

UiO Department of Mathematics
University of Oslo

MAT4200 Autumn 2023

Commutative algebra revision

Primary ideals

Definition

An ideal $\mathfrak{q} \subseteq A$ is **primary** if $xy \in \mathfrak{q}$ implies either $x \in \mathfrak{a}$ or $y \in \sqrt{\mathfrak{q}}$.

Equivalent definition

An ideal \mathfrak{q} is primary if every 0-divisor in A/\mathfrak{q} is nilpotent.

Sufficient conditions

- Every prime ideal is primary.
- If $\sqrt{\mathfrak{q}}$ is maximal, then \mathfrak{q} is primary.

Properties of primary ideals

Proposition

If \mathfrak{q} is primary, then $\sqrt{\mathfrak{q}}$ is prime.

p-primary ideals

If $\mathfrak p$ is a prime ideal, we say $\mathfrak q$ is $\mathfrak p\text{-primary}$ if it is primary and $\sqrt{\mathfrak q}=\mathfrak p.$

Theorem ("Primary ideals under ring operations")

- Let φ : $A \to B$ be a ring homomorphism. If $\mathfrak{q} \subset B$ is primary, then so is $\mathfrak{q}^c \subset A$.
- Let $S \subset A$ be a multiplicatively closed subset. Contraction and extension along $A \to S^{-1}A$ gives a bijection between the primary ideals of $S^{-1}A$ and the primary ideals of A contained in $A \setminus S$.

Primary decompositions

Definition

A **primary decomposition** of an ideal α is an equality

$$\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$$

with the q_i primary ideals. The primary decomposition is **minimal** if

- 1 The prime ideals $\sqrt{\mathfrak{q}_i}$ are distinct, and
- **2** For all i, \mathfrak{q}_i does not contain $\bigcap_{j\neq i} \mathfrak{q}_j$.

Every primary decomposition gives a minimal one after removing some q_i or replacing some pairs q_i , q_i by $q_i \cap q_i$.

Uniqueness theorem I

Theorem ("The primes of a primary decomposition are unique")

Let $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ be a minimal primary decomposition. Then the set

$$\mathsf{Ass}(\mathfrak{a}) := \{\sqrt{\mathfrak{q}_i}\} \subseteq \operatorname{Spec} A$$

is uniquely determined by a, and equals the set

$$\{\sqrt{(x:\mathfrak{a})} \text{ prime } | x \in A\}.$$

Minimal/embedded primes

The prime ideals in $Ass(\mathfrak{a})$ are called the **associated primes of** \mathfrak{a} . An element $\mathfrak{p} \in Ass(\mathfrak{a})$ which is minimal with respect to inclusion is called a **minimal** prime of \mathfrak{a} , the other ones are called **embedded**.

Minimal = minimal

Theorem

Let ${\mathfrak a}$ be an ideal with a primary decomposition. The minimal elements of the set

$$\{\mathfrak{p}\supseteq\mathfrak{a}\mid\mathfrak{p}\;\mathsf{prime}\}$$

are the same as the minimal elements of Ass(a).

Uniqueness II

Theorem ("Primary ideals whose primes are minimal are unique")

Let $\mathfrak a$ be an ideal with minimal primary decomposition

$$\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i.$$

Then for every i such that $\sqrt{\mathfrak{p}_i}$ is a minimal prime of \mathfrak{a} , the ideal \mathfrak{q}_i is determined by \mathfrak{a} .

Zerodivisors and associated primes

Theorem

Assume that A is a ring such that (0) has a primary decomposition. Then $x \in A$ is a 0-divisor if and only if x lies in some associated prime of (0).

Integral dependence

Definition

Let $A \subseteq B$ be a ring inclusion. An element $b \in B$ is **integral over** A if we can find $a_0, \ldots, a_{n-1} \in A$ such that

$$b^n + a_{n-1}b^{n-1} + \cdots + a_0 = 0.$$

Definition

We say A is integrally closed in B if every $b \in B$ which is integral over A lies in A.

Integral closures

Theorem/definition

Let $A \subseteq B$ be a ring inclusion. The set

$$C = \{b \in B \mid b \text{ integral over } A\}$$

is a subring of B, with $A \subseteq C \subseteq B$.

The ring C is called the **integral closure of** A **in** B.

C is integrally closed in B.

Integral closure in fraction fields

Definition

If A is an integral domain with fraction field K, we say A is integrally closed if it is integrally closed in K.

Example

Every unique factorisation domain is integrally closed.

Theorem ("Being integrally closed is a local property")

Let A be an integral domain. The following are equivalent:

- A is integrally closed.
- **3** $A_{\mathfrak{p}}$ is integrally closed for every maximal $\mathfrak{m} \subset A$.

