200 Autumn 2023 Commutative algebra, half term revision

