

UiO : Department of Mathematics University of Oslo

MAT4200 Autumn 2023

Commutative algebra, half term revision

UiO : Department of Mathematics

University of Oslo

Rings

A ring is a commutative ring with unity: a set A equipped with addition $a+b$ and multiplication $a b$ such that

- $(A,+)$ is an abelian group

■ Multiplication is associative and commutative
■ The distributive law $a(b+c)=a b+a c$ holds
■ There is an element $1 \in A$ such that $1 a=a$ for all a.

Basic examples

■ $\mathbb{Z}, \mathbb{Z} / n, \mathbb{Q}, \mathbb{R}, \mathbb{C}$.
■ Given a ring A, the ring $A\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in n variables.

Homomorphisms

A homomorphism of rings is a map $\varphi: A \rightarrow B$ preserving addition, multiplication and 1, i.e. for all $x, y \in A$ we have

$$
\varphi(x+y)=\phi(x)+\varphi(y), \phi(x y)=\varphi(x) \varphi(y), \varphi(1)=1
$$

If φ is bijective it is an isomorphism, write $A \cong B$.

Basic examples

- The natural maps $\mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{R} \rightarrow \mathbb{C}$ and $\mathbb{Z} \rightarrow \mathbb{Z} / n$ are homomorphisms.
■ For a ring A and elements $b_{1}, \ldots, b_{n} \in A$, a homomorphism $\phi: A\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ given by

$$
\varphi\left(\sum a_{i_{1} \cdots i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}\right)=\sum a_{i_{1} \cdots i_{n}} b_{1}^{i_{1}} \cdots b_{n}^{i_{n}} .
$$

UiO: Department of Mathematics
 University of Oslo

Ideals and quotient rings

- An ideal is a subgroup \mathfrak{a} of $(A,+)$ such that $a x \in \mathfrak{a}$ for all $a \in A, x \in \mathfrak{a}$.
- The quotient ring A / \mathfrak{a} is the set of cosets of \mathfrak{a} in $(A,+)$, with addition and multiplication defined by

$$
\begin{gathered}
(x+\mathfrak{a})+(y+\mathfrak{a})=(x+y)+\mathfrak{a} \\
(x+\mathfrak{a})(y+\mathfrak{a})=x y+\mathfrak{a}
\end{gathered}
$$

■ The quotient homomorphism $\varphi: A \rightarrow A / \mathfrak{a}$ is given by

$$
\varphi(x)=x+\mathfrak{a},
$$

Ideals, examples

- For any homomorphism of rings $\varphi: A \rightarrow B$, the kernel $\operatorname{ker} \varphi=\phi^{-1}(0) \subseteq A$ is an ideal, and $a+\operatorname{ker} \varphi \mapsto \varphi(a)$ gives an isomorphism

$$
A / \operatorname{ker} \varphi \cong \operatorname{im} \varphi
$$

- Given $f \in A$, the ideal

$$
(f)=\{x f \mid x \in A\}
$$

is the principal ideal generated by f.
■ Given $f_{1}, \ldots, f_{n} \in A$, the ideal generated by the f_{i} is

$$
\left(f_{1}, f_{2}, \ldots, f_{n}\right)=\left\{\sum_{i=1}^{n} x_{i} f_{i} \mid x_{i} \in A\right\}
$$

Quotient rings, examples

$\square \mathbb{Z} /(n)=$ ring of integers $\bmod n$.

- For $n \geq 1$ such that n is not a square number,

$$
\mathbb{Z}[x] /\left(x^{2}-n\right)=\mathbb{Z}[\sqrt{n}] \cong\{a+b \sqrt{n} \mid a, b \in \mathbb{Z}\} \subset \mathbb{Q} .
$$

- For $n \leq-1$,

$$
\mathbb{Z}[x] /\left(x^{2}-n\right)=\mathbb{Z}[i \sqrt{n}] \cong\{a+i b \sqrt{n} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}
$$

■ Given $a_{1}, \ldots, a_{n} \in A, A\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \cong A$.

- If k is a field, $f \in k[x]$ irreducible, then $k[x] /(f)$ is a finite extension field of k.