Chain conditions

Definition

Let M be an A-module.

 \blacksquare The module M is **Noetherian** if every sequence of submodules

$$M_1 \subseteq M_2 \subseteq \cdots \subseteq M$$

stabilises, that is there is some $N \ge 0$ such that $M_n = M_N$ for n > N.

 \blacksquare The module M is **Artinian** if every sequence of submodules

$$M \supseteq M_1 \supseteq M_2 \supseteq \cdots$$

stabilises.

Alternative definition Noetherian/Artinian

Definition through maximal/minimal elements

An A-module M is Noetherian (resp. Artinian) if in every set S of submodules of M we can find a maximal (resp. minimal) submodule.

Theorem

An A-module M is Noetherian if and only if every submodule $M' \subseteq M$ is finitely generated.

Chain conditions and short exact sequences

Theorem

Let

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

be an exact sequence of A-modules. Then

M Noetherian $\Leftrightarrow M' \& M''$ Noetherian

and

M Artinian $\Leftrightarrow M' \& M''$ Artinian.

Chain conditions on rings

Definition

A ring A is Noetherian (resp. Artinian) if and only if it is so as an A-module.

Theorem ("Chain conditions preserved under ring change operations")

Let A be Noetherian (resp. Artinian).

- If $\mathfrak{a} \subseteq A$ is an ideal, then A/\mathfrak{a} is Noetherian (resp. Artinian).
- If $S \subseteq A$ is multiplicatively closed, then $S^{-1}A$ is Noetherian (resp. Artinian).

Noetherian modules over Noetherian rings

Theorem

Let A be a Noetherian ring, and let M be an A-module. Then M is Noetherian if and only if it is finitely generated.

Simple modules

Definition

An A-module M is simple if its only submodules are 0 and M.

Definition

Let M be an A-module. We say a sequence of submodules

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_l = 0$$

is a **composition series** if every quotient M_i/M_{i+1} is simple. Its **length** is I.

Equivalently the sequence is a composition series if it maximal in the sense that there is no submodule $M' \subset M$ such that

$$M_i \supseteq M' \supseteq M_{i+1}$$

Length

Theorem ("Length is independent of choice of composition series")

If M admits a composition series, then

- Every composition series of M has the same length, and
- Every sequence

$$M = M_0 \supsetneq M_1 \supsetneq \cdots \supsetneq M_k = 0$$

can be extended to a composition series.

Definition

If M admits a composition series, then we say it has **finite length**, and its **length** is I(M), defined as the length of any of its composition series.

Additivity of length

Theorem

A module M has finite length if and only if it is both Noetherian and Artinian.

Theorem ("Additivity of length")

Length is additive, that is if

$$0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0$$

is an exact sequence of finite length modules, then I(M) = I(M') + I(M'').

Hilbert's basis theorem

Hilbert's basis theorem

If A be a Noetherian ring, then A[x] is Noetherian.

Corollary ("Lots of rings are Noetherian")

Every localisation of a finite type \mathbb{Z} -algebra is Noetherian. If k is a field, then every localisation of a finite type k-algebra is Noetherian.

Hilbert's Nullstellensatz

Hilbert's Nullstellensatz

Let k be a field.

- If $\mathfrak{m} \subset k[x_1,\ldots,x_n]$ is a maximal ideal, then $k[x_1,\ldots,x_n]/\mathfrak{m}$ is of finite dimension as a k-module.
- If k is algebraically closed, then the maximal ideals of $k[x_1, \ldots, x_n]$ are all of the form

$$(x_1-a_1,\ldots,x_n-a_n)$$

for some $a_1, \ldots, a_n \in k$.

Primary decomposition in Noetherian rings

Lasker-Noether theorem

Let A be a Noetherian ring, and let $\mathfrak{a} \subseteq A$ be an ideal. Then there exists a primary decomposition of \mathfrak{a} .

Krull dimension

Definition

Let A be a ring. The Krull dimension of A is the supremum (possibly ∞) of the length n of chains of prime ideals

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_n$$
.

Artinian rings

Theorem

Let A be a ring. Then A is Artinian if and only if A is Noetherian and $\dim A = 0$.

Theorem ("Artinian rings are products of local ones")

Every Artinian ring A has finitely many maximal ideals, and can be written uniquely as a direct product

$$A\cong\prod_{i=1}^nA_i$$

where the rings A_i are Artinian and local.

If A is a local Artinian ring, then $\mathfrak{m}^n = 0$ for some $n \ge 1$.