UiO : Department of Mathematics

University of Oslo

Prime and maximal ideals

■ $x \in A$ is unit if there is $y \in A$ such that $y x=1$.
■ An ideal $\mathfrak{p} \subseteq A$ is prime if $x, y \notin \mathfrak{p}$ implies $x y \notin \mathfrak{p}$.

- An ideal $\mathfrak{m} \subseteq A$ is maximal if there is no ideal $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq(1)$.
- A ring A is an integral domain if $x, y \neq 0$ implies $x y \neq 0$.
- A ring A is a field if $x \neq 0$ implies x is a unit.

Theorem

Let $\mathfrak{a} \subseteq A$ be ideal.

- a prime $\Leftrightarrow A / \mathfrak{a}$ is an integral domain.
- \mathfrak{a} maximal $\Leftrightarrow A / \mathfrak{a}$ is a field.
- a maximal $\Rightarrow \mathfrak{a}$ prime.

Prime and maximal ideals, examples

$■$ In \mathbb{Z}, the prime ideals are (0) and (p) for all primes p. The maximal ideals are the primes except for (0).

- If k is a field, then in $k[x]$, the prime ideals are (0) and (f) with f irreducible. The maximal ideals are the prime ideals except for (0).
$■$ Let k be a field, $a_{1}, \ldots, a_{n} \in k$. Then $\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right) \subset k\left[x_{1}, \ldots, x_{n}\right]$ is a maximal ideal.
- If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ is irreducible, then (f) is prime.

UiO : Department of Mathematics

University of Oslo

Maximal ideals exist

Theorem
If $A \neq 0$, then there is a maximal ideal $\mathfrak{m} \subset A$.

Strengthening

If $\mathfrak{a} \subsetneq A$, then there is a maximal ideal $\mathfrak{m} \supseteq \mathfrak{a}$.

Corollary

$f \in A$ is a unit $\Leftrightarrow(f)=(1) \Leftrightarrow f$ lies in no maximal ideal.

UiO : Department of Mathematics

University of Oslo

Operations on ideals

Given ideals $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subseteq A$, we define new ideals by:
■ Ideal sum: $\mathfrak{a}_{1}+\cdots+\mathfrak{a}_{n}=\left\{x_{1}+\cdots+x_{n} \mid x_{i} \in \mathfrak{a}_{i}\right\}$
■ Intersection: $\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{n}$

- Product:

$$
\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}=\left\{\text { all finite sums of expressions } x_{1} x_{2} \cdots x_{n} \mid x_{i} \in \mathfrak{a}_{i}\right\}
$$

- Ideal quotient

$$
\left(\mathfrak{a}_{1}: \mathfrak{a}_{2}\right)=\left\{x \in A \mid x \mathfrak{a}_{2} \subseteq \mathfrak{a}_{1}\right\} .
$$

The radical of an ideal \mathfrak{a} is given by

$$
\sqrt{\mathfrak{a}}=\left\{x \in A \mid x^{n} \in \mathfrak{a} \text { for some } \mathrm{n} \geq 0\right\}
$$

UiO : Department of Mathematics

University of Oslo

Finitely generated ideals

An ideal $\mathfrak{a} \subseteq A$ is finitely generated if we can find $f_{1}, \ldots, f_{n} \in A$ such that

$$
\mathfrak{a}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)
$$

We say that f_{1}, \ldots, f_{n} generate \mathfrak{a}.

Rewriting finitely generated ideals

Given $a, f_{1}, \ldots, f_{n} \in A$

$$
\left(f_{1}, \ldots, f_{n}\right)=\left(f_{1}, f_{2}+a f_{1}, f_{3}, \ldots, f_{n}\right)
$$

Given a unit $u \in A$, we have

$$
\left(f_{1}, \ldots, f_{n}\right)=\left(u f_{1}, f_{2}, \ldots, f_{n}\right)
$$

UiO : Department of Mathematics

University of Oslo

The nilradical

An element $f \in A$ is nilpotent if there is an $n \geq 1$ such that $f^{n}=0$. The nilradical of A is

$$
\mathfrak{N}=\sqrt{(0)}=\{f \in A \mid f \text { is nilpotent }\}
$$

Theorem
The nilradical of A equals the intersection of all prime ideals of A.

UiO: Department of Mathematics
 University of Oslo

Extension and contraction of ideals

Let $\varphi: A \rightarrow B$ be homomorphism. We can move ideals between A and B as follows.
$■$ If $\mathfrak{b} \subseteq B$ is an ideal, its contraction is $\mathfrak{b}^{c}=\phi^{-1}(\mathfrak{b}) \subseteq A$.
$■$ If $\mathfrak{a} \subseteq A$ is an ideal, its extension, denoted $\mathfrak{a}^{e} \subseteq B$, is the smallest ideal of B containing $\varphi(\mathfrak{a})$. Concretely

$$
\mathfrak{a}^{e}=\left\{\sum_{i=1}^{n} b_{i} \varphi\left(x_{i}\right) \mid b_{i} \in B, x_{i} \in \mathfrak{a}\right\}
$$

Theorem

If $\mathfrak{p} \subset B$ is a prime ideal, then so is \mathfrak{p}^{c}.

UiO : Department of Mathematics
 University of Oslo

Extension and contraction for the quotient homomorphism

Let $\mathfrak{a} \subseteq A$ be an ideal, and let $\varphi: A \rightarrow A / \mathfrak{a}$ be the quotient homomorphism.

■ For an ideal $\mathfrak{b} \subseteq A, \mathfrak{b}^{e}=(\mathfrak{a}+\mathfrak{b}) / \mathfrak{a} \subseteq A / \mathfrak{a}$.

- For an ideal $\mathfrak{c} \subseteq A / \mathfrak{a}$ has $\mathfrak{c}^{c e}=\mathfrak{c}$.
- This gives a bijection between the set of ideals of A / \mathfrak{a} and the ideals in A containing \mathfrak{a}, which sends prime (resp. maximal) ideals to prime (resp. maximal) ideals.

UiO : Department of Mathematics

University of Oslo

Extension and contraction, further examples

■ If $\varphi: A \rightarrow B$ is the inclusion of a subring and $\mathfrak{b} \subseteq B$ an ideal, then $\mathfrak{b}^{c}=\mathfrak{b} \cap A$.

- For $\varphi: A \rightarrow A[x]$ the standard inclusion, and $\mathfrak{a} \subseteq A$, we have

$$
\mathfrak{a}^{e}=\left\{\sum_{i=1}^{n} a_{i} x^{i} \mid a_{i} \in \mathfrak{a}\right\} \subseteq A[x] .
$$

UiO : Department of Mathematics

University of Oslo

Coprime ideals

Two ideals $\mathfrak{a}, \mathfrak{b} \subseteq A$ are coprime if $\mathfrak{a}+\mathfrak{b}=(1)$.

Theorem

If $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n}$ are pairwise coprime, then $\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{n}=\mathfrak{a}_{1} \cdots \mathfrak{a}_{n}$ and

$$
A /\left(\mathfrak{a}_{1} \cap \cdots \cap \mathfrak{a}_{n}\right)=A / \mathfrak{a}_{1} \times \cdots \times A / \mathfrak{a}_{n}
$$

Example

In \mathbb{Z}, ideals (m) and (n) are coprime if and only if integers m and n are.
If k_{1}, \ldots, k_{n} are pairwise coprime integers, get

$$
\mathbb{Z} /\left(k_{1} \cdots k_{n}\right) \cong \mathbb{Z} / k_{1} \times \cdots \times \mathbb{Z} / k_{n}
$$

UiO : Department of Mathematics

University of Oslo

Local rings

A ring A is local if it has a unique maximal ideal \mathfrak{m}.

Theorem

A ring A is local if and only if its set of non-units form an ideal. If A is local, then the set of non-units is the maximal ideal.

Examples

- All fields are local.
- $k[x] /\left(x^{n}\right)$ is local, with maximal ideal $(x) /\left(x^{n}\right)$.
- $\mathbb{Z}_{(2)}=\{m / n \mid m \in \mathbb{Z}, n \in \mathbb{Z} \backslash(2)\} \subset \mathbb{Q}$ is local, with maximal ideal $\{m / n \mid m \in(2), n \in \mathbb{Z} \backslash(2)\}$.

UiO : Department of Mathematics

Modules

A module of a ring A is an abelian group M equipped with an operation of multiplication from A

$$
\begin{align*}
& A \times M \rightarrow M \tag{1}\\
& (a, m) \mapsto a m \tag{2}
\end{align*}
$$

satisfying a short list of axioms.