Discrete valuations

Definition

Let K be a field. A **discrete valuation** of K is a surjective function

$$v \colon K \to \mathbb{Z} \cup \{\infty\}$$

such that for $x, y \in K$, we have

$$v(x) = \infty \Leftrightarrow x = 0$$

$$v(x) + v(y) \ge \min(v(x), v(y)).$$

Discrete valuation rings

Definition

Let A be an integral domain, with fraction field K. We say A is a **discrete** valuation ring (or **DVR**) if there exists a valuation v of K such that

$$A = \{x \in K \mid v(x) \ge 0\}.$$

The structure of a DVR

Theorem

Let A be a DVR. Then

■ A is local, with maximal ideal

$$\mathfrak{m} = \{ x \in K \mid v(x) \ge 1 \}$$

- For any $x \in A$ with v(x) = 1, we have $\mathfrak{m} = (x)$.
- Given such an x, the ideals of A are

$$(1) \supseteq (x) \supseteq (x^2) \supseteq \cdots$$

and (0).

 \blacksquare A is integrally closed.

Criteria for being a DVR

Theorem

Let A be a Noetherian local integral domain of dimension 1. Then the following are equivalent

- 1 A is a DVR
- 2 m is principal
- With $k = A/\mathfrak{m}$, $\dim_k \mathfrak{m}/\mathfrak{m}^2 = 1$.
- 4 A is integrally closed

Graded rings

Definition

A **graded ring** is a ring A together with subgroups $A_i \subseteq A$ for every $i \ge 0$, such that

$$A=\bigoplus_{i\geq 0}A_i,$$

and such that for all $i, j \ge 0$, we have $A_i A_j \subseteq A_{i+j}$.

Homogeneous elements

If A is a graded ring and $x \in A$, we say x is **homogeneous** of degree d if $x \in A_d$.

An assumption

Let A be a graded ring. Assume from now on that

- \blacksquare A_0 is a field, denoted k.
- There exist $x_1, ..., x_n \in A_1$ such that A is generated as a k-algebra by the x_i .

Hilbert function

For a graded ring A with the above assumption, its **Hilbert function**

$$H_{\Delta} \colon \mathbb{N} \to \mathbb{N}$$

is defined by

$$H_A(d) = \dim_k A_d$$
.

Asymptotic behaviour of the Hilbert function

Theorem

Let A be a graded ring satisfying the assumptions above. There exists a rational polynomial f and an integer $N \ge 0$ such that

$$f(n)=H_A(n)$$

when n > N.

The associated graded ring

Definition

Let A be a local ring with maximal ideal \mathfrak{m} . Its **associated graded ring** is the ring

$$G(A) = \bigoplus_{i \geq 0} G(A)_i,$$

where

$$G(A)_i = \mathfrak{m}^i/\mathfrak{m}^{i+1},$$

and the multiplication $G(A)_i \times G(A)_j \to G(A)_{i+j}$ is by

$$(x + \mathfrak{m}^{i+1})(y + \mathfrak{m}^{j+1}) = xy + \mathfrak{m}^{i+j+1}$$

The characteristic polynomial

Theorem-Definition

Let A be a Noetherian local ring. There is a polynomial χ_A and an $N \ge 0$ such that when $n \ge N$, we have

$$\chi_A(n) = I(A/\mathfrak{m}^n).$$

We call χ_A the **characteristic polynomial of** A.

A formula

With A as above, we have $I(A/\mathfrak{m}^n) = \sum_{d=0}^{n-1} H_{G(A)}(d)$, and the Hilbert polynomial of G(A) is

$$\chi_A(n+1)-\chi_A(n)$$
.

The dimension theorem

Dimension theorem

Let A be a Noetherian local ring. Then A has finite dimension, and the following integers are equal:

- \blacksquare dim A
- \blacksquare deg χ_A
- The minimal number of generators of an \mathfrak{m} -primary ideal.

Corollaries of the dimension theorem

- If k is a field, then dim $k[x_1, ..., x_n] = n$.
- If A is a local, Noetherian ring, with $k = A/\mathfrak{m}$, then

$$\dim_k \mathfrak{m}/\mathfrak{m}^2 \ge \dim A$$

- If A is a local, Noetherian ring and $x \in \mathfrak{m}$ is not a 0-divisor, then $\dim A/(x) = \dim A 1$.
- Krull's principal ideal theorem: If A is a Noetherian ring, $x \in A$, and $\mathfrak p$ is an ideal minimal among those containing x, then $\dim A_{\mathfrak p} \le 1$.

UiO Department of Mathematics University of Oslo

MAT4200 Autumn 2023

Commutative algebra revision