Example

If k is a field, then a k-module is the same thing as a k-vector space (the axioms are the same).

Example

A \mathbb{Z}-module is the same thing as an abelian group.

UiO : Department of Mathematics

University of Oslo

Modules, examples

- Every ring A is an A-module in a natural way.
- Every ideal of A is an A-module in a natural way.
- Given A-modules M, N, get A-module

$$
M \oplus N=\{(m, n) \mid m \in M, n \in N\}
$$

with $(m, n)+\left(m^{\prime}, n^{\prime}\right)=\left(m+m^{\prime}, n+n^{\prime}\right), a(m, n)=(a m, a n)$.
■ Given a ring homomorphism $\varphi: A \rightarrow B, B$ is an A-module via

$$
a b=\varphi(a) b \quad a \in A, b \in B
$$

Homomorphism

A homomorphism of A-modules is a map $\varphi: M \rightarrow N$ respecting multiplication from A and addition, so for all $a \in A, m, n \in M$, we have

$$
\varphi(a m)=a \varphi(m), \quad \varphi(m+n)=\varphi(m)+\varphi(n)
$$

It is an isomorphism if it is bijective.

Example

- If M is A-module and $x \in A$, have a homomorphism $\varphi: M \rightarrow M$ given by $\varphi(m)=x m$.
- If $m \in M$, get a homomorphism $\varphi: A \rightarrow M$ by $\varphi(x)=x m$.

UiO : Department of Mathematics
 University of Oslo

Sub- and quotient modules

Let M be an A-module. Then $M^{\prime} \subseteq M$ is submodule if it is closed under addition and multiplication from A, i.e.

$$
x, y \in M^{\prime} \Rightarrow x+y \in M^{\prime} \quad x \in M^{\prime} \Rightarrow a x \in M^{\prime} .
$$

The quotient group M / M^{\prime} is an A-module in a natural way.

Example

Given an ideal $\mathfrak{a} \subset A$ and A-module M, get submodule

$$
\mathfrak{a} M=\left\{\sum_{i=1}^{n} a_{i} m_{i} \mid a_{i} \in \mathfrak{a}, m_{i} \in M\right\} \subseteq M
$$

Module isomorphism theorems

- Given homomorphism $\varphi: M \rightarrow N$, have

$$
\operatorname{im}(\varphi) \cong M / \operatorname{ker} \varphi
$$

- Given chain of A-modules $M \subseteq N \subseteq P$, have a submodule inclusion $N / M \subseteq P / M$ and an isomorphism

$$
P / N \cong(P / M) /(N / M)
$$

■ Given submodules $P, N \subseteq M$, have an isomorphism

$$
(P+N) / N \cong P /(P \cap N)
$$

UiO : Department of Mathematics

University of Oslo

Kernels, images and cokernels

Given a homomorphism of modules $\varphi: M \rightarrow N$, there are three main associated modules:

■ Kernel: $\operatorname{ker} \varphi=\varphi^{-1}(0) \subseteq M$
■ Image: $\operatorname{im} \varphi=\{\varphi(m) \mid m \in M\}$.
■ Cokernel: $\operatorname{cok} \varphi=N / \operatorname{im} \varphi$.
We have " ϕ injective $\Leftrightarrow \operatorname{ker} \varphi=0$ " and ϕ surjective $\Leftrightarrow \operatorname{cok} \varphi=0$.

UiO : Department of Mathematics

University of Oslo

Exact sequences

A sequence of homomorphisms of modules

$$
M_{1} \xrightarrow{\varphi_{1}} M_{2} \xrightarrow{\varphi_{2}} \cdots \xrightarrow{\varphi_{n-1}} M_{n}
$$

is exact at M_{i} if $\operatorname{ker} \varphi_{i}=\operatorname{im} \varphi_{i-1}$. It is exact if it is exact at M_{i} for $2 \leq i \leq n-1$.

Example

- A sequence $M \rightarrow M^{\prime \prime} \rightarrow 0$ is exact if and only if ϕ is surjective.
- A sequence $0 \rightarrow M^{\prime} \rightarrow M$ is exact if and only if ϕ is injective.
- A sequence $0 \rightarrow M \rightarrow N \rightarrow 0$ is exact if and only if ϕ is an isomorphism.

UiO : Department of Mathematics

University of Oslo

Short exact sequences

An exact sequence of the form

$$
0 \rightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{p} M^{\prime \prime} \rightarrow 0
$$

is called short exact. The sequence being exact is equivalent to
$1 i$ is injective,
$2 p$ is surjective, and
3 $\operatorname{im}(i)=\operatorname{ker}(p)$

UiO : Department of Mathematics

University of Oslo

Finitely generated modules

A module M is finitely generated if equivalently
1 there is a surjective homomorphism of A-modules $A^{n} \rightarrow M$, or
$2 M$ is isomorphic to A^{n} / K for some submodule $K \subseteq A^{n}$, or
3 there are elements $m_{1}, \ldots, m_{n} \in M$ such that all $m \in M$ can be written as

$$
m=a_{1} m_{1}+\cdots+a_{n} m_{n}, \quad a_{i} \in A
$$

UiO : Department of Mathematics

University of Oslo

Nakayama's lemma

In all statements let A be a local ring with maximal ideal \mathfrak{m}, and let M be a finitely generated A-module.

Theorem

Nakayama's lemma If $\mathfrak{m} M=M$, then $M=0$.

Theorem

Let N be an A-module. A homomorphism $\varphi: N \rightarrow M$ is surjective if and only if the composed map $N \rightarrow M \rightarrow M / \mathfrak{m} M$ is surjective.

Theorem

Elements $x_{1}, \ldots, x_{n} \in M$ generate M as an A-module if and only if $x_{1}+$ $\mathfrak{m} M, \ldots, x_{n}+\mathfrak{m} M$ generate $M / \mathfrak{m} M$ as an A / \mathfrak{m}-module.

UiO : Department of Mathematics

University of Oslo

Tensor product

Let M, N and P be A-modules. A map $\varphi: M \times N \rightarrow P$ is bilinear if for $x, x^{\prime} \in M, y, y^{\prime} \in N$ and $a \in A$ we have

$$
\begin{aligned}
& \varphi\left(x+x^{\prime}, y\right)=\varphi(x, y)+\varphi\left(x^{\prime}, y\right) \\
& \varphi\left(x, y+y^{\prime}\right)=\varphi(x, y)+\varphi\left(x, y^{\prime}\right) \\
& \varphi(a x, y)=\varphi(x, a y)=a \varphi(x, y)
\end{aligned}
$$

Theorem

There exists a module $M \otimes_{A} N$ together with a bilinear map $\chi: M \times N \rightarrow$ $M \otimes_{A} N$ such that every bilinear map $\varphi: M \times N \rightarrow P$ can be factored uniquely as $\varphi=\psi \circ \chi$ for an A-module homomorphism $\psi: M \otimes_{A} N \rightarrow P$. The module $M \otimes_{A} N$ is uniquely defined by this property (up to isomorphism).

UiO : Department of Mathematics
 University of Oslo

Tensor product, description

Elements of $M \otimes_{A} N$ are formal sums

$$
\sum_{i=1}^{n} x_{i} \otimes y_{i} \quad x_{i} \in M, y_{i} \in N
$$

subject to relations $\left(x, x^{\prime} \in M, y, y^{\prime} \in N, a \in A\right)$:

$$
\begin{gathered}
\left(x+x^{\prime}\right) \otimes y=x \otimes y+x^{\prime} \otimes y \\
x \otimes\left(y+y^{\prime}\right)=x \otimes y+x \otimes y^{\prime} \\
a(x \otimes y)=a x \otimes y=x \otimes a y .
\end{gathered}
$$

Given a bilinear map $\varphi: M \times N \rightarrow P$, the associated homomorphism $\psi: M \otimes_{A} N \rightarrow P$ has $\psi(x \otimes y)=\varphi(x, y)$.

UiO : Department of Mathematics
 University of Oslo

Tensor product, applications

If $\varphi: A \rightarrow B$ is a ring homomorphism, then we can turn A-modules into B-modules and vice versa.

■ If N is a B-module, the induced A-module is $N_{A}=N$, with A-module structure given by $a n=\varphi(a) n$.
■ If M is an A-module, the induced B-module is $M_{B}=B \otimes_{A} M$, with B-module structure given by $b(c \otimes m)=b c \otimes m$.

UiO : Department of Mathematics

University of Oslo

Tensor product, examples

■ For any module $M, A \otimes_{A} M \cong M$, via the map $a \otimes m \mapsto a m$.
■ Given M, M^{\prime}, N, we have $\left(M \oplus M^{\prime}\right) \otimes N=M \otimes N \oplus M^{\prime} \otimes N(\otimes$ behaves as multiplication).
■ For any ideal $\mathfrak{a} \subseteq A$, we have $M \otimes A / \mathfrak{a} \cong M / \mathfrak{a} M$.

UiO : Department of Mathematics

University of Oslo

Flat modules

The functor of tensor product preserves some exactness.

Theorem

If M is an A-module, and

$$
N^{\prime} \rightarrow N \rightarrow N^{\prime \prime} \rightarrow 0
$$

is an exact sequence of A-modules, then so is

$$
M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N \rightarrow M \otimes_{A} N^{\prime \prime} \rightarrow 0
$$

A module M is flat if equivalently
■ $\varphi: N^{\prime} \rightarrow N$ injective $\Rightarrow \phi \otimes_{A} \operatorname{id}_{M}: N^{\prime} \otimes_{A} M \rightarrow N \otimes_{A} M$ injective, or

■ $N^{\prime} \rightarrow N \rightarrow N^{\prime \prime}$ exact $\Rightarrow M \otimes_{A} N^{\prime} \rightarrow M \otimes_{A} N \rightarrow M \otimes_{A} N^{\prime \prime}$ exact.

UiO : Department of Mathematics

University of Oslo

Flatness, examples

- M and N flat $\Leftrightarrow M \oplus N$ flat.
- A is flat as A-module.
- Every free module is flat.
- Every fraction ring $S^{-1} A$ is flat as an A-module.
$\square \mathbb{Z} / 2$ is not flat as a \mathbb{Z}-module, since the map $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}$ gives $\phi \otimes \mathrm{id}_{\mathbb{Z} / 2}=0: \mathbb{Z} \otimes \mathbb{Z} / 2 \rightarrow \mathbb{Z} \otimes \mathbb{Z} / 2$.

UiO : Department of Mathematics

University of Oslo

Algebras

Let A be a ring. An A-algebra is a ring B together with a homomorphism $\phi: A \rightarrow B$.

- An A-algebra is an A-module via $a b=\varphi(a) b$.

Example

Every ring B of the form $A\left[x_{1}, \ldots, x_{n}\right] / \mathfrak{a}$ is an A-algebra.

UiO : Department of Mathematics

Fraction rings

A subset $S \subseteq A$ is multiplicatively closed if $1 \in S$ and $s, t \in S \Rightarrow s t \in S$.

Definition

The fraction ring $S^{-1} A$ has elements equivalence classes of symbols a / s with $a \in A$ and $s \in S$, and with equivalence relation defined by

$$
a / s=b / t \Leftrightarrow \exists u \in S \mid(a t-b s) u=0
$$

Addition and multiplication is defined by the usual fraction formulas:

$$
a / s+b / t=(a t+b s) / s t, \quad(a / s)(b / t)=a b / s t .
$$

Example

If A is an integral domain and $S=A \backslash\{0\}$, then $S^{-1} A$ is the fraction field of A.

UiO : Department of Mathematics

University of Oslo

Fraction rings examples

Example

- If $\mathfrak{p} \subset A$ is a prime ideal, take $S=A \backslash \mathfrak{p}$, and write $A_{\mathfrak{p}}=S^{-1} A$.
- If $f \in A$, take $S=\left\{f^{k}\right\}_{k \geq 0}$, and write $A_{f}=S^{-1} A$.
$\square \mathbb{Z}_{(0)}=\mathbb{Q}$.
- More generally, if A is an integral domain, $A_{(0)}$ is the fraction field of A.
■ For p a prime, $\mathbb{Z}_{(p)}=\{m / n \mid m \in \mathbb{Z}, n \notin(p)\} \subset \mathbb{Q}$.
$■ \mathbb{Z}_{n}=\left\{m / n^{k} \mid m \in \mathbb{Z}, k \geq 0\right\} \subset \mathbb{Q}$.

UiO : Department of Mathematics

University of Oslo

Fraction modules

If $S \subset A$ is multiplicatively closed and M is an A-module, define an $S^{-1} A$-module as the set of equivalence classes of symbols m / s, with $m \in M, s \in S$ and

$$
m / s \sim n / t \Leftrightarrow \exists u \in S \text { such that }(t m-s n) u=0
$$

Theorem

- If $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ is exact, then so is $S^{-1} M^{\prime} \rightarrow S^{-1} M \rightarrow S^{-1} M^{\prime \prime}$.
- We have $S^{-1} A \otimes_{A} M \cong S^{-1} M$.
- The ring $S^{-1} A$ is flat as an A-module.

UiO : Department of Mathematics

University of Oslo

Properties of fraction modules

Theorem ("Taking fraction modules commutes with most things")
Let $S \subset A$ be a multiplicatively closed system. The functor from A modules to $S^{-1} A$-modules given by $M \mapsto S^{-1} M$

- sends submodules to submodules

$$
M^{\prime} \subseteq M \rightsquigarrow S^{-1} M^{\prime} \subseteq S^{-1} M
$$

- commutes with taking direct sums

$$
S^{-1}(M \oplus N)=S^{-1} M \oplus S^{-1} N \cong S^{-1}(M \oplus N)
$$

- commutes with taking intersections and sums, that is for $M, N \subseteq P$, we have

$$
S^{-1}(M \cap N)=S^{-1} M \cap S^{-1} N \subseteq S^{-1} P
$$

and

$$
S^{-1}(M+N)=S^{-1} M+S^{-1} N \subseteq S^{-1} P
$$

- commutes with tensor product

$$
S^{-1}\left(M \otimes_{A} N\right) \cong S^{-1} M \otimes_{S^{-1} A} S^{-1} N
$$

UiO : Department of Mathematics

University of Oslo

Fraction modules, examples

Notation

Similarly to the case of rings

- For $\mathfrak{p} \subset A$ a prime ideal, write $M_{\mathfrak{p}}=S^{-1} M$ with $S=A \backslash \mathfrak{p}$.

■ For $f \in A$, write $M_{f}=S^{-1} M$ with $S=\left\{f^{k}\right\}_{k \geq 0}$.

UiO : Department of Mathematics

University of Oslo

Local properties

A property P of modules (rings, homomorphisms, ideals. . .) is local if it " P holds for M " is equivalent to " P holds for $M_{\mathfrak{p}}$ for all prime ideals $\mathfrak{p} \subset A^{\prime \prime}$.

Theorem
The following are local properties

- A module being 0
- A homomorphism being injective
- A homomorphism being surjective
- A homomorphism being an isomorphism
- A module being flat

UiO : Department of Mathematics

University of Oslo

Ideals in fraction rings

Let $S \subseteq A$ be multiplicatively closed, and consider the standard homomorphism $\varphi: A \rightarrow S^{-1} A$.

Theorem

Every ideal $\mathfrak{a} \subseteq S^{-1} A$ satisfies

$$
\mathfrak{a}^{c e}=\mathfrak{a}
$$

Immediate consequences:
■ Every ideal of $S^{-1} A$ is of the form \mathfrak{b}^{e} for some $\mathfrak{b} \subseteq A$.

- Different ideals $\mathfrak{a}, \mathfrak{b} \subseteq S^{-1} A$ contract to distinct ideals $\mathfrak{a}^{c}, \mathfrak{b}^{c} \subseteq A$.

UiO : Department of Mathematics

Prime ideals in fraction rings

Let $S \subseteq A$ be multiplicatively closed and $\varphi: A \rightarrow S^{-1} A$ the standard homomorphism.

Theorem

The operations of extension and contraction along ϕ give a bijection between prime ideals of $S^{-1} A$ and the prime ideals of A contained in $A \backslash S$.

Examples

- The prime ideals of $A_{\mathfrak{p}}$ are of the form \mathfrak{q}^{e} for some unique prime ideal $\mathfrak{q} \subseteq \mathfrak{p}$. This shows $A_{\mathfrak{p}}$ is local with maximal ideal \mathfrak{p}^{e}.
- The prime ideals of A_{f} are in bijection with prime ideals \mathfrak{p} such that $f \notin \mathfrak{p}$.

UiO 8 Department of Mathematics University of Oslo

MAT4200 Autumn 2023

Commutative algebra, half term revision

